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This conference on "Elementary and Analytic lVumber Theory" was organized by

Hugh L. Montgomery (Ann Arbor), Wolfgang Schwarz (Frankfurt) and Eduard
Wirsing (Ulrn).

Forty-three mathematicians from eleven different countries followed the Institute's
invitation. The thirty-four lectures presented during the week gave a stimulating
survey of current progress in Analytic Number rrheory. Same of the topics taken up
during the meeting were:

Arithmetic functions, arithmetic progressions, covering congruen<:es,
distribution of prime numbers, divisor problems, Goldbach represen­
tations, exponential sums~ lattice points, moments of the Riemann and
Hecke zeta-functions and L-functions, Littlewood's conjecture, multi­
plicative functions, quadratic and cubic forms, Ramanujan expansions,
set addition, \Varing's problem.

On the background of the unique atmosphere of the Institute we all had a great time
of learning and cxchanging idcas. The organizers and participants of this conference
t~xpress thcir thanks 1.0 t.hl~ Land ßaden-Württcmberg, thc Dircctor of the Institute,
Prof. Kreck~ and his starr for providing this enjoyable environment.
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Tlte Inect.inJ.?; was dc·dica.t(~d 1,0 t,he rncrnory of

Prof. Dr. Hans-Egon Richert

• June 2, 1924 t November 25, 1993

who had been an organizer of t.he conference on Elenlcntary and Analytic N1I11lber

Theory in Oberwolfach since 1975.

On the 25th of November 1993, Professor Dr. Hans-Egon Richert dieu in ß1allstein e
near Ulm, Cermany, after a long and severe illness. Richert held achair of Nlathenla-
tics at the University of Ulm from 1972 until his retirement as an emeritus professor

in 1991.

Richert was born 192:1 in Harnburg and was raised there. He had to complete high
school at a private institution after being expelled froTo the public school in the
period of the Third Reich for "anglophile leanings·'.

In 1946, at last back in Hamburg after the war and military service, he could begin
his studies of mathematics. He obtained his diploma after eight terms and his
PhD only one year later. When his mentor, Professor Max Deuring, accepted a
position in Göttingen, the young Richert joined hirn as an assistant and obtained
the venia legendi there in 1954. Soon after he was put in charge of one of the best

mathematical libraries in Germany.

After holding a temporary chair in Göttingen he was offered a newly created chair
at the University of Marburg. In that time of vigorous development of the entire
university system, Richert contributed in an essential way to shaping the wlarburg
Mathematical Institute, and, of course, he devoted his special love and attention
to the library. In 1972 he accepted achair at the young University of Ulm. His
professorship here was the second one in the Mathematics Department, after that
of Alexander Peyerimhoff. There was again muchneed for development.

Science had priority for Richert, teaching as weB as research. Those who knew hirn
from committee meetings recall that Richert spake only when it was really necessary.
He used to cut short a tedious discussion with a fcw weB chosen and constructive
- but never offensive - words. He also participated in rcasonable adnlinistrative
activities: in 1974/7.j he served his univcrsity as Pror(~ktor, then as a mcmb(~r of thc~

llobcloved room allocation board. which in (~frcct had t.o allocat(~ shortages. aod ~H:

acted far alrnost twp.nty yp.ars as c:hilirrnan of the exarnination (:ornrniu.ce. an officc
that he administered unburcaucratically and illways in thc interest. of the stlldents.
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Richcrt's lield of research was Analytic Number Thcory. He rnade ilnporlant c:on­
tribulions 1.0 additive prirnc number thcory, Diric:hlet scrics, Ries? summability, thc
rnultiplicat.ive i\na.lo~ or the Erdils-Fuchs theorem. estinlates of thc number of non­
isonlorphi<: ahelian groups and bounds for exponcntial sums for use, c. g. in cstima­

ting the error t.erm of thc prime number t.heorem. From about 1965 on he fOCllSsed
his research incrcasingly on sieve methods. Motivated by their common interest
in sievcs an intensive research collaboration developed between Richert and Heini
Halberstanl. Among other things they put the proof of Chen's p+ P2 theorem ioto

readable form. The monograph on Sieve Methods that they coauthored immedia­
tely becalne the indispensable basis for research of many number theorists. Also,
Richert'5 name was long associated with the best estimate for the Dirichlet divisor
problem.

The very high estecm he enjoyed in the mathematical community is reflected by the
rnany invitations he received from mathematical institutions abroad, among others
the Univcrsity of Illinois at Urbana and the Tata Institute in Bombay.

His life was not confined to mathcmatics: Richert was also a stimulating '~onversa­

tional partner on many different subjects. He enjoyed exploring foreign .countries
and keeping records of his trips on film and tape, a pursuit that he followed with
the same intensity as his science whenever time allowed.

In 1991 Professor Richert had to retire from his strenuous teaching duties. It is
sad that he was not granted the lang and fruitful period of retirement that he was
looking forward to.

With the passing of Hans- Egon Richert we lose a treasured colleague and a resear­

eher of international reputation.
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Abstracts

The difference between consecutive primes
R. C. Baker, Provo

Let y = x· tl • Find 0 ClS slnall as possiblc such that ;r( x) - ;'i ( .r - y) > n für a.lt
large x. In practice t.hc only way to do this is to provc

7r(x)-rr{x-y) > c -,1/- (1)
logx

where c is a positive constant. Since 1979 sieve ideas have been tlscd: thc Hosser-

Iwaniec sieve with bilinear error term (Iwaniec & Jutila! Heath-BrowTl & Iwaniec. •

Iwaniec f..'\z. Pintz, Mozzochi, culminating in f) = 0.547... ); anti a :)iev~ identity of

Heath-Brown used by Lau and Yao to get 0 = 6/11 + ~ = 0.,1454.... i\'luch simpler

than Lau & Y~o is the approach of the speaker with G. Harman. Our sieve is thc

one first used by Harman to study fractional parts of Q p ~ p prime, in 19S:L Our

result may be expressed in the form

y
7r(x) - rr(x - y) > (1 +0(1)) -I_. (1 - J'2 - J4)

. ogx

where J' = [ da1 ... dO j - t ~ w (1- 01
-" .-Q:j) w bein u Buchstab~s function.] Ja} 01 Q'j-l et] Qj , 0

ß j is a certain set c;lepending on 0 and increasing as () decreases. 'vVe obtain (1)
with f) = 0.535. The other tools used are really not different, apart from a few

tricks, from those of Heath-Brown and Iwaniec in the paper referred to above; in

some places our approach is, indeed, simpler..

Central limit theorems tor kt {kv'2}

J. Beck, Rutgers

TIIEORE~I 1. \Vrite S(n) = L~=I{kJ2} - i. {x} Jcnotes~ as usual, thc frac­

tional part of x. Then there is a constant CI > 0 such that

1 { V 8(n) \} I JA -'J.:!/:! 1-# n<': --- , ----- (~ (lt
;\' - • ("I~ - y':!-;r _.x;:

as .V - .x, für all n~al ,\.

•
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THEOREM 2. \'Vritc Z(n) = L~=l {kV3} - %- C'l(v':f) logn. Then
thcrc is C\ CO(1stant ,;:, > 0 such that

~#{n~JY:

as IV --+ 00 for all real A.

THEOREM 3. vVrite S(n; ß) ::= L~=l {kV2 - ß} - %. Then there is a constant
C1 > 0 such that

{( ß) E [0 I )2. S([on];ß} < '} _I_JA -u 2/2 darea 0', ,. ~ _ A --+ ~ e u
c4V 10g n V21T -00

as iY -+ 00 for all real '\ .

THEOREM 4. Let ((x)) = x - (nearest integer to x) = ±lIxll. Then

N

~ n({n
l
,J2)) = 0(1)

where cs( V3) #- 0 .

but
N

L 1 - c.:;(V3) log IV + 0(,1)
n=1 n ((nV3» - -:E.

•

On Waring's problem fOT cubes
J. Brüdern, Göttingen

Let r(n) be the number of representations of n as the surn of four positive integer

cubes. It is conjectured that
1/3

r(n) = r3W e(n) n
1
/
3+ 0((10: n)I/4) (1)

where 8(n) » 1 is the familiar singular series. The best results currently available

are due to Vaughan (1986) who showed that the asymptotic formula holds almost,
and to the speaker (1991) who showed that #{n ~ N: r(n) = O} « ly31/42+e. In
this talk we describe joint work with N. Watt on short interval analogues of these

results. In particular we have obtained:

THEOREM 1. Let 1\-'1 = lYo with 0 > .1/6. Then the asymptotic forrnula (1)
holds for all but O(l\1(log lV)-1/5) intcgers n with N < n ~ LV + 1\1.

TIIEORE~f 2. In thc sarnc notation. with 0 > ':I/tl one has r(n) 4> n l/3 for a11

hut 0(1\4 1-°) integers n with IV < Tl ::; iV + ;\4 ; here fJ = fJ(O) > O.
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Mean 'values 0/ the zeta-junction
B. Conrey, Stillwater

\V(~ givc il cOllj(~ctlln\ for !.hc sixth power rnorncnl of tlw zc1.a-l"lItlcLioll:

t' 1(( ~ + itll'; dt ~ -12T L <1,~(II) .
in rt<T Tt

Finally~ we remark that •
~(L~(n)

:!T L,-----.
n

1l<"f

T
f I ~( I ') I" iJo l~ 2 + Li ( tand

Here (3(5) = 2::=1 d:J(n) n-'o; . This conjectllre should he COTTlpared with thc result.s

of Hardy and Ingharn:

(1((& + itll"l dt - T L #~1t)
Jo n<T

alc k~

r(l+k~) (logT)

for any k ~ 0, where

rr 1 k2 ~ d2 (pn) rr 1 k2~. r 2
(k+n) -n

ak = (1 - p) 6 _k_n- = (1 - ji) ~_ r2(k)(n!)'.! p .
p n=O P p n-O·

It is the case that ak is an entire function of k of order 2. ak = aL -k , and all zeros

of ak are on the 1/2 - line.
It should be mentioned that one might conjecture a similar behavior for the surn

Lxmodk IL(~,x)16, at least for prime moduli k. We indicate a connection between

this problem and a generalized Dedekind sumo

On /unctions 0/ the type f{an+b} g(cn+d) where fand g

are multiplicative functions with absolute value ::; 1

H. Delange, Orsay

We prove the following result

THEOREM 1. Let a,b.c~d be integers, a, c, a + b, c+ d ~ 1, ud - bc =I O~ let f
and 9 be multiplicative functions satisfying If(n)1 :s; 1 and Ig(n)1 ~ l for aB n.

[f L (2- ReJ(p)- Reg(p))/p < 00, then
p

~ L f(an+b} g(m+<ll = C rr (I - *+ (I-~) f f(p');' fj(p'l) + f)( 1)
n<x p<r r=l

- I'lac(~d-bc)

a.s .I -. 00 • wherc (,~ is Cl. constant dep(:ndin~ on tl. b. c~ d. f,!J .
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€i = ±l, Pi prime.

•

•

Co IlO I~I.J\ III ES:

• If J a.n<! ,q have non-~ero mean valucs, then f(an+b) g(cn+d) has a rncan

vahl(~.

• Let F a.nu G be rcal-valued additive functions. lf Fand G have limit­
distrihutions, thcn F(an+b) + G(cn+d) has a limit-distribution.

On the structure theory 0/ set addition
J.-M. Deshouillers, Bordeauz

In t.his survey of some joint works with G. FreTman, V. 565, ~1. Temkin and A.
Yudin, we present some recent applications of the structure lheory 01 set addition,

introduced by G. Freiman in the late 50's.

According ta Erdös and Straus, we define an admissible subset A of [1,lV] to
be such that whenever an integer can be written as a surn of s distinct elements
from A, then s is weH defined. Improving on previous results, we show that the
cardinality of such an admissible subset A is at most (2+0(1») JN. As shown by
Straus, the constant 2 cannot be improved upon.

A subset A of [1,lV] is said to be sum-free if A and A + A have 00 cammon
element. We determine the structure of A when card A is larger that 0.4 N -0(1).

Finally we show how to relate the conceotration function of a surn of randorn varia­
bles to the concentration function of the summands by using the additive properties
of the large values of the characteristic functions.

Multiplicative functions on the shifted primes
P. D. T. A. Elliott, Boulder

Let Q- be the multiplicative group of positive rationals, r the subgroup generated
by the shifted primes p + 1, G the quotient group Q- / r. Then G is finite. Let

IGI denote its order. Then:

Tu EOREM 1. There is a. k such that every positive rational r has a representation

k

r !r,"j -- II ,.(pi + l)-i ,
1=1
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as x -f ':)0, Cl: > 0, [ not Cl\1 .

FtJrt.lH~r a.rgtlnH~nt.. Ilsirl~ a. t.hcorcrn of Rtlzsa <lud l.tH~ fact. t.ltat. (; is known t.o hc

c:yclic~ shows thaI. I ho:-w int.cg~ers für wh ich a reprcsl'llt.al.iolJ I" = n~=l (Pi + 1r' holds.
havc Cl. d(~n~ity t5, ;uld /'j 2: I j:l .

On supersingular primes
E. Fo1J,vry, Orsay

Let E be an elliptic curvc over Q~; &a..b the elliptic curvc with quasi-rnininlal equa- .'

tion: Ea..b: y'! = x:J + ax + b (a, b E 7l~ ·la3 + 27b1. :/; 0) and .

1ro(x, t') = #{p S; x; p supersingular [)firne for t} .

Lang and Trotter conjectured the asymptotic formula

1fo(x, E) I"'V Cf IVX
ogx

Improving the method of Elkies, we obtain the lower bound:

for any fJ > 0 and x > Xo (E, 8) .

Several results on average are proved, e. g.

THEOREM 1.

L L 1rO(X,&a.b)
jal<A Ibl<B
4aJ +27b2 jO

1r ~
-·4AB·­
3 logx

as x ~ 00, uniformly for A, B > Xl/2+~, /lB > X 3/ 2+€ .

THEOREM 2. Almost every elliptic curve [ •.b has its least supersingular prime e
less than y'max(laj, Ibl) .

We discuss on the number of supersingular primcs c:ommon to two elliptic curves

and on the average value of the constant Cf.".b'

These rcsults we.re ohtaincd in collaboration with R. ~'lurty (~,'Iontreal) and E. Ullrno

(Orsay).
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A sieve identity and the roots 0/ quadratic congruences
J. B. Friedlander, Toronto

Let f E ~[xJ h(~ irreduciblc wilh dcgrce ~ 2. For p prime thcrc are by a. theorem

of Lagrange no lnore than <leg f solutions v of thc congruencc J( v) == 0 (rnod p) .
[t is natural t.o wunder how these roots are distributed as p varies. \Ve normalize

by considcri ng thc fractional part {v / p} and expect. for lack of evidence to the

contrary, that these are uniformly distributed, that is, for arbitrary 0 $ 0' < ,8 $ 1,

#{ (v, p): J(v) == 0 (mod p), p~ x, 0 ~ {vip} <ß} ~ (ß - 0) 1r(x) .

In the case wherc thc surn is taken over all integers rather than just primes, thc

relevant cqui-distribution was demonstrated by Hooley, about thirty years ago. Here

we' describe joint work with W. Duke and H. Iwaniec in which the required equi­

distribution over primes is shown in the case that J is a quaclratic polynomial with

negative discriminant. We expect that the indefinite quadratic case can be settled

by modifying the ideas, but higher degree polynomials offer much greater challenge.

The proof involves: by the Weyl criterion a successful estimation of certain expo­

nential sums over primes. A sieve identity, believed to be new, reduces the latter

to certain linear and bilinear exponential sums. These can be related to certain

Poincare type series which can be estimated via the spectral theorem and known

estimates for Sessel functions.

The circle method for quadratic and cubic forms
D. R. Heath-Brown, O:cford

An identity of Friedlander and Iwaniec gives the following form of the circle method:

Let w: lRn -+ rn. be smooth, compactly supported, and let w: rn. ~ rn. be smooth

and supported on [1,2]. Let F be a form of degree n. Then

where

L w(p- l
1=)

F(~)=O

S(q; r}

L Lq-n-1S(q;t) I(q;r}
te71 nq=1

'J( mud,,) m( mud q)
(tl.q)=l

I(q; r)
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llere

and Q > 0 is an arbitrary paralnet.er.

The terms for t = 0 lead t.o t.hc singular scries and integra.l. Thc fornl\da. alrcady

includes thc 'LKloosterrnan rcfinenlcnt" - t.hc sUln ovcr fl ~ hut. hcu; tbc a.dvant.age

that a- 1 ( mod q) does not occur. ~iloreovcr it is easy t.D carry out the '~~econd

Kloosterman refinemcnt", i. e. averaging Q\'er q.

()ne ean prove asymptotic forrTlulae when d = 2 and n ~ :1 ~ (~st.ablishing in pa.rti-

cular the Hasse principle. •

\Vhen d = ~J and n ~ :1 one ean prove non-tri vial upper b01JIH.b (at least für diago-

nal forms) providing one assurnes the analytic continuation anti Hiemann Ilypothesis

for appropriate Hasse-Weil L-fuIlctions.

On B 2k-sequences
M. Helm, New York

A sequence A of natural numbers is called a Br-sequence if the equation n =
at + ... + ar 1 at ~ ... ~ ar , ai E A, has at most one solution for all natural n.

Let A(n) = LI. We prove that every 8 2k-sequence A satisfies
a:::n.aEA

liminf A(n) (logn)t/(2k) < 00
n-oo n 1f(2k)

provided that A(n2)« (A(n))2 for all sufficiently large n.

This proves in the case of even r a conjecture of P. Erdös that states that for every

natural r every Br-sequence A satisfies lim inf .4(n) = O.
nl/"

Sums 01 distinct squares
A. Hildebrand, Urbana

If .') ~ .1, it is easy to see that every sufficicntly large integer ls rcprescntablc ilS a. slirn

of .'i distinct positive squares. Let !V(.'i) denotf~ the largest integer not representable

in this fann. Halter-Koch [Acta Arilh. ·12 (1 !JH2L 11· 201 comput.cd thc (~xact valu(~s

of iV(.<;) for .1 ~ .... ~ 12 and gav(~ lnequaljli(~s which lcad to an (:xponcntial Ilppcr

hOllnd for :V(.'i). On the oth{~r hand. sinCf~ (~v(~ry intc~cr rcprcscntable aoS a sum of
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.'i dislinet posiliv(~ squares is at. I(~ast (~qual t.o thc Sllln ur t.he first. .'i positive SClHan~s,

Li'l=k.s(.5+1)(2s+L) =: P(s),
i=1

LV(.'») is hOllnd(~d from helow by the polynomial P(s).
In joint wark with P. ßatenlan and G. Purdy we show that, in fact, lV(S) is asymp­

totically cqual to this trivial lower bound. More precisely, we prove that

iV(S) = P(s) + (2S)3/2 + '\" (2S)5/4 + 0(.s9/8)

where '\" = J'2max(II~II, 1IJ2S-ill) and 11 . 11 denotes the distance to the

nearest integer.

Lattice points and exponential sums
M. N. Huzley, Cardiff

Two kinds of problerns were discussed, estimating exponential sums and counting

the number of plane lattice points within a contour, or lattice points elose to the

contour.

New results of Sargos, Filaseta and Trifonov, and an argument of Huxley and Koles­

nik that iterates between the two types of problems, were mentioned. Two particular

resul ts are:

THEOREM. (Huxley). The errar term E(t) in the mean square of the zeta-
function on the criticalline is O(T72/227+e).

THEOREM. (Huxley & Watt). The error term ß(x) in the number of integer
ideals in a quadratic number field Q( V15) with norm up to x is O((D2X)23/73+~)

for x large compared with IDI.

The mean square 01 the zeta-function in the critical strip
A. Ivic, Belgrade

For fixed (j such that l/'2 < (j < land T ~ 2 let
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denote t.he ('~r()r I,(~rtll in t.hc nwan squil.re fornllda. fur lllt~ Hit'rtlClIIIl zt'l.a.-fl1tlctioll

((.-;) in the cri t.ical stri p 1/'2 < (1 < I. Rcccnt.ly IBIlCh work hil.."i hc'en dO[1(~ 011

t.his itBportant f1ln<:t.iol1, Cllld the (tinl uf t.his t.alk is t.u pn:sc'nt. l.ht's(~ restllt.s. In
particulaf. joint n~stllt.s or 1\ . .\1atsl1rnot.o Clnd t.hc spc'ak('r an' prc's(~nl.ed. These

inc1uoe for L/2< fT < ~~;'I a.ud C' > 0

and

~ < a <: }.

where (K.,,\) is an exponent pair such that ,\ = I\, + ~ .

Class group L-functions
H. Iwaniec, Rutgers

This is joint work with W. Duke and J. Friedlander.

We consider the imaginary quadratic field f = Q(Fi5) of discriminant -D. Let

X be a character of the ideal class group 1{, to which is attached the L-function

where a ranges over non-zero integral ideals and lVa is the norm. Various estimates

and mean value asymptotics are established for these L-functions which are uniform

with respect to the discriminant. In particular we get the followin.g

THEOREM. Ir Res = 1/2 we have

-k L IL~(.s, X)\2 = ,,\1)(05) + O(D- 1/ 28 +!)

XE :Jf

where the main term AD(.5) is given explicitly a.s thc surn of r~sidtles of a certain

rneromorphic function;

'\D( ~)

,\/)( ~ + il)

() r. - ~ w - 1 L( I . \: /)) IO~'I f).

~ir-1W-ll((1 + :hl)!'l t( 1. Xv) IO.l?; IJ.

if .-; = 1/2

if ." 1= 1/~ .
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'rhe (~rror t(~rrn is (~sti[na.ted by Tneans of spcctral thcory of autoTnorphic fOrlns. The

(~Clllidistribllti()n or Ifeegncr points due ta W. Duke is uscd. An estilnat(~ for the

individual f.~( ..;, X) is also givcn which is sharpcr than thc convp.xity bOlllld suhject

to certain Ilat.ural condilions.

The mean twelfth power 0/ Dirichlet L-/unctions
M. Jutila, Turku

In collaboration with Y. Motohashi. the following mean value cstimate was recently

obtained:

THEOREM.

L: L:* l T

IL<!+it,x)1 12 dt .~ X 3T 2(XT)<
D5:,X xmod D 0

where .. indicates that the sum is over primitive characters.

This includes a well-known mean value theorem of D. R. Heath-Brown for the Rie­

mann zeta-function as wen as an analogous estimate due to T. Meurman for L­
functions to a single modulus. The praof is essentially based on spectral methods.

The same ideas apply even to cusp form L-functions twisted with Dirichlet charac­

ters.

Lattice points zn three-dimensional convex bodies
E. Krätzel, Jena

Let /C be a three-dimensional convex body, where the origin is an inner point.

Suppose that the boundary of K. is an analytic map of the unit sphere. We obtain

far the number of lattice points R(x) in the blown-up body x K,

R(x) = vol(K:)x3 + a(x)

with t.he trivial cstimatian far the remainder Ll(x) « x 2
• Assllming the Caussian

curvature to be positive at all points of the boundary, in 19.10 IIlawka improved this

t.u ~(x) « x"J/2. anti in 1!)92 \.\1. G. :'-1owak and the author proved
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\VI)(~n t.ht~ bOlludary of A- hits isolated points wit.h C:a.IlSSiiUl nlrvat.llrc zero (l I1CW

sit.uation Clrist's. The cst.inlation of t.hc l't~rnaiuJcr dt~p('nds Oll l.he ord('r of these

zeros. Ftlrtherrnof(~. t.he posit.ion of t.lw lat.t.icc with rcsp(~ct. t.o iL point wit.h (;ilussiilll

curvat.ure z(~r() pla.ys an illlportan1. role. Ir t.bc t angenliill plall(' at t.ltis point flets

ra.tional slOpt~ with resp(~ct. tu tlw coordinate planes even cl Ilew (nain l.c~rrn il.fises

with an order which is g;rcater than :Jj2. lf one ur t.wo slopt's a.rc' irrat.ional ~ t.h(-~

contribution of this point t.o the estirnation of the rernainder is 111uch sTnalier.

Ramanujan expansions revisited
L. Lucht, Clausthal

In 1918 Ramanujan investigated the sums cn(a) of the ath puwcrs of all n.t.h pn­

mitive roots of unity and proved that numerous arithmetical functions g: IN --+ q";

possess an expansion of the form

•
g(a) (a E IN)

with suitable coefficients g(n). A general approach is based on certain orthogonality

relations between the Ramanujan sums by which the consideration is restricted to

arithmetical functions 9 having a non-zero mean value. The observation that all

Ramanujan sums cn(a) are closely related to cn (l) = J.l(n) where J.L is the Möbius

function yields a different approach. In particular for multiplicati~e functions having

no mean value a conceptual explanation for the existence of Ramanujan expansions

is given. The main tools are inversion theorems for Dirichlet series and relationship

theorems with logarithmic weights. The divisor functions dk+l (k E IN) may serve

as conerete examples: They have pointwise convergent Ramanujan expansions with

coefficients

dk+t(n) = (_l)k loln rr ((1 _.!.)*= " (k+P-l) ~)-l
- k~ n p L-, k- 1 pP v

p~lIn p~v

Thc case k = 1 is contained in Ramanujan 's original paper.
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Short intervals with very lew prime numbers
H. Maier, Ulm

\Ve prov(~ l.haL for c(.c) > O~ lirn E(:Z:) := O! we have that
L-'-X)

. . iT(x + (log X)l+t:(X}) - 1r(x) 0
lunlnr =

I-OO (log x )t:(x)

The proaf Ilses ideas of Erdös and Rankin applied in their papers on large gaps bet­

ween consecutivc primes and the matrix method of the author from his irregularity

results in the loeal distribution of prime numbers. A novel feature is the use of a

result of Friedlander on the number of integers free of small and large prime factors.

Group valued arithmetical functions :'-';~

J.-L. Mauelaire, Paris

Let 9 be an abelian group, q E INo , q ~ 2. A Q-valued q-additive function f
is a function f: lNo -+ 9 satisfying the relation f{aqT +b) = f{aqT) + /(b) , if
o :s; b ~ qT - 1, a 2: 0 and T 2: 0 .

In the case 9 = 1I', the spectrum of f provides information on t4e harmonie measure
determined by f, and its existence depends on the eonvergence of the pro~uct

P(q,J,Q,kjN) = I II 1 L f(aqT)keikaaq'l
O~T~N q O~a~q-l

for k = 1 and 0 areal number. This product if convergent for k = 1 is c~pyergent

for all k E 7l. A consequence is that if f( n) = e ig(n) , then there exists ~~" proba­

bility measure IJ on IRjZ, A(n) a sequence in IRjZ, such that the sequence of
probabili ty measures

~ L b(g(n)-on-A(logq N) ,
n~N

where log q lV = [log iV/log q], converges weakly to IJ. A similar result is true in
any locally compact abelian group. In fact we have:

THEOREM. Let 9 he a locally compact abelian group, f a Q-valued q-additive

function. If for cvery continuous character X of 9 , thcre exists areal number a(x)

such that the prouuct P({/,.'( 0 f. 0, 1: :V) conver~cs. thcn, t.here exists ro EIN,

r: E 9 , a scquencc A( IV) and a prohability rncasure v on 9 , such that the sequence
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(()nver~es wcakly 1.0 v.

Recurrent sequences with locally uniformly bounded
numbers 0/ prime divisors

c. Methfessel, Clausthal

The talk presents a proof of the following result: e
THEOREM. Let rn E IN and 9: IN ~ 7l be recurrent with ....:(]y(n)l) S In für aB

n E lN with g(n) :f O. Then the set

Pg := {p E IP: :l nEIN such that g(n) f:. 0, P!!J( Tl) }

is finite.
This extencls the corresponding result on recurrent sequences of prilne powers (i.c.

the case m = 1 ), which was obtained by Erdös, wlaxsein and Smith in 1990.

D( ) _ (lOg x log 2)
x - exp .

log log x

Thus d(m) > D(m) infinitely often. hut d(m) < (D(m))l+< for m > mo(e). By e
extending a result of Erdös and Nicolas (1981), it is shown that i f 0 < Q < 1 then

the number of m ~ x for wh ich d( m) > (D( x)) a is X 1- o +o
( 1) . Thus it is clear that

therc cxist infinitely many n with 00 representation (1) with d(md > (D(n))O , if
n > 1 - 1/k. We show, converscly, t hat. i f Q < 1 - 1(k t.hen alt suffi(iently Iarge n

can he writtcn in the fornl (1) with d( rnd > (1)( Tl))" .

Sums of numbers with many divisors
H. L. Montgomery, Ann Arbor

This is joint work with P. Erdös. Recently I was asked for representations of n in

the form n = ml +... + mk (1) where the mi are positive integers with

d(mi) as large as possible. Ta address this, one must first determine how often d( m)

is large. Put
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The mean values of the zeta- and Dirichlet L-functions
Y. Motohashi, Tokyo

'rhe rirst part. t)f thc talk is on the fourth power Inorncnt of Dirichlet /"-functions.

'rhis is joint work with ~Ilalti .J utila.
A relation hetwcen this classical problem and thc Ramanujan conjecture on thc size

of Fourier coefficients of non-homomorphic cusp-formsjSL(2, Z) is pointed out in

the following form:

THEOREM. Let lj(n) be the Hecke eigen-valuejSL(2, Z). Let a be such that
Ilj(n)l «! nl)+~ for aJl j ~ 1 and n ~ 1 with an arbitrary small € > O. Then we

have

provided T~ ~ To ~ T 2
/
J

.

The second part is on an approach to the eighth power moment of the zeta-function.

By an application of the Fourier-Hermite expansion and the Parseval formula one
may approach to the eighth power moment starting from the fourth power moment.

More precisely, let

1((!+i(T+Gt))14 = L hn{T,G) Hn(t)
n=O

be the Fourier-Hermite expansion. Then, by the Parseval formula we hav~

1
+00 00

G~ I((~ + i(T+t))j8 e-(t/G)'dt = L n!2"lh,,(T,G)12
•

-00 n~.

where the Fourier coefficients hn(T, G) are explicitly given in terms of the spectrum
of the non-Euclidean Laplacian. We have .

and we have already developed a theory which yields an explicit formula for the last
integral. It is to be seen whether or not this approach to J1(18 will yield any non­
t.rivial cstimate for this highly important mean value of the zeta-function.
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On zeros 0/ polynomials with 0,1 - coefficients
A. Odlyzko, Murray Hill

Zeros of polynonlials with O.I-coefficients {~xhibit. interesiing [ract.al prop{~rties. lf

W is the set of such zcros~ and W its dostHl'. t.hen (t.o~et.l)('r with B. [>nonen)

I havc shown that W is path connected~ W coniains an op(~n set. t.hai contains

{ZEG.~: 1=1 = 1. =# I}. W contains thc segment {-q~ -.l/q) ~ where q = (l+v!F,")/2.
and the only points = E W, such that Re(=) < -loS, are in this line s(~gtnent.

On the prime ideal theorem and applications
A. Perelli, Genova

For k,d.Q EIN, let f{x) = x k +Qd. Let v(d) denole t.he number o[ irreducible

factors of f(x} and p(d, p) the number of roots (mod p) of f(x). \Ve übtain the

following

THEOREM. (Nair & Perelli). Let X, Y ~ 2; .:, A > 0, and yl/2+~ ~ 1/ ~ Y.

Then we have

L I L (p(d,p) - v(d)) I
Y$d~Y+H X~p$2X

H .\
~k, A, c logA .Y

uniformly for Q :::; y A •

The independence of the ranges for )( and Y comes from the possibility of consi­

dering hoth d and p a.s "modulus" in an appropriate sense.

The above theorem has several applications. We mention three of them:

Application to the irregularity in the distribution of primes represented by polyno­

mials, to the representation of integers n as n = p + m k
, p prime and m integer

and to the distribution on average of primes in short intervals.

On sequences containing no arithmetic progressions
R. A. Rankin, Glasgow

A strictly increasing sequencc {ad of non-rwgativc intf~gers is callcd an An -se­

quence if it contains no n distinct t.erms in arithmctic progn~ssion ( Tl 2::~). For an

An -seqllcnce we write I1n(I) = Ln.<.r 1 . '['lu: denseSl A]-sequence so [ar construc­

ted is duc to F. ßehrend [Proe .•Val. :lead. S,:i. U.S.:1. :12 (1916), :1:11 -:rJ2] who

obtained for any ~ > 0
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/h(.r.) > .x (~XP ( - 2J~ lo~ 2 (l +.::) Jlo~ x ) . (I)

•

In 19()~ lISill~ an (~xplicit forrTlula. für r(.Ioi, P; iV). the nuolber of solut.iol1s nf the

c~ql1ati()n .xi + ... + ;I;; = iV whcrc 0 S; Xi ~ P, i = 1, ... , .-;, I Was able tn c:ollslruct

an An-secl'wtlcc for 1I.;::::J [Proc. /loyal Soc. Edinburgh 65A (1962), :13:1-344 J with:

An(x) > x exp ( - cn ( 1+E) (log x)K) , (2)

where Cn is a. known posi ti ve constant (cJ = C4 = 2J21og 2) and !{ = 1/(k + 1)

where n > 2Jc • This gives the same result for n = 4 as it does für n = 3.

My cfforts Lo get an cstimate of larger order for on = 4 have been unsuccessful

although I can gel rid of thc € in (1) replacing the right side far n = :1,4 by

x exp (- eJlü,g x) (log X)-1/4 and similarly for higher values of n.

Power moments 01 Hecke zeta-functions
U. Rausch, Ulm

Let [( be an algebraic riumber field of degree [/( : Q] = n = Tl + 2 T2 (in the

standard notation), ep = 1 for p = 1, ... , Tl and ep =2 for p = Tl + 1, ... , r + 1 ,
T = Tl + T2 - 1. For x = (x}, . .. , X r +l), x p > 0, E > 0, and kEIN we consider the

function

where the s~mmation is over all Grössencharacters Aof the form A( (}) = n;~~"I(}(p) liepbp

with bp E IR. such that L;~~ epbp = 0 and ..\(77) = 1 for every unit 7J E K. ( de­

notes Hecke's zeta-function.

Fe ( x) is expanded into aseries similar to that occurring in the Voronol formula

associated with the divisor problem. In particular it fallows that

r+l

for )( := n x;p ~ 1 and 0 < € $ 1/8.
p=l

Für k = l, .\' = land t.otally real fields I{ . t.his is just about what an analoguc of

the Lindelör Hypothesis would givp..
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Structure of sumsets
I. Ruzsa. Budapest

By Szelncrt~di's t.hcof"(~ln. (\v(~ry set of lnt.e~ers .A C (1 ..VI, 1...··1I > n:V. n)lll.ains

il long arithrnetical pro~r('ssion, hut its lel1~th Inay h(~ « log.V. In cotltrast, a

tripie sllrnscl A +A +A conlains an arithrnctical progression of lengt.h 'S> :V'Y, -,{ =
1'(0) > 0 (Frerrnan. I1albprstanl, Ruzsa). whilc for A+A the Illitxilnal kngth lies in

( (I V) I/3-e (I ,)'}.f'J+!)exp og 1 ,~Xp og!'V (Bourgain. Ruzsa).

Setter than simple arithrnetical progressions are k-dinlcnsional ilrit.hrnet.ical pro­

gressions of the form P = {a + 11 Xl + ... + C/kXk: 0 ~ Xi ~ f i - I} and Bohr sets,

finite analogues of Bohr neighbourhoods. The connection betwl'en l.hem is (~xplorcd. e
a source of which is a theorem of Bogolyubov (19~J7): Ir A c 7l. tl(A) > 0 l.hcn

A+A-A-A is a Bohr neighbourhood of O.

On Littlewood '8 conjecture
J. W. Sander, Hannover

In this talk we describe joint work with with S. Schäffer.

In 1948 Littlewood made the follawing conjecture (LC): For all Q, ß E IR and all

€ > 0 there is some n such that

n lIonllllßnll < c:

where !lxII denotes the distance between the real number x and the nearest integer.

In 1955 Cassels and Swinnerton-Dyer proved that this i5 teue if Q, ,8 are elements

of a fixed real cubic number field. Apart from that not much is known. A ~'proof"

by ß. F. Skubenko [J. Soviel A'1alh. ,j3, 00.3 (1991), 302-321] seems to have gaps.

LC would be wrang if for same 0', ß E IR and same E. > 0 iV lIonllllßnll ~ i for

all LV and all 1 ~ n ~ lV .

TH EO REM 1. For 0: = 3 -2../5 and all LV there js sorne /3 such that for all 1 ~ n ~ iV

IV lIonllllßnl1 ~ :~ -4J?) ~ 0,19.

TIlEORE~t 2. Für all o:~ ,3 ~ llt il.n<! all .V ~ 2 therc is sorne n ~ :V such that

') 'V 1.
IV Ilnnllll/irzll <~ < ~ ..)N +'\ .)
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Integers not of the form n - ep( n)
A. Schinzel, Warszawa

\V. Sicrpir'lski ;l..."ik(~d in L959 whet.hcr there t~xist infinilly Inany positive integers not

or thc fonn II -Iy.?{n), wherc <.p is Eulcr~s function. The following theorern - proved

jointly wit.h .J. Browkin llsing covcring congruences - gives an affirmative answer to

this question:

THEOREM. Für every positive integer k we have 2k
. 509203 f:. n - <p(n) .

On a certain nonary cubic form
R. c. Vaughan, London

In joint work with T. D. vVooley we investigate the number of solutions S of the

diophantine system

xi + x~ + x~

Xl + X2 + X3

y~ +Yi + Y5
Yl +Y2 +Y3

(1 )

with Xi ~ P, Yi ~ P, i = 1,2,3.
Heath-Brown in 1989 in important work on Waring's problem u'sed the 'estimate

S = O(P3+E) , and Hua (1948) had shown that S = O(P 3 1og 9 P). "./":',
By suitable transformations we replace the system (1) by the nonary cubic form

(2)

subjeet to sundry side conditions. In this way we are able to show that the number

U of non-trivial solutions of (1) is 0 (P7/3(log 2P) 11) . Thus

THEOREM 1. Wehave S = 6p3 + O(P7/3(log2P)Il).

By further refinement we ean establish

THEOREM 2. Thc number U satisfies U x P 2 log 5 P.

Sinee the eontribution from the ~'Major Ares" in this problem is also X P 2 10g 5 P

t.his suggests a relationship between "Non-trivial" solutions and "Major Ares" and

we attem pt to plaee this idca on firmer ground.
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Prime 'numbers in alTTiost all short 'il1,teT'1JaL~

N. Watt~ Göttingen

Assunlil11-!; the B.i(~nl(1I111 lIypot.hcsis Seiherg showed t.hat, illJnost. ;111 l)i" l.hc inl.cf\·als

[n., n+ f(n) log:! n] will contain primes, providcd t.ha.t I(n.) -+ 00. 1I(~ abo showed~

unconditionally, that. [or O' > 19/77 ~ ahnost 'all o[ t.hc illtervals [11.. Tl + fLol will

contain primes. La.ter restllt.s a.re: ~vlontgOTIlery 0 > l;'~. lIuxky (J > 1/6, [Iarrnan

o > 1/10. The last rcsult uses sieve met.hods which Wl'r<~ lirst inlroduced for l.he

problem of an individual short interval by Iwaniec aBU .Jlltilcl in 1977. \Iore recenLly

Harman and Hcath-Urown have independent unpublishcd proofs for () > 1/12.

Using the followinp; result:

(IC(t + it)l-I It an nif dt ~~ J'I+<!V
Ja n=l

[or lanl ~ 1 (n E IN). 'T ~ 1, !V ~ 1 and· ~ .> 0, we can show t.hat almost all

intervals [n, n + nOJ contain primes provided 0 > 1/1·-1 .

Multiple prime divisors 0/ binomial coefficients
E. Wirsing, Ulm

Generalizing work of Sarközy and Sander we count (multiple) prime divisors of ( ~ )
weighted in the traditional way. .

THEOREM 1. For every k E lN

L logp I"V Ck n l
/

k
,

pie I(~n)

as n -+ 00, where the positive constants CJc are explicitly given.

THEOREM 2. Let kEIN, € > 0 and n/! ~ r S; n/2. Thcn we have

for n ~ 00. whcrc d1( == ! - _I- + _1_ - +.... in particular rl 1 == log '2 ,
. k k+l k+1 .

:\s in thc: papers quoted a.bOVf~ t.he (~ssent.ial tool is an (~sti[nate for certain (~xpon(~[ltial

surns. The estimatc llsed hy Sander sufnces far t.beorenl 1 hut t.lH~ proof of theor(~rn '2

requircs rnon~:

•
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TII.EOIlEM :3. Lc~t h(x) = !tIX + ... + h.J.cJ be areal polynornial and (~ > (). Thc'n

\Vitia a positive constant r; = c(J, h) providcd that

we have

L e (h(~)) « lV 1
-

c

pprime.p~N

\~here the O-constant depends only on J and {) .

Gt;1ldbach 's problem with restrietions
D. Wolke, Freiburg ;~?!'.~

By using a combinatorial method of Erdös [Proe. Amer. i\1ath. Soc. 5 (l954), 847­
853] and various results on Goldbach representations the following was proved partly
joint with G. Dufner.

THEOREM 1. Let Qt,Q2,03 > 0; ßbß2,ß3 E IR; Qt+02+a3 = 1; ßl+ß2+ß3 = 1.
Then there exist sets of primes IPj with # {p E IPj : P :5 x} <t: xOj(Iog x )'6'j,
j = 1,2,3, and V n ~ no: 2n + 1 = Pt + P2 + P3, Pi E IP j (j = 1,2,3) .

This generalizes a theorem of E. Wirsing [Analysis 6 (1986), 285-308].- . '.~'

THEOREM 2. There is a set ]P' ~ IP with Pl(X) « log2 x and 'cl n .~ no :

2n + 1 = P + p~ + p~, p~ ;p~ E IP' .

Reported by: P. Bauer {Frankfurt} & U. Vorhauer (Ulm) .
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PROBLEMS POSED

Oberwolfach, 16 March 1994

1. (Paul Erdös) SllPPOS(~ that ml < rn'! < ... < rnle. (tud t.ha.t tlHll1b(~rs

al, a,.l, ... , ak are chosen so that evcry integer 11. satisfies at. I(~ast onc of t.he congru­

enccs n == ai( lIlOU H1i). Then we say that thc arit.hrnct.ic progressions ad rnod In.i)

form a systern of coveriny congTuenccs . 00 thcre t~xist syst.(~nlS of coverlng congru­

ences in which all thc rnoduli are large? Choi achievcd ruin ,ni = 20. and :!·l h~s

been clai med. Prize: $1,000.

2. (Paul Erdös) Can every odd integer n be expressed as a SUTIl 01" a prinle and •

a bounded number of powers of 2? Erdös useu covcring congruences to show t.hat
there are arithmetic progressions ffee of odd nunlbers of thc fonn p + lk. Crocker

(Pacific J. Nlath. 1971) showed that there are infinitely Inany odd n not of the fann

p + 2i + "2 k , but the set of numbers constructed is rather sparse. Gallagher proved

that the surn of a prime and k powers of 2 has density tcn~ing to 1 as k -+ ,:x) .

It may be that three powers of 2 suffice to represent every sufficiently large odd

number.

3. (Paul Erdös) Suppose that aI < a2 < .... and that every positive integer n

can be written in the form n = p +ai. Let A(x) denote the nurnber of Gi ~ I.

Erdös proved that there exists such a sequence with A(x) « (log x)2. Can this be

improved? Ruzsa proved that such a set must have A(x) ~ (e'"Y + o(l))logx.

4. (Paul Erdös) CaU a prime "good" if every even number ~ p - 3 can be

weitten as q - T where q and rare primes L P ~ q > r. 00 there exist infinitely

many good primes? In this connection, do there exist arbitrarily large numbers x

such that 1r(x) - ;r(x - t) > ctj log t uniformly for 3 ~ l ::; x?

5. (lmre Ruzsa) Let A be a set of integers in [1, LV] such that the equation

x + 3y = 2u + 2v has 00 solution in A. How large can A be? It is known that thc

maximum size lies between ~ and lV/(log iV)c. Expect that the answer is lV 1
-!:. •

6. (Imre Ruzsa & Vera S6s) Let A be a set of positive integers~ and let r(n)

be the number of pairs (i, j) such that Gi + aj = n. Pul S(x) = Ln<x r(n). The

Errlös-Fuchs theorem, as strengthened hy Jurkat, asserts that S(x) - c; = r2(X 1/4).

In contrast to this, if one insteacJ counts soilltions of fLi + 'l.a) = n ~ similarly far

(li + :Ja i = n (~tc.~ th(~n one can ~et S( x j = ,r.. \Vhat aboll t ~at + :J(1) '!

7. (Aleksandar Ivic) Let 1,( < 11 :; At2 :s ... h(~ t}}(~ urdinates of th(~ zeros of

the zeta function on thc c:ritical line~ c:ounted ilcr.orrling to rnultiplic:ity. L(~t .'\(T)
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tlenote t.Jlt~ nHlldH~r of n such t.hat in :s; T anel

rIIax I( (~ + i l)l 2:: l'n +I - l'Fl •

'1'n ~t~~ra+1 ..

[[ow do(~s /\('1') con1pare wit.h t.hc t.ot.al nuo1ber lVo('f) or zeros on thc critical liue

up to 'f '! Pri~e: .1)00 Billion Dinars.

8. (Jörg Brüdern) Let r(n) dcnote the number of representations of nasa surn
of three positive cubes. Determine the density of the set of n for which r(n) > O.
It is conjectllred that this density is > O. The best known result in this direction is

due to Vaughan (1989), who showed that thc number of such n not exceeding N
is > lY 11 / 12 - ~. Let. p(n) denote the number of representations n = x3 + y3 + z3

with y, = sn100tll in the sense that plYz implies that p ~ n~. Show that

LP(n)2 ~ lyß

n~r

"--;:fP
with ß < 13/12. Vaughan proved this with ,8 = 13/12 + E:. Let C deno.t~: the set

of numbers for which r(n) > o.

Problem 1. Gaps. Let Cl < C2 be consecutive members of C. Trivially C2 - Cl ~

C~2/3)3. 00 better. Prize: $100. vVeaker: 00 better for almost all short intervals.

Problem 2. Show that

L(Ci+1 - Ci)2 ~ iV'"
Ci5,r

with i < 1 + (2/3)3 .

Problem 3.· In joint work with A. Balog it was shown that the number o('~9Iutions

of Cl -+-C2 = 2C3 ::; N with the Ci E C is > N2-1/4-e. Let R(N) denote th·~-·number

of solutions of xi + x~ + x~ + yr + y~ + Y5 = 2(z~ + zi + z5) ~ lV .. It is easily seen

that R(N) "'J l' lV'1.. To obtain a simple proof of the abave results, one would like

to have the following inequality: .

L p( C.)2 p( C2)2 p( C;i)2 < iy2+1/ 4 + ~.

Cl +C2 =2C.l 'SN

9. (Yoichi Motohashi) In work with A. lvic it was shown that

'rr 1(( ~ + ii)!1 dl = T 1~I(lo~ T) + E·1(T)in
wherc P, is a polynornial of dp.grcc ..1 ilIHl J~'2(T)« T2/3(log T)c. lmprove on this.

Prize: :\ special dinner in IHy horne.
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10. (Roger lleath-Brown) Ld. /'n Iw t.lw nth l.win (Hirne. Thus 1'11+1 - fJn =
n( (lo~ pn )~). IrllprOV(~ un l.his. 'rhus. ur ot.lwrwlse. irnprovc Oll t hc.' tri vial ndat.ion

I
I clf

;r.,!(.c) -(' --., = n(l).
'1 (log 0·

11. (Roger Heath- Brown) Is it trlle that

if T ~ Ta? (Hefe the an are arbitrary complex nllInbp.rs.) This is Cl question

of Ramachandra; he conjectures that the answer is yes, [ conjeclllre thal it is 110. e
Ccrtainly Ta ~ 2rr / log 2 .

12. (A ntal Balog) 1t is known that

Can it be shown that

L z~~x 11.. L A(n)A(n + h) - e(h)1
2

«: x
h'5

x
_y_ Y n~y (log x)A

where z = (log X)A. Easier:

This would be easy if y were restricted to· the range XE ::; Y ~ x, since then it

would be enough to note that the inner surn is uniformly ~ <e"( h)y(log y + h) / log y .

13. (Brian Conrey) 15 there a sequence an and a constant /3 such that

satisfies the functional equation f( z) == f( -1 / z)? Here [{ is the Bessel function.

If so, then the Dirichlet series L::=l anTl -5 satisfies a fllnctional cquation with two

gamma factors. Note thal if (sin 2rrnx )/2trnx wp.re ornitted [rom thc abovp., then

thc question would rcdllce t.o t.hc questiofl ur the f~xisten((~of ev(~n ~laass wavp. farms.

14. (Hugh MOfJ.tgomeMJ) :\ssume RH. In 1!):15. \Vintner proved that th(~ nor­

malizcd t~rror tenn g(y) = (lp( eil) - ('.!J)/ (~l.Jtl in the printe nurnbcr theorem has a.n

                                   
                                                                                                       ©



asyrnpt.otic distrihut.ion runct.ion F(x). \OVintner a.lso provcd tha.t () < F(x) < 1

for flny finite .e, (lud t.hat t.hc distribution has rnomcnts of idl orders. Show that

F is slrict.ly incrcasillg. Thal iso t.here is 110 intcrval or positive leng,th on which

F is COJlstant.. AIso. show t.hat F is continuous. These assertions iLrc t.rivial if thc

ordinatcs "y > 0 of t.IH~ ~eros of ((s) are linearly independent over 4~.

15. (Hugh Montgomery) Show that

2::*1 2:: Jl(n)2an(~)( « (X + D)(XD)< 2:: Jl(n)2Ianf
Idl~D O<n~X O<n~X

e Here the outer sum on the left is restricted Lo primitive quadratic discriminants.

16. (Paul Erdös) The distribution function F(x) of rf>(n)jn is singular. Prove

that there is 00 real number x such that F'(x) exists and has a positive finite value.

It' may even be t.hat there is no x for which the one-sided derivative exis~'''and has

a positive finite value.

17. (Andrew Odlyzko) Suppose that f(z) is a polynomial of the form f(z) =
1 + 2:~==1 ajz

j where aj = 0 or 1. (a) Show that f cannot have a multiple zero in
the complex plane, other than on the unit circle Izi = 1. (b) What is the maximal

multiplicity of a zero of f( z) at -1, as a function of d? (c) Are most of the

polynomials f( z) of this form irreducible?

18. (Andrew Odlyzko) Write di = Pi+l - Pi. The value of di th~t occurs

most frequently, for Pi ~ x, is called a champion. Show that the champions tend

to infinity with x. Assuming a quantitative form of the prime k-tuple conjecture,

it can be shown that the champions are 4, 2, 6, 30, 210, ... , and subsequently
I1p~yp.' -:~.~:

19. (Gerald Tenenbaum) Suppose that A is a set of positive integers. Let

8(A) denote the logarithmic density of A. Let M(A) = {ma : m ~ 1, a E A}.
The set A is called a ßehrend set if 8J\It(A) = 1. A Sehrend set A is called a

witness if 8(A \ A') == 0, A' ~ A implics that A' is Sehrend. Suppose that W is

a witness. It is easy to show that if 8(W) exists and 8M(A) n W = 6W then A
is Sehrend. It is also easy to see that if (a,q) = 1 thcn the arithmetic progression

n (mod q) is a wilness. Thc set A = {n : w(n) ~ lOK log n} is Behrend. Is it a

witness?

20. (A ndrzej Schinzel) Let q E Z(x) have de~rcc 2. Do thcre cxist infinitely

many intcgers I such ~bat the largest prinlc factor of q(x) is < .x.ß/4 . The expectcd

a.nswcr is x'. In particular. what if q(.x) = 'Ix:.! + "Ix + !). .
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21. (A ndrzej Schinzel) Let. f E ~[.rl ~ wit.h at Icast. t.lln'(' disliIlcl, zeros in 0 ~ .

[s it t.rll(~ I.hilt J(.r) has ;l prirrH~ fa.c:t.or l)f rnult.iplicilY t'xact.ly I. fur all sulficiertt.ly

large .c.

22. (A ndrzej Schinzel) Show that t.llt"~ set of IlllInbers 1101. l,f t.h(~ fOrlll /I. - y( 11)

has posit.ive lower Jcnsity. See .1. Bro\vkin and A. Schinzd, "()Jl intcgt'fS not l)f t.he

form n - y(n)."

23. (A ndrzej Schinzel) What is the least positive rturnbcr 11. with thc property

that n2k
- 1 is composite for all k 2:: O? It is kno\\"n that .:>O!)203 is a. tlufnber with

this property.

24. (John Friedlander) Let (:r and .3 he fixcd~ 0 ::; Ce < !' S; 1. LeI. f E Ü:[xj h('

irreducibleover 4~. Let r(m) denote the number ofsolutions l.)f J(fl} == O(rllodln)

with am ~ a ~ ßm. Hooley proved that Lm<.r r(m) '" cf(,:3 - ü)x where Cf > 0
is a certain" constant. - Duke, Friedlander and.-Iwani.ec sho\ved t.hat 2: p<.r: r(p) '"

(ß - 0) 1T(X) when f(x) = ax2 + bx + c and b2 - 4ac < 0. ExtenJ t.11is to all

irreduci ble f.

25. (Jürgen W. Sander) Let 'H.(x, y) = {(u, v) E rn?: lu - xliv - Yl < l} , and
put B(r) = [O,r]2. A set .1\1( of points (Xi,Yi) in B(r) is called r-admissible if

(Xi, yJ) ~ 1i(xj, Yj) whenever i =1= j . Show that

lim ~ ma~ 1;\v11
T-OO r r-admisftll

1
~.

That the liminf is at least this large can be seen by taking the (Xi, vd to be points

of an appropriate lattiee.

26. (Peter Elliott) Show that every positive rational number r ean be written

in the form r = ;$+ where p and q are primes. Easier: Show that there is a
number k such that every positive rational number r can be expressed in the form

r = rr~=l (Pi + 1y, where Ci = ±1, Pi prime. Easier still: Allow k to depend on

r. This last problem is equivalent to showing that the numhers p + 1 generate thc

multiplicative group Q- of positive rational numbers. Let r denote the subgroup

of Q- generated by the numbers p + 1. Elliott has shown that the index of r in

Q- is at most 3.

27. (R. A. Rankin) Let A be a set uf positive intcgcrs containing 110 three

memhcrs in arithmctic pro1;rcssion. anti lc~t /\:J(..c) denote thc nurnbcr of rnemhers

l)f A not exC(~~ding .I. It is known t.bat Ih( x) f:illl be as lar~p. a.s .c (~XP ( -cJlog x)

wherp. r. = 2J21og 2. Inlprovp on this. Sinlply a rp.ducl,ion in t.he value of c would

alf(~ady he interesting.
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