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This conference on “Elementary and Analytic Number Theory” was organized by
Hugh L. Montgomery (Ann Arbor), Wolfgang Schwarz (Frankfurt) and Eduard
Wirsing (Ulm).

Forty-three mathematicians from eleven different countries followed the Institute’s
invitation. The thirty-four lectures presented during the week gave a stimulating
survey of current progress in Analytic Number Theory. Some of the topics taken up
during the meeting were:

Arithmetic functions, arithmetic progressions, covering congruences,
distribution of prime numbers, divisor problems, Goldbach represen-
tations, exponential sums, lattice points, moments of the Riemann and
Hecke zeta-functions and L-functions, Littlewood’s conjecture, multi-
plicative functions, quadratic and cubic forms, Ramanujan expansions,
set addition, Waring’s problem.

On the background of the unique atmosphere of the Institute we all had a great time
of learning and exchanging ideas. The organizers and participants of this conference
express their thanks to the Land Baden-Wiirttemberg, the Director of the Institute,
Prof. Kreck, and his staff for providing this enjoyable environment.
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The meeting was dedicated to the memory of

Prof. Dr. Hans-Egon Richert
* June 2, 1924 i November 25, 1993

who had been an organizer of the conference on Elementary and Analytic Number
Theory in Oberwolfach since 1975.

On the 25th of November 1993, Professor Dr. Hans-Egon Richert died in Blaustein
near Ulm, Germany, after a long and severe illness. Richert held a chair of Mathema-
tics at the University of Ulm from 1972 until his retirement as an emeritus professor

in 1991.

Richert was born 1924 in Hamburg and was raised there. He had to complete high
school at a private institution after being expelled fromn the public school in the
period of the Third Reich for "anglophile leanings”.

In 1946, at last back in Hamburg after the war and military service, he could begin
his studies of mathematics. He obtained his diploma after eight terms and his
PhD only one year later. When his mentor, Professor Max Deuring, accepted a
position in Gottingen, the young Richert joined him as an assistant and obtained
the venia legendi there in 1954. Soon after he was put in charge of one of the best
mathematical libraries in Germany.

After holding a temporary chair in Gdttingen he was offered a newly created chair
at the University of Marburg. In that time of vigorous development of the entire
university system, Richert contributed in an essential way to shaping the Marburg
Mathematical Institute, and, of course, he devoted his special love and attention
to the library. In 1972 he accepted a chair at the young University of Ulm. His
professorship here was the second one in the Mathematics Department, after that
of Alexander Peyerimhoff. There was again much need for development.

Science had priority for Richert, teaching as well as research. Those who knew him
from committee meetings recall that Richert spoke only when it was really necessary.
He used to cut short a tedious discussion with a few well chosen and constructive
- but never offensive - words. He also participated in rcasonable administrative
activities: in 1974/75 he served his university as Prorektor, then as a member of the
unbeloved room allocation board. which in effect had to allocate shortages. and he
acted for almost twenty years as chairman of the examination committee, an office
that he administered unburcaucratically and always in the interest of the students.
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Richert’s lield of research was Analytic Number ‘Theory. He made iinportant con-
tributions to additive prime number theory, Dirichlet serics, Riesz summability, the
multiplicative analog of the ErdGs-Fuchs theorem. estimates of the number of non-
isomorphic abelian groups and bounds for exponential sums for use, c. g. in estima-
ting the error term of the prime number theorem. From about 1965 on he focussed
his research increasingly on sieve methods. Motivated by their common interest
in sieves an intensive research collaboration developed between Richert and Heini
Halberstam. Among other things they put the proof of Chen’s p+ P, theorem into
readable form. The monograph on Sieve Methods that they coauthored immedia-
tely became the indispensable basis for research of many number theorists. Also,
Richert’s name was long associated with the best estimate for the Dirichlet divisor
problem.

The very high esteem he enjoyed in the mathematical community is reflected by the
many invitations he received from mathematical institutions abroad, among others
the University of Illinois at Urbana and the Tata Institute in Bombay.

His life was not confined to mathematics: Richert was also a stimulating conversa-
tional partner on many different subjects. He enjoyed exploring foreign countries
and keeping records of his trips on film and tape, a pursuit that he followed with
the same intensity as his science whenever time allowed.

In 1991 Professor Richert had to retire from his strenuous teaching duties. It is
sad that he was not granted the long and fruitful period of retirement that he was
looking forward to.

With the passing of Hans-Egon Richert we lose a treasured colleague and a resear-
cher of international reputation.
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Abstracts

The difference between consecutive primes
R. C. Baker, Provo

Let y = £’. Find 0 as small as possible such that 7(z) — x(r—y) >0 for all
large . In practice the only way to do this is to prove

(0

m(z)—m(z—y) > ¢ —
log z

where c is a positive constant. Since 1979 sieve ideas have been used: the Rosser-
Iwaniec sieve with bilinear error term (Iwaniec & Jutila, Heath-Brown & lwaniec.
Iwaniec & Pintz, Mozzochi, culminating in 8 = 0.547... ); and a sieve identity of
Heath-Brown used by Lou and Yao to get § = 6/11 + ¢ = 0.5434... . Much simpler
than Lou & Yao is the approach of the speaker with G. Harman. Our sieve is the
one first used by Harman to study fractional parts of ap, p prime, in 1983. Our
result may be expressed in the form

() —n(z —y) > (1‘+o(1)) (1-J2-174)

v
logz

where J; = / d—:l—‘- S %{‘l—l d:?— w(ﬂ;'—ﬂf-) , w being Buchstab’s function.
B; is a certain set depending on 6 and increasing as 6 decreases. We obtain (1)
with @ = 0.535. The other tools used are really not different, apart from a few
tricks, from those of Heath-Brown and Iwaniec in the paper referred to above; in
some places our approach is, indeed, simpler.

Central limit theorems for 3 {k\/?}

k=1

J. Beck, Rutgers

THEOREM 1. Write S(n) = Y., (kv2} - % {r} denotes, as usual, the frac-
tional part of z. Then there is a constant ¢, > 0} such that

) A .
L #{n < N S(n) < ,\} — L ¢~ gy
Vit Jox

as .V — oc for all real \.
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Theorem 2. Write Z(n) = S p_ {kv3} = 2 - r,(\/—) logn. Then
there is a constant ¢y > 0 such that

A
l . Z(n 1 —u?/2
Lafpon. 200 oy}, L
v #{"-’ aavlogn = \} v

as N — oo for all real A.

THEOREM 3. Write S(n;8) = S {kv2 - B} - -'21 Then there is a constant
¢4 > 0 such that

. A
area{(a,ﬂ)E[O,l)Z: %—f—) < /\} — ﬁ i e~ 2 gy

as N — oo for all real M.

THEOREM 4. Let ((z)) = z — (nearest integer to z) = %||z||. Then
N N

i 1
2: = 0(1 but § = ¢5(V3) log N + O(L
n=1 n((n\/i)) ( ) ' n=1 n(("\/g» ¢ ( ) ogl * ( )

.

where cs(v3) # 0.

On Waring’s problem for cubes
J. Bridern, Géttingen
Let r(n) be the number of representations of n as the sum of four positive integer
cubes. It is conjectured that
/3

r(n) = ['3( )e(n) nl/3 + O(W) (1)

where &(n) > 1 is the familiar singular series. The best results currently available
are due to Vaughan (1986) who showed that the asymptotic formula holds almost,
and to the speaker (1991) who showed that #{n < N: r(n) =0} &« N3¥/4%+¢ In
this talk we describe joint work with N. Watt on short interval analogues of these
results. In particular we have obtained:

THEOREM 1. Let M = N’ with 0 > 5/6. Then the asymptotic formula (1)
holds for all but O(M(log N)~'/%) integers n with N<n< N+ M.

THEOREM 2. In the same notation, with 0 > 3/4 one has r(n) > n'/? for all
but O(M'~%) integers n with ¥ < n < NV 4 M here § = §(0) >0.
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Mean values of the zeta-function
B. Conrey, Stillwater
We give a conjecture for the sixth power moment of the zeta-function:
" PN , d3(n)
lC(h +i0)] de ~ 21y
[’} a<T n

Here ¢3(s) = 3.2, d3(n) n™". This conjecture should be compared with the results
of Hardy and Ingham:

T 2 T 2
L2 di(n) N L - di(n)
/o |C(%+lt)| dt ~ T E l—n—- and /0 }g(%+tl)| dt ~ 27T E -

n<T n<T

Finally, we remark that .

for any k > 0, where
1\ K o= i (p") 1 e DP(k4n)

Ak rpI(l p) ; pn l_p‘[(1 p) ;)rl(k)(nl):[’ .
It is the case that ax is an entire function of k of order 2. ax = a;_x, and all zeros
of a; are on the 1/2-lineé.
It should be mentioned that one might conjecture a similar behavior for the sum
mebdk [L(%,x)|®, at least for prime moduli k. We indicate a connection between
this problem and a generalized Dedekind sum.

On functions of the type f(an+b) g(cn+d) where f and g
are multiplicative functions with absolute value <1
H. Delange, Orsay
We prove the following result .

THEOREM 1. Let a,b.c.d be integers, a,¢c,a+b,c+d>1, ad —bc#0, let f
and g be multiplicative functions satisfying |f(n)| < 1 and |g(n)| < 1 for all n.
If 3 (2-Ref(p)—Reg(p))/p < oo, then

P

LS ftantbigienta) = ¢ ] ( -§+(1—%)2M)-,‘;L(”rl) +o(l)

n<z p<r
plac(ad-hc)

as £ — oc. where € is a constant depending on a.b.c.d. f,g.
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COROLLARIES:
e If f and g have non-zero mean values, then f(an+b)g(en+d) has a mcan

value.
e Let 1 and G be rcal-valued additive functions. If 7 and G have limit-
distributions, then F(an+b)+ G(cn+d) has a limit-distribution.

On the structure theory of set addition
J.-M. Deshouillers, Bordeauz

In this survey of some joint works with G. Freiman, V.Sés, M. Témkin and A. ‘
Yudin, we present some recent applications of the structure theory of set addition,
introduced by G. Freiman in the late 50's.

According to Erdds and Straus, we define an admissible subset A of [1,N] to
be such that whenever an integer can be written as a sum of s distinct elements
from A, then s is well defined. Improving on previous results, we show that the
cardinality of such an admissible subset A is at most (2+0(1)) VN. As shown by
Straus, the constant 2 cannot be improved upon.

A subset A of [1,N] is said to be sum-free if A and A+ A have no common
element. We determine the structure of A when card A is larger that 0.4 N~O(1).

Finally we show how to relate the concentration function of a sum of random varia-
bles to the concentration function of the summands by using the additive properties
of the large values of the characteristic functions.

Multiplicative functions on the shifted primes
P.D.T. A. Elliott, Boulder

Let @ be the multiplicative group of positive rationals, I" the subgroup generated
by the shifted primes p + 1, G the quotient group Q°/I". Then G is finite. Let
|G| denote its order. Then:

THEOREM 1. Thereisa k such that every positive rational r has a representation

k
Flar — H(p‘ + )&, i = %1, p; prime.
=t

Forschungsgemeinschaft

o




oF

Deutsche

TuroreMm 2. |G] < 3.

Further argument. using a theorem of Ruzsa and the fact that (7 is known to be
. ; . . k .

cyclic, shows that those integers for which a representation r = [[I_ (pi+1)" holds.

have a density §, and 6 > 1/3.

On supersingular primes
E. Fouvry, Orsay
Let € be an elliptic curve over §); &, the elliptic curve with quasi-minimal equa-
tion: E4: Y=zt +az+b (a,beZ, 1a® +276* #0) and

mo(z, &) = #{p < r; p supersingular prime for &}

Lang and Trotter conjectured the asymptotic formula

ro(2,E) ~ Ce lﬁ asz — 20, Ce >0, & not CM .
ogz

Improving the method of Elkies, we obtain the lower bound:

log; z

d > —
) 2 fogzym

for any 6 > 0 and = > zo(&,96) .

Several results on average are proved, e. g.

THEOREM 1.
.3 T
z Z WO(I,fa‘b) ~ 3 ~4AB - I;/-I
la]<A bl<B g
4a3+2762#0

as £ — oo, uniformly for A, B > z!/?*¢ AB > z3/%¢.

THEOREM 2. Almost every elliptic curve £,; has its least supersingular prime

less than /max(|a},{b]) -

We discuss on the number of supersingular primes common to two elliptic curves
and on the average value of the constant C¢,, .

These results were obtained in collaboration with R. Murty (Montreal) and E. Ullmo
(Orsay). :
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A sieve identity and the roots of quadratic congruences
J. B. Friedlander, Toronto

Let f € Z[z] be irreducible with degree > 2. For p prime there are by a theorem
of Lagrange no more than deg f solutions v of the congruence f(v) =0 (modp).
It is natural to wonder how these roots are distributed as p varies. We normalize
by considering the (ractional part {v/p} and expect, for lack of evidence to the
contrary, that these are uniformly distributed, that is, for arbitrary 0 <a < <1,

#{(p): f(¥) =0(modp), p<z, a<{v/p}<B)} ~ (B—a)n(z).

In the case where the sum is taken over all integers rather than just primes, the
relevant equi-distribution was demonstrated by Hooley, about thirty years ago. Here
we’ describe joint work with W. Duke and H. Iwaniec in which the required equi-
distribution over primes is shown in the case that f is a quadratic polynomial with
negative discriminant. We expect that the indefinite quadratic case can be settled
by modifying the ideas, but higher degree polynomials offer much greater challenge.
The proof involves, by the Weyl criterion a successful estimation of certain expo-
nential sums over primes. A sieve identity, believed to be new, reduces the latter
to certain linear and bilinear exponential sums. These can be related to certain
Poincaré type series which can be estimated via the spectral theorem and known
estimates for Bessel functions.

The circle method for quadratic and cubic forms
D. R. Heath- Brown, Ozford

An identity of Friedlander and Iwaniec gives the following form of the circle method:
Let w: R® — IR be smooth, compactly supported, and let w: IR — R be smooth
and supported on [1,2]. Let F be a form of degree n. Then

> owe) = Y Y S g
F(p)=0 tez™ 7=!

where

Slgir) = Z Z e (aF(m)+c-m),

4 mod 7) m(mod q)
(a.g)=1

o) = ./up- w(p™') eq(~t-1) h(g; F(2)) d .
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Here
= 3 () (%)

and @ > 0 is an arbitrary parameter.

The terms for © = o lead to the singular series and integral. The formula already
includes the “Kloosterman refinement” - the sum over a. but has the advantage
that a~'(modgq) does not occur. Morcover it is easy to carry out the “second
Kloosterman refinement”, i. ¢. averaging over q.

One can prove asymptotic formulac when d =2 and n > 3, establishing in parti-
cular the Hasse principle.

When d =3 and n > 1 one can prove non-trivial upper bounds (at least for diago-
nal forms) providing one assumes the analytic continuation and Riemann Hypothesis
for appropriate Hasse-Weil L-functions.

On Bgy.-sequences
M. Helm, New York

A sequence A of natural numbers is called a B,-sequence if the equation n =

g +...+a, a1 £... <a,, a;€ A, has at most one solution for all natural n.
Let A(n)= 3 1. We prove that every Bji-sequence A satisfies
aln,a€ A
P A(n) 1
—_—r /(2k)
ll:l‘_l.glf yTETS (log n) < o

provided that A(n?) < (A(n))® for all sufficiently large n.
This proves in the case of even r a conjecture of P. Erdés that states that for every

natural r every B,-sequence A satisfies liminf Aln) =0.
n—oo nl/r

Sums of distinct squares
A. Hildebrand, Urbana

If 5 > 5, it is casy to see that every sufficiently large integer is representable as a sum
of s distinct positive squares. Let V(s) denote the largest integer not representable
in this form. Halter-Koch [Acta Arith. 42 (1982), 11 20} computed the exact values
of V(s) for 5<s< 12 and gave inequalities which lead to an exponential upper
bound for N(s). On the other hand. since every integer representable as a sum of
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s distinct positive squares is at least equal to the sum of the first s positive squares,

e,

Z{‘ =ls(s+10)(2s+1) = P(s),

N(s) is bounded from below by the polynomial P(s).
In joint work with P. Bateman and G. Purdy we show that, in fact, N(s) is asymp-
totically equal to this trivial lower bound. More precisely, we prove that

N(s) = P(s)+(25)2 + A, (25)** + O(s%®)

where A, = \/2 max (||\/2_s||, ||\/§_—%[|) and || - || denotes the distance to the

nearest integer.

Lattice points and erponential sums
M. N. Huzley, Cardiff

Two kinds of problems were discussed, estimating exponential sums and counting
the number of plane lattice points within a contour, or lattice points close to the
contour.

New results of Sargos, Filaseta and Trifonov, and an argument of Huxley and Koles-
nik that iterates between the two types of problems, were mentioned. Two particular
results are:

THEOREM. (Huxley). The error term E(t) in the mean square of the zeta-

function on the critical line is O(T™/?27+¢) .

THEOREM. (Huxley & Watt). The error term A(z) in the number of integer
ideals in a quadratic number field Q(v/D) with norm up to z is O((D*z)®/™+¢)
for z large compared with |D|.

The mean square of the zeta—function in the critical strip
A. Ivié, Belgrade

For fixed o such that 1/2 <o <1 and T > 2 let

‘r B afe B
E[T) = /o (o +it)]'dt ~ ((20)T — (2ay=t C2d pa-ze
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denote the error term in the mean square formula for the Riemann zeta-function
¢(s) in the critical strip /2 <o < 1. Recently much work has been done on
this important function, and the aim of this talk is to present these results. In
particular, joint results of K. Matsumoto and the speaker are presented. These
include for 1/2<a<3/4 and C>0

E,T) = Q. ('r§ = exp(C(loglog )7 ~ 3 (log log log 1) ~ f"i))

and
k—a+3/4 x
T =T (log T)=+T t<o« 2
E.(T) < ien
TR log T o<,

where («,A) is an exponent pair such that A =« + i

Class group L-functions

H. Iwaniec, Rutgers

This is joint work with W. Duke and J. Friedlander.
We consider the imaginary quadratic field ® = Q(v/=D) of discriminant —D . Let
x be a character of the ideal class group 3{, to which is attached the L-function

Lg(s,x) = Y_ x(a)(Na)~*

where a ranges over non-zero integral ideals and Va is the norm. Various estimates
and mean value asymptotics are established for these L-functions which are uniform
with respect to the discriminant. In particular we get the following

THEOREM. If Res =1/2 we have

%Z |Lﬁ("1 X)Iz = f\])(s) + O(D—l/28+;)

xel;\(

where the main term Ap(s) is given explicitly as the sum of residues of a certain

meromorphic function;
Ap(%) ~ 6 hw™ L(1.yp) log® D, i s =1/2

Ap(s +1it) ~ xtw (1 -Z»-’Zit)!2 Lit.xp)log D, if s #1/2.
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133

The error term is estimated by means of spectral theory of automorphic forms. The
equidistribution of Heegner points due to W. Duke is used. An cstimate for the
individual Lg(s, x) is also given which is sharper than the convexity bound subject

to certain natural conditions.

The mean twelfth power of Dirichlet L-functions
M. Jutila, Turku

In collaboration with Y. Motohashi. the following mean value estimate was recently
obtained:

THEOREM.

* T .
Sy /o [L+itx)|? dt « X3THXT)
D<X xmod D

*

where * indicates that the sum is over primitive characters.

This includes a well-known mean value theorem of D. R. Heath-Brown for the Rie-
mann zeta-function as well as an analogous estimate due to T. Meurman for L-
functions to a single modulus. The proof is essentially based on spectral methods.
The same ideas apply even to cusp form L-functions twisted with Dirichlet charac-
ters.

Lattice points in three-dimensional convex bodies
E. Krdtzel, Jena '

Let KX be a three-dimensional convex body, where the origin is an inner point.
Suppose that the boundary of K is an analytic map of the unit sphere. We obtain
for the number of lattice points R(z) in the blown-up body z K

R(z) = vol(K)z® + A(z)

with the trivial estimation for the remainder A(z) <« z?. Assuming the Gaussian
curvature to be positive at all points of the boundary, in 1950 Hlawka improved this
to A(z) « %2, and in 1992 W. GG. Nowak and the author proved

Az) < M (log )"
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When the boundary of X' has isolated points with Gaussian curvature zero a new
situation arises. The estimation of the remainder depends on the order of these
zeros. Furthermore. the position of the lattice with respect to a point with Gaussian
curvature zero plays an important role. [ the tangential plane at this point has
rational slope with respect to the coordinate planes even a new main term arises
with an order which is greater than 3/2. If one or two slopes are irrational, the
contribution of this point to the estimation of the remainder is mnch smaller.

Ramanujan expansions revisited
L. Lucht, Clausthal

In 1918 Ramanujan investigated the sums c.(a) of the ath powers of all nth pri-
mitive roots of unity and proved that numerous arithmetical functions g: N — @
possess an expansion of the form

x
g9(a) = D g(n)ecala) (aeN)

n=1
with suitable coefficients §(n). A general approach is based on certain orthogonality
relations between the Ramanujan sums by which the consideration is restricted to
arithmetical functions g having a non-zero mean value. The observation that all
Ramanujan sums c,(a) are closely related to c.(1) = p(n) where u is the Mébius
function yields a different approach. In particular for multiplicative functions having
no mean value a conceptual explanation for the existence of Ramanujan expansions
is given. The main tools are inversion theorems for Dirichlet series and relationship
theorems with logarithmic weights. The divisor functions di41 (k € IN) may serve
as concrete examples: They have pointwise convergent Ramanujan expansions with
coefficients

o = SR (-0 (1) )

p¥iin p2v

The case k = 1 is contained in Ramanujan’s original paper.
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Short intervals with very few prime numbers
H. Maier, Ulm

We prove that for () > 0, Iun £(x) =0, we have that

7 1 l4e(z)y _
fining TE*082) ") ~x(z) _
I—00 (log 1)9(3)

The proof nses ideas of Erdés and Rankin applied in their papers on large gaps bet-
ween consecutive primes and the matrix method of the author from his irregularity
results in the local distribution of prime numbers. A novel feature is the use of a
result of Friedlander on the number of integers free of small and large prime factors.

Group valued arithmetical functions s
J.-L. Mauclaire, Paris o |

Let G be an abelian group, qeNg, ¢ > 2. A G-valued g-additive function f
is a function f: No — G satisfying the relation f(ag”"+b) = f(aq") + f(b), if
0<b<qg—-1,a>20and r>0.

In the case G = T, the spectrumof f provides information on the harmonic measure
determined by f, and its existence depends on the convergence of the product

P(q,fio,k;N) = l H 1 Z f(aqr)keikaaq"

0<r<N 0<a<g-1

for k=1 and a a real number. This product if convergent for k =1 is convergent
for all ke€Z. A consequence is that if f(n) = e'9(") | then there exists a proba-
bility measure v on IR/Z, A(n) a sequence in IR/Z, such that the sequence of
probability measures

1
, W 2 Setm-an—atiog, ) -
where log, N = [log N/ log q], converges weakly to v. A similar result is true in
any locally compact abelian group. In fact we have:

THEOREM. Let G be a locally compact abelian group, f a G-valued ¢-additive
function. If for every continuous character x of G, there exists a real number a(x)
such that the product P(g,xof.a.1: N) converges. then, there exists roe IN,
c€g, asequence A(N) and a probability measure v on G, such that the sequence
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1 . .
v Z b(f(’l"’")—cn—;\(logq N))

n<N

converges weakly to v.

Recurrent sequences with locally uniformly bounded
numbers of prime divisors
C. Methfessel, Clausthal

The talk presents a proof of the following result: .
THEOREM. Let me N and g: N — Z be recurrent with <{|y(n)|) < m for all
ne N with g(n) #0. Then the set

P, := {peP: InelN suchthat g(n)#0, ply(n)}

is finite.
This extends the corresponding result on recurrent sequences of prime powers (i.c.
the case m = 1), which was obtained by Erdés, Maxsein and Smith in 1990.

Sums of numbers with many divisors
H. L. Montgomery, Ann Arbor

This is joint work with P. Erdds. Recently I was asked for representations of n in
the form n=m+...+my (1) wherethe m; are positive integers with
d(m;) as large as possible. To address this, one must first determine how often d(m)
is large. Put | ox 2
og = log

D(=) = exp( loglog z ) ’
Thus d(m) > D(m) infinitely often. but d(m) < (D(m))”” for m > mg(e). By .
extending a result of Erdés and Nicolas (1981), it is shown that if 0 < @ <1 then
the number of m < z for which d(m) > (D(z))" is z'~°+*(!). Thus itis clear that
there exist infinitely many n with no representation (1) with d(m;) > (D(n))", if
a > 1 = 1/k. We show, conversely, that if a < | — 1/k then all sufficiently large n
can be written in the form (1) with d(m;) > (D(n))".
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The mean values of the zeta- and Dirichlet L-functions
Y. Motohashi, Tokyo

The first part of the talk is on the fourth power moment of Dirichlet [-functions.
This s joint work with Matti Jutila.

A relation between this classical problem and the Ramanujan conjecture on the size
of Fourier coefficients of non-homomorphic cusp-forms/SL(2,Z) is pointed ont in
the following form: :

THEOREM. Let tj(n) be the Hecke cigen-value/SL(2,Z). Let a be such that
[¢;(n)] <, n*** forall j 21 and n > 1 with an arbitrary small ¢ > 0. Then we

have

. T+To
. 3 / [L(i+it,x)|'dt < D(To+ T D=3 (DT)*
xmod D T .

provided T < Tp < T3 .in

i

The second part is on an approach to the eighth power moment of the zeta-function.
By an application of the Fourier-Hermite expansion and the Parseval formula one
may approach to the eighth power moment starting from the fourth power moment.
More precisely, let

ICG +dT+G)[* = 3 ha(T,6) Ha(t)

n=0

be the Fourier-Hermite expansion. Then, by the Parseval formula we have

+00 ad
1 1 : 8 —(t/G)? _ n 2
— Lo yT+i) e dt = n! 2% |k (T, G))*.
= [l )] > mZ TG
where the Fourier coefficients h.(T,G) are explicitly given in terms of the spectrum
of the non-Euclidean Laplacian. We have 4

o0

+00

ha(T,G) € = ;/ LT +1GE+1)) e/ at,

® DTG = gz | G +AT iG]
and we have already developed a theory which yields an explicit formula for the last
integral. It is to be seen whether or not this approach to [ [(|® will yield any non-
trivial estimate for this highly important mean value of the zeta-function.
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On zeros of polynomials with 0,1-coefficients
A. Odlyzko, Murray Hill

Zeros of polynomials with 0,1-coefficients exhibit interesting fractal propertics. it
W is the set of such zcros, and W its closure, then (together with 1B3. Poonen)
| have shown that W is path connected, W contains an open set that contains
{zel: |z]=1. z#£1}. W contains the segment [—¢, ~1/q], where ¢ = (1+V5)/2.
and the only points = € W, such that Re(z) < —1.5, are in this line segment.

On the prime ideal theorem and applications

A. Perelli, Genova

For k,d.QeIN,let f(z)=z*+Qd. Let v(d) denote the number of irreducible
factors of f(z) and p(d,p) the number of roots (mod p) of f(zr). We obtain the
following
THEOREM. (Nair & Perelli). Let X,Y >2: 5,4 >0,and Y/ <HLY.
Then we have
S Y (dn)-vld)| <hne ne

Y<d<Y+H  X<p<2X log” X
uniformly for Q < Y4.
The independence of the ranges for X and Y comes from the possibility of consi-
dering both d and p as “modulus” in an appropriate sense.
The above theorem has several applications. We mention three of them:
Application to the irregularity in the distribution of primes represented by polyno-
mials, to the representation of integers n as n = p + m*, p prime and m integer
and to the distribution on average of primes in short intervals.

On sequences containing no arithmetic progressions
R. A. Rankin, Glasgow

A strictly increasing sequence {a;} of non-negative integers is called an A, -se-
quence if it contains no n distinct terms in arithmetic progression (n23). For an
An-sequence we write Aq(z) =3, ., . The densest As-sequence so far construc-
ted is due to F. Behrend [Proc. Nat. Acad. Sei. 17.8.4. 32 (1946), 331-332] who
obtained for any £ >0
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Ayg(g) > .r:cxp(—2\/‘.’.Iog‘2(l+.-:)\/log:c). (1)

In 1962 using an explicit formula for r(s, P; V). the number of solutions of the
equation zj+ ...+ 22 =N where 0<4; <P, i=1,...,s, | was able Lo construct
an A,-sequence for n>3 [ Proc. Royal Soc. Edinburgh 65A (1962), 333-344] with:

Aa(z) > xexp(—c,.(1+e)(loga:)"'), (2)

where ¢, is a known positive constant (c3 = ¢, =2v/2log2) and K = 1/(k+1)
where n > 2% This gives the same result for n = 4 as it does for n = 3.
My efforts to get an cstimate of larger order for n = 4 have been unsuccessful
although [ can get rid of the ¢ in (1) replacing the right side for n = 3,4 by
z exp (= cv/lTog ) (logz)™*/* and similarly for higher values of n.

Power moments of Hecke zeta-functions
U. Rausch, Ulm

Let K be an algebraic number field of degree [K : Q] =n =r; + 2r; (in the
standard notation), e,=1 for p=1,...,r; and e,=2 for p=r +1,...,7+1,
r=ry+r;—1. For z = (z1,...,Z,41), 2, >0,£>0, and ke IN we consider the

function

oo r+1 . r4l
F.(z) = 2-17; Z/ I((% + it;/\)[u Hzp"‘n(“‘ﬂ - exp (—eile: (t—bp)z) dt
A - p=

p=1

where the summation is over all Gréssencharacters A of the form Ma)= l'[;:—la(’)[""b'
with b, € R such that Z;:{ epb, =0 and A(n) = 1 for every unit ne K. ( de-
notes Hecke’s zeta-function.

F.(z) is expanded into a series similar to that occurring in the Voronoi formula

associated with the divisor problem. In particular it follows that
FQ(I) < E-(nk+r+l)/4 )(-I/Z(Ilog(enkﬁx)' + l)2k-1
r+1
for X:=[[z;7>1 and 0<c<1/8.
p=1

For k=1, X =1 and totally real ficlds K | this is just about what an analoguc of
the Lindelof Hypothesis would give.
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Structure of sumsets
I. Ruzsa, Budapest

By Szemerédi's theorem, every set of integers A C [1..V], [A] > «:¥ . contains
a long arithmetical progression, but its length may be < log V. In contrast, a
triple sumset A4 A+ A contains an arithmetical progression of length > ¥7 v =
v(a)>0 (Frefman, Halberstam, Ruzsa), while for A+4 the maximal tength lies in

(cxp( log V) Wime exp{ log :\’)2/3“) (Bourgain. Ruzsa).

Better than simple arithmetical progressions are k-dimensional arithmetical pro-
gressions of the form P = {a + qizy + ... + qxze: 0 <z <4 — 1} and Bolr sets.
finite analogues of Bohr neighbourhoods. The connection between them is explored.
a source of which is a theorem of Bogolvubov (1937): If A C Z. d(A) > 0 then
A+ A—A—A is a Bohr neighbourhood of 0.

On Littlewood’s conjecture
J. W. Sander, Hannover

In this talk we describe joint work with with S. Schéffer.
In 1948 Littlewood made the following conjecture (LC): For all o,3 ¢ R and all
€ > 0 there is some n such that

nllan|| ||Bn]l <&

where ||z|| denotes the distance between the real number z and the nearest integer.

In 1955 Cassels and Swinnerton-Dyer proved that this is true if o, 3 are elements
of a fixed real cubic number field. Apart from that not much is known. A “proof”
by B. F. Skubenko [J. Soviet Math. 533, no.3 (1991), 302-321] seems to have gaps.
LC would be wrong if for some @, ¢ R and some ¢ >0 N |lan||||3n|| 2 ¢ for
all ¥ andall 1<n<N.

THEOREM 1. For a= 3—2\/5 and all V thereissome 3 suchthat forall 1<n<N

Nllanll i8nll 2 2522~ 0,10,

THEOREM 2. For all e, 3 R and all .V 2 2 there is some n <V such that

N lan|| ||An]l <

2N 2
< -
ANV +4 B}
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Integers not of the form n — ¢(n)
A. Schinzel, Warszawa
W. Sierpiniski asked in 1959 whether there exist infinitly many positive integers not
of the form n —@{n), where ¢ is Buler’s function. The following theorem ~ proved
jointly with J. Browkin using covering congruences ~ gives an affirmative answer to
this question:

THEOREM. For every positive integer k& we have 2%-309203 # n — o(n).

On a certain nonary cubic form
R. C. Vaughan, London

In joint work with T. D. Wooley we investigate the number of solutions § of the
diophantine system

3+ 23 + 3

vi i+ (1)
T+ T2+ 23 ;

y1+y2+ys

with ¢; < P,y <P, 1=1,2,3.

Heath-Brown in 1989 in important work on Waring’s problem used the estimate
S = O(P3*), and Hua (1948) had shown that S = O(P3log® P). e

By suitable transformations we replace the system (1) by the nonary cubic form

dierfi + daeafo + daesfs = didyds + erezes + fifafs (2)

subject to sundry side conditions. In this way we are able to show that theé number
U of non-trivial solutions of (1) is O(P"/3(log2P)'). Thus

THEOREM 1. We have § = 6 P® + O(P"/3(log2P)").
By further refinement we can establish
THEOREM 2. The number U satisfies U < P?log® P.

Since the contribution from the “Major Arcs” in this problem is also =< P?log® P
this suggests a relationship between “Non-trivial” solutions and “Major Arcs” and
we attempt to place this idea on firmer ground.
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Prime numbers in almost all short intervals
N. Watt, Gottingen

Assuming the Riemann Hypothesis Selberg showed that almost all of the intervals
[r, n4 f(n}log® n] will contain primes, provided that f(n) —co. He also showed,
unconditionally, that, for 0 > 19/77, almost all of the intervals [non + nf) will
contain primes. Later results are: Montgomery 0 > /5. Huxley # > 1/6, [larman
0 > 1/10. The last result uses sieve methods which were lirst introduced for the
problem of an individual short interval by Twaniec and Jutila in 1977. More recently
Harman and Hcath-Brown have independent unpublished proofs for ¢ > 1/12.
Using the following result:

r N g2
C(l+it)‘ ‘ an n"‘ dt <, TN
[+l 13 :

for la,) <1 (nelN). T>1, N >1 and > 0, we can show that almost all
intervals [n,n + n] contain primes provided 8 > 1/14.

Multiple prime divisors of binomial coefficients
E. Wirsing, Ulm

Generalizing work of Sarkézy and Sander we count (multiple) prime divisors of ( '} )
weighted in the traditional way.
THEOREM 1. Forevery ke N
Z logp ~ cen'l®,
#I(7)
as n — oo, where the positive constants cx are explicitly given.
THEOREM 2. Let keIN, ¢ >0 and n® <r <n/2. Then we have

3 8P 4, logr,
P*I(7) P )

1 ] | . . i
for n — 0o, where dy = - — —— + —— — +..., in particular dy = log2.

: EE T Ee Ty TP 8
As in the papers quoted above the essential tool is an estimate for certain exponential
sums. The estimate used by Sander suffices for theorem 1 but the proof of theorem 2

r(:quircs maore:
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THEOREM 3. Lot h(z) = hyz+ ...+ ke be arceal polynomial and § > 0. Then
with a positive constant ¢ = «(.J,8) provided that

L
Jmax (k') < N < max (Ih;]7)

we have

> e(r(d) < w

p prime, p<N

where the O-constant depends only on J and §.

Goldbach’s problem with restrictions
D. Wolke, Freiburg

By using a combinatorial method of Erdds [ Proc. Amer. Math. Soc. 5 (16‘5‘4), 847- i
853) and various results on Goldbach representations the following was proved partly
joint with G. Dufner.

THEOREM 1. Let aj,02,03 > 0; 51,52, 03¢ R; entartas =15 Bi+Ba+B3=1.
Then there exist sets of primes P, with #{peP; : p < z} < z%(logz),
j=1,23, and Vrn>no: 2n+1 = p;+p2+ps, pjeP; 7=123).

This generalizes a theorem of E. Wirsing [Analysis 6 (1986), 285-308]. - ...

THEOREM 2. There is a set [P’ C P with P'(z) < log’z and VY n'> ng:
2n+1 =p+pi+py PPl

Reported by: P. Bauer (Frankfurt) € U. Vorhauer (Ulm).
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PROBLEMS POSED
Oberwolfach, 16 March 1994

1. (Paul Erdés) Suppose that m; < my < ... < . and that wmbers
ay,ay,...,ax are chosen so that every integer n satisfies at least one of the congru-
ences n = a;(modm;). Then we say that the arithmetic progressions a;(mod my)
form a system of covering congruences . Do there exist systems of covering cougru-
ences in which all the moduli are large? Choi achieved min m; = 20. and 24 has
been claimed. Prize: $1,000.

2. (Paul Erdés) Can every odd integer n be expressed as a sum of a prime and
a bounded number of powers of 27 Erdés used covering congruences to show that
there are arithmetic progressions free of odd numbers of the form p + 2% Crocker
(Pacific J. Math. 1971) showed that there are infinitely many odd n not of the form
p+ 27 +2%, but the set of numbers constructed is rather sparse. Gallagher proved
that the sum of a prime and k powers of 2 has density tending to I as k — oo
It may be that three powers of 2 suffice to represent every sufficiently large odd
number.

3. (Paul Erdds) Suppose that a; < a; < ..., and that every positive integer n
can be written in the form n = p+a;. Let A(z) denote the number of a; < z.
Erdds proved that there exists such a sequence with A(z) < (logz)?. Can this be
improved? Ruzsa proved that such a set must have A(z) > (&7 + o(1))logz.

4. (Paul Erdds) Call a prime “good” if every even number < p — 3 can be
written as q — r where ¢ and r are primes, p > ¢ > r. Do there exist infinitely
many good primes? In this connection, do there exist arbitrarily large numbers =
such that 7(z) — 7(z —t) > ct/logt uniformly for 3 <t <z?

5. (Imre Ruzsa) Let A be a set of integers in [1, V] such that the equation
T + 3y = 2u + 2v has no solution in A. How large can A be? It is known that the
maximunm size lies between VN and N/(log N)°. Expect that the answer is N!'~*.

6. (Imre Ruzsa & Vera S6s) Let A be a set of positive integers, and let r(n)
be the number of pairs (i,j) such that a; +a; =n. Put S(z) =3 ., r(n). The
Erdés- Fuchs theorem, as strengthened by Jurkat, asserts that S{(z) —cz = Q(z'/*).
In contrast to this, if one instead counts solutions of «a; + 2a, = n, similarly for
a; + 3a; = n ctc., then one can get S(r) = 2. What about 2a, +3a,”

7. (Aleksandar Ivié) Let 11 <y <7 € ... be the ordinates of the zeros of
the zeta function on the critical line, connted according to multiplicity. Let A(T)

o
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denote the munber of 7 osuch that v, <1 and

fnax IC(% + ll)l 2 Tn+t = Tn-

In<t<Tn4

[low does A(T) compare with the total number Ny(T) of zeros on the critical line
up to T7 Prize: 500 Billion Dinars.

8. (Jorg Briidern) Let r(n) denote the number of representations of n as a sum
of three positive cubes. Determine the density of the set of n for which r(n) > 0.
It is conjectured that this density is > 0. The best known result in this direction is
due to Vaughan (1989), who showed that the number of such n not exceeding ¥
is > N'/12-<_ Let p(n) denote the number of representations n = z° + % + 2°
with y, = smooth in the sense that plyz implies that p < n®. Show that

> o) < N°
n<z

with 8 < 13/12. Vaughan proved this with 3 = 13/12 + €. Let C denote:the set
of numbers for which r(n) > 0. -

Probgem 1. Gaps. Let ¢; < ¢; be consecutive members of C. Trivially G- <
c?/ 3 | Do better. Prize: $100. Weaker: Do better for almost all short intervals.

Problem 2. Show that
dlen—a) < N7

i<z

with v <1 +(2/3)%.

Problem 3. In joint work with A. Balog it was shown that the number of $olutions
of cy+¢; =2¢c3 < N with the ¢;€C is > N?"'/4=¢_Let R(N) denote the number
of solutions of z3 + 23+ 23+ yd +y3 +y3 = 2(2} + 23 + 23) < N . 1t is easily seen
that R(N) ~ v N?. To obtain a simple proof of the above results, one would like
to have the following inequality: '

S palplea)alc) < NHAEE

c14ea=2e3<N
9. (Yoichi Motohashi) In work with A. Ivi¢ it was shown that
T
. / €3+ i) dt = T Pi(log T) + EoT)
D]

where /% is a polynomial of degree 4 and [5(T) « T*?(log T)C . Improve on this.
Prize: A special dinner in my home.

o
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10. (Roger Heath-Brown) let p, bethe ath twin prime. Thus p,g — pe =
Q((log p.)?) . Improve on this. Thus. or otherwise. improve on the trivial relation

Tt
Tr-_)(JI)—(.'/: m = ”“)

11. (Roger Heath-Brown) Is it true that

T XN 2 .
/ IZann'”t dt > Tla|*
0 n=1

if T > To? (Here the a, are arbitrary complex numbers.) This is a question
of Ramachandra; he conjectures that the answer is ves, [ conjecture that it is no.
Certainly Ty > 27/ log 2

12. (Antal Balog) It is known that

2
ZHZA(n)A(nM)-e(h)I < (10;1)_4

h<r n<zr

Can it be shown that
h2<: z<y<::
b
where z = (logz)*. Easier:

v<z( Z n)x\n+h)) <L .

h<z <y

Z A(r)A(n + h) — (h)‘2 <

(logz)*

This would be easy if y were restricted to-the range z° < y < z, since then it
would be enough to note that the inner sum is uniformly < &(h)y(logy+h)/logy.

13. (Brian Conrey) Is there a sequence a, and a constant 3 such that

0 - . \
a2 ( o sm(ern:z)) . .
z,y) = an| cos(2rnz) — ——— ) Kip(27n

flzy) =y ; n cos(2mnz) - =07 io(2mny)
satisfies the functional equation f(z) = f(—1/z)? Here K is the Bessel function.
If so, then the Dirichlet series 3% a.n~* satisfies a functional equation with two
gamma factors. Note that if (sin27nz)/2rnz were omitted from the above, then
the question would reduce to the question of the existence of even Maass wave forms.

14. (Hugh Montgomery) Assume RH. In 1935, Wintner proved that the nor-
malized error term g(y) = (¥(e¥) — ¢¥)/e¥/? in the prime number theorem has an
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asymptotic distribution function F(z}. Winner also proved that 0 < F(z) < 1
for any finite , and that the distribution has moments of all orders. Show that
F is strictly increasing. That is. there is no interval of positive length on which
I is constant. Also. show that [ is continuous. These assertions arc trivial if the
ordinates v > 0 of the zeros of ((s) are linearly independent over Q).

15. (Hugh Montgomery) Show that

| X snra(S)] < X+ DXXDF Y utn)ladl

<D 0<n<X ~ 0<ngX

Here the outer sum on the left is restricted to primitive quadratic discriminants.

16. (Paul Erdés) The distribution function F(z) of ¢(n)/n is singular. Prove
that there is no real number r such that F'(z) exists and has a positive finite value.
It may even be that there is no z for which the one-sided derivative exists'and has

a positive finite value.

17. (Andrew Odlyzko) Suppose that f(z) is a polynomial of the form f(z) =
1+ Z'}Ll a;z’ where a; =0 or 1. (a) Show that f cannot have a multiple zero in
the complex plane, other than on the unit circle {z| = 1. (b) What is the maximal
multiplicity of a zero of f(z) at —1, as a function of d? (c) Are most of the
polynomials f(z) of this form irreducible?

18. (Andrew Odlyzko) Write di = piy1 — p;. The value of d; that occurs
most frequently, for p; < z, is called a champion. Show that the champions tend

to infinity with z. Assuming a quantitative form of the prime k-tuple conjecture,

it can be shown that the champions are 4, 2, 6, 30, 210,..., and subsequently
M,e, 7 s

19. (Gérald Tenenbaum) Suppose that A is a set of positive integers. Let
5(A) denote the logarithmic density of A. Let M(A) = {ma:m > 1,ae A}.
The set A is called a Behrend set if 6M(A) = 1. A Behrend set A is called a
witness if 6(A\ A") =0, A" C A implies that A’ is Behrend. Suppose that W is
a witness. It is easy to show that if §(W) exists and SM(A)NW = §W then A
is Behrend. It is also easy to see that if (a,q) = | then the arithmetic progression
a (mod q) is a witness. The set A = {n : w(n) < loglogn} is Behrend. Is it a

witness?

20. (Andrzej Schinzel) Let qeZ(z] have degree 2. Do there exist infinitely
many integers £ such that the largest prime factor of ¢(z) is < £Y3/4_ The expected
answer is z¢. In particular, what if ¢(z) = 4z° + 4z + 9.
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21. (Andrzej Schinzel) Let f e[}, with at least three distinet zeros in €.
Is it true that f(2) has a prime factor of multiplicity exactly 1, for all sutficiently
large r.

22. (Andrzej Schinzel) Show that the set of numbers not of the formy 1 —y(n)
has positive lower density. Sce J. Browkin and A. Schinzel, "On integers not of the
form n — o(n).”

23. (Andrzej Schinzel) What is the least positive number n with the property
that n2* —1 is composite for all & > 07 It is known that 509203 is a number with
this property.

24. (John Friedlander) Let o and 3 befixed, 0 < a < 4 < 1. Let feZ[z] be
irreducible over €). Let r(m) denote the number of solutions of f(a) = 0(modm)
with am < a < 8m. Hooley proved that . r(m) ~ ¢f(J — @)z where ¢/ >0
is a certain constant. - Duke, Friedlander and. Iwaniec showed that Yo r(p) ~
(8 — @)7(z) when f(z) = az® + bz +c and b — dac < 0. Extend this to all
irreducible f.

25. (Jirgen W. Sander) Let H(z,y) = {(z,v)e R*: |u—z|lv—y|l <1}, and
put B(r) = [0,r]>. A set M of points (z;,3) in B(r) is called r-admissible if
(zi,9:i) ¢ H(z;,y;) whenever ¢ # j. Show that

h L M =

rl‘oo T r—?di.:u?ia\d ’ - \/5 :
That the liminf is at least this large can be seen by taking the (zi,y:) to be points
of an appropriate lattice.

26. (Peter Elliott) Show that every positive rational number r can be written
in the form r = ;LI—:- where p and ¢ are primes. Easier: Show that there is a
number k such that every positive rational number r can be expressed in the form
r= I-[:;l(p; + 1)% where &; = £1, p; prime. Easier still: Allow k to depend on
r. This last problem is equivalent to showing that the numbers p + | generate the
multiplicative group Q* of positive rational numbers. Let [ denote the subgroup
of Q" generated by the numbers p + 1. Elliott has shown that the index of " in

@° is at most 3.

27. (R. A. Rankin) Let A be a set of positive integers containing no three
members in arithmetic progression. and let A3(z) denote the number of members
of A not exceeding . [t is known that Ay(x) can be as large as rexp(—cylogz)
where ¢ = 2y/2Tog 2. Improve on this. Simply a reduction in the value of ¢ would
already be interesting,.
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