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Die Tagung fand unter der Leitung von L. Accardi (Roma) und W' von Waldenfels (Heidelberg)
statt. Im Mittelpunkt des Interesses standen Aspekte der Quantenstochastik und der Quantenfeld-
theorie, unter besonderer Betonung von Fragestellungen, die auf Gemeinsamkeiten abzielen.

Abstracts

L. Accardi:
The Stochastic Limit of Quantum Field Theory

[n the last 15 vears new mathematical techniques, born in the lield of quantum probability, have begun
Lo be applied to physical models. The idea that a more refined analysis of the basic principles of quan-
tum theory shoulid lead to a stochastic generalization of the Schrodinger equation, was substantiated in
a mathematical theory of quantum noise (1986). [n this theory the stochasticity is not jet by hands. as
in the classical Langevin equation but. using some specific properties of quantum systems, it is deduced
from the system itself. In this sense one might say that ‘quantum systems are their own noises’.

In this theory one shows how quantum stochastic differential equations arise naturally in physics.
But given a specific quantum system, how to determine the stochastic equation which describes i?
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| TI'he set, of technigues developed to answer this question is now called *the stochastic limit of quantum
field theory”. "The basic idea is to perform a detailed analysis of the long time cummmlative behaviour
of the effects of thelnteraction. ‘The main results, obtained in the last years, are reviewed.

The collective quantuimn fields converge to quantum Brownian motions (1987). This phenomenon
has some “universal features’ (such as independence of the initial state), and both Schrodinger and
Heisenberg evolution converge to stochastic differential equations (1988). The universality includes
non-linear ir(l.crn.clions (1989). Also quantum Poisson processes cmerge as stochastic limits of quan-
tum Hamiltonian systems (1990-1991). ‘The quantum noise emeeging -fromn quantum clektrodynarmnics
without dipole approximation generalizes the so called ‘free noise’. emerging from Voiculescus ‘free pro-
bability theory’, and is neither Brownian nor Poisson (1991). The corresponding’ quantum stochastic
rquations require a ‘quantum stochastic calculus on Hilbert moduli’ developed by Y. GG. Lu (1992).

" The stochastic linit of quantum field theory can be considered as a new semi-classical approximation.
" leading not to the usual smooth trajectories, but to the irregular trajectories of Brownian motion
(1993). The stochastic limit of quantum chromodynamics can be achieved. even if with cut-off cut in.

a fixed gauge (1994).
The program for the next steps is: removal of cut-offs, gauge invariant stochastic limit of QCD.
introduction of space (not only time) scaling, relativistic stochastic limit.

R. Alicki:
Quantum Dynamical Entropy II

\

|

. The new definition of the quantum dynamical entrdpy based on the notion of operational partition of
unity is applied to the quasi-free fermionic system at the invariant quasi-free state. )

. : C. D’Antoni:
Aspécts of AQF

Algebraic QFT provides a suitable framework to discuss structural properties of QFT in a model
independent way. Two aspects are discussed in detail. The nuclearity property describing the ‘essentiai’
finite dimensionality of the phase space of local algebra. And the modular structure exploiting on
the contrary, the (cven locally) essential infinite dimensionality of quantum fields. Interplay between
the two aspects is studied with emphasis on implementation of local and space-time symmetries and
geometric interpretation of modular automorphisms. . ’

I. Aref’eva:

Anisotropic Asymptotics in QFT

[ have discussed anisotropic asymptotics in quantum field theory. This problem is related with high-
energy behaviour of scattering amplitudes with small transferred momentum and with stochastic phase

in QFT.
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V. Belavkin:

We give an explicit stochastic Hamiltonian model of discontinuous unitary evolution for a system of
quantum particles interacting with ‘bubbels’ which admit a continual counting observation. It allows
to watch and follow with an unsharp position of a system like in cloud chamber by a sequential
filtering of the spontancous scatterings of the bubbles under the observation. This model leads to
the continuous reduction and spontaneous localization theory as a result of the quantum filtering, i.c.
the conditioning of the a priori quantum state by the measurement data. We show that in the case
of the indistinguishable particles the Boltzmann type reduction equation rises. It coincides with the
non-stochastic Schrodinger cquation only in a mean field approximation while the diffusive type is
appearing as the central limit of this equation.

G. Efimov:

The talk is devoted to the osciilator representation (OR) method and its application to research into
the ground states of various quantum field theory and quantum mechanics models. The OR method
is based on the conception of the representation of the total Hamiltonian in the correct form, i.e.

H = Ho+ Hr = Zuaa{a.‘-*g:ih(as.a.’):

where the free Hamiltonian contains quadratic operators in the normal form and the interaction Ha-
miltonian should be written in the normal form and : H(p): = O(y®) for » — 0. All possible phases
of the system can be obtained by the canonical transformation under the requirement that the total
Hamiltionian has the correct form in each representation.

The method provides to investigate in QFT such non-perturbative phenomena as the strong coupling
regime, the phase structure and phase transitions at arbitrary coupling constants and temperature.

OR is a kind of generalization of the variational technique , but in contrast to variational methods,
it is applicable to QFT models with ultraviolet divergences in the highest perturbation orders and
to theoriés with non-hermitian and complex actions (stochastic and dissipative processes). OR is
characterized by a high accuracy of the lowest approximation and gives a regular prescription for
calculations of the highest order cortections to the lowest approximation. ’

M. Fannes:

Quantum Dynamical Entropy I

In colaboration with R. Alicki, a new elementary construction of a dynamical entropy for quantum
dynamical systems is proposed. This definition is shown to extend the Kolmogorov-Sinai invariant.
Furthermore. the entropy of the shift on a quantum spin chain with arbitrary invanant reference state
is computed.
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G. W. Ford:

Weak Localizations in the Spin-Boson problem

Consider a single two-level (spin) system coupled to a boson field, with Hamiltonian

0= ln+lls, Hs = thuo(l+0,), Heg = 3 hwjlaj +cjo)(a; +c;0.)
i
with the Pauli matrices o, 0y, 0, and the boson operators a;. On special interest is s the singular case
where for a smooth test function F(w)

le; 1 F(wj) — a dw ";F(g)_
3] 3
; 2 Jy Cw

Here o is a dimensionless coupling constant and w, is a cut-off frequency. ’

Suppose now the system is initially in a state consisting of the vacuum state ®, and an eigenst
of &, with eigenvalue I. The corresponding density matrix is pg = d’oo{,h‘,&. The system is therefore
in a superposition of eigenstates of Hs. The time evolution p(t) is a solution of the von Neumenn

" equation
8p
:fx— [H ol . p(0) =

The approach to equilibrium is described by the after-effect function
CP(t) = tr (p(t) ! +"‘) = emfn,

The expansion 8(t) = (1)(¢) + 8()(t) + - - in powers of wy has been calculated by master equation
methods (Ford, O'Connell, Lewis, Raggio). 6(®) vanishes for n odd. The second order term has been
long ago obtained by path integral methods (Leggett, et al.).

1 ~Re(l + tw,t)~Ae-D)
2(a — l)(2a -1)

w2
2 _ W
O
Here we see the phenomenon of weak localization: for a > 1 P, (t) remains finite for long times. In the
N 2
critical case @ = 1 6¢®)(t) = 2% log(1 +w?t?). We find for the fourth order term
814(t) ~ 6(3)(1)? + less divergent terms.

This leads to the suspition that the expansion in powers of wq is not uniform.

R. L. Hudson: | - ‘ . ‘.

On the DVISK Formula

The Dyson-Veretennikov-Isobe-Sato-Krylov formula

-y % Ji PoVis Py Vs - Vs Paca dE, () 4K (t)
) .

n=0 jj..... Ja=1 << - <ta<t

for the solution of the stochastic differential equation

= U (Z VidK, + 11 .u) e = 1, -

1=t
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where P = o' _cpables us 1o estimate the partial trace over the initial space of the process 1F Using
the noncommutative tractal version of Hélderlin inequality we find that

e PV, Py Vi VPl € u oM™

where M = max |{\3]]. Fromn this it follows from standard estimates of QSC that the partial trace
J=loam o C

over the initial space try, 17 exists. For a certain case this trace can be computed explicitly.

P. E. T. Jorgensen:

Positive Representations of Wick Algebras
(Joint work with R. F. Werner and L. Schmitt) -

. Let H be a Hilbert space and H' its conjugate Hilbert space. In the theory of quantum groups. in

oF

_quantum probability. and in non-commutative differential geometry relations of the form
hok! = (hk1+T(hek")

arise where T : H ® H' — H'© H is some linear operator. Positive representations of these relations
are discussed. As examples the u-CAR, y~CCR. and SU,(2) are investigated.

J. Kupsch:

Fermionic White Noise and the Eucledean Quantum Fleld Theory for Fer-
mions

Euchdean quantum field '.heory is a theory of linear l’uncuonals on test function algebras. [n the
bosonic /fermionic case this algebra is a symmetric/antisymmetric tensor algebra, and the evaluation
of euclidean Green'’s functions (Schwinger functions) corresponds to the calculation of linear functionals

on this algebra. For the usual bosonic theories this problem is equivalent to the construction of random

fields and the Schwinger functions are expectations of these fields.

The main part of the lecture gives a construction of euclidean random fields also for fermions.
In a first step complex white noise is supplemented by an antisymmetric tensor product (Grassmann
product). That is possible either with a polynomial chaos expansion or with the homogeneous chaos.
The resulting fermionic white noise is the building block for more complicated fields. Candidates
for euclidean Dirac fields are given as example The construction is essentially unique if the Markov
property is demanded.

H. Leschke:

Classical and Quantum Dynamics by White Noise Hamiltonians
(Joint work with W. Fischer and P. Miiller)

A class of random systems whose Hamiltonian can be written as a sum of a deterministic part and a
random part is discussed. While the deterministic part is time independent and quadratic. the random
part is time dependent and (its-Weyl-Wigner symbol) is supposed to be a homogeneous Gaussian ran-
dom field which is delta correlated in time and arbitrary but smooth in position and momentum. Exact
expressions for the time evolution of both (mixed) states and observables averaged over randomness
are obtained. Furthermore, the difference between the quantum and the classical case is clearly exhi-
hited. As a special case it is shown that. if the deterministic part corresponds to a particle subject to
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a constant magnetic field, the averaged spatial variance of any initiai state shows a diffusive hehaviour
in that it grows linearly in time.

M. Lindsay:

Y. G. Lu: o
Hilbert Module and Free Stochastic Calculus

Hilbert module and free type quantum noise appear from the Markovian limit of QED. The construct.
of Hilbert module depends on the original physical model. If the system Hamiltonian has discre
spectral set, module is replaced by a direct sum of Hilbert spaces. If the system Hamiltonian is,
up to a constant. p°. then we need a Hilbert module on the von Neumann Algebra generated by
the momentum operator. If the system Hamiltonian has. up to a constant, the form p® + V (where
V € L' N L?), then in order to describe the limit noise, we need a Hilbert module on a *-algebra
generated by polynomials p and wave operator with respect to (p? + V,p?). Moreover, we introduce
free type stochastic calculus on Hilbert module to study the limit of evolution.

A. Mohari:
On Stochastic Parallel Tranvszport‘

M. Schiirmann:

Direct Sums of Tensor Products and Non-Commutative Independence

For a set X we denote by
AX) = {(a-em):m2 16 € X 6 # €ir1}

the set of non-empty finite, alternating sequences in elements of X. For M C A({1.2}) and ¢ €
A({1,2}) we denote by Al (¢) the subset of A({1,2,3}) obtained from ¢ by replacing 2s by 3s and 1s
by arbitrary element of M. Similarly, A%,(¢) is the subset of A({1,2,3}) obtained from ¢ by replacib

" 2s by arbitrary elements of

M = {lat+l.em+1)i(aem) € M) C‘A((2'3})»

We proved that there are precisely 4 subsets M of A({1,2}) satisfying the conditions
. )2 e M
o Al (M) = AL(M).

The 1 sets are

(A) M= {(1),(2)

(B1) M o= {(h.(2).02))
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(B2)° . Moo= (@0}
() Moo= A({12)

We point out that the basically 3 devices A.B and € correspond to the 3 findamental known notions
of non-commutative independence in quantum probability. We believe that the fact that we have 2

B-cases corresponds to the existence of the large number of variations in the “tensor independence” case

known as ‘twisted’ or ‘braided’ independence.

M. Skeide:
The Lévy-Khintchine Formula for S{/,(2)

We present our results on a Lévy-Khintchine formula for Woronowiczs twisted SU7(2) and compare
. them with the classical Lévy-Khintchine formula.

A. Verbeure:
About the Goldstone Theorem

v

The Goldstone phenomenon in statistical mechanics and field theory is rigorously formulated. .

A discussion of the Goldstone theorem is given in terms of quantum fluctuation theory distinguishing
dynamical systems with short range and long range interactions. A rigorous formulation is found for
the Anderson restauration of symmetry. This is a consequence of the theorem: the fluctuation of the
generator of the broken symmetry and the fluctuation of the order parameter operator form a canonical

pair.

" W. von Waldenfels:

The AHarmonic Oscillator in the Radiation Field
(Joint work with G. Efimov)

In order to study dissipation phenomena we investigate the analogue of Lamb’s model (1900): An
oscillator attached to an infinite string '

. with

Introducing P = (;;.) Q= ( ] ) and assuming dipole approximation B = G [ dk kiQy F(k?) with

21 1
H = 1_’2_+ §(q+B)7+ i/dl‘(PgP_g +w3Q,Q-k)

1 o
[Pe,Q-e] = fa(k"k’): Q = Q'_g. Py = Plg- Wl = B4t

Qa
F(k?) = e~¥"¢, we write
H o= YptpiQiviQ) with M2 = ! Gow = D= [u)(ul
2 Gue  wiblk — k') + Glrpvg )

with

0 0 ! S
D = (0 S26(k - ¥) ) Jlu) = (C"’k). ve = ~CikF(k?).
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‘This special form allows to calculate the resolvent

! [ S 1
s-M? T :—D+:—D|")m("|:—0

with

C(z) may or may not have a real zero Aq corresponding to u > pu. or u < p., where g, is a critical
constant. ‘The spectrum of M? consists of Ag and the intervall {#*,00[. The eigenvectors can be
calculated explicitly. From this we deduce a new vacuum [|0). This allows to calculate an optimal

constant g in £(k*). The vacuum |{0) belongs to the initial Fock space '(C® L?(R)) if f I%F dk < 0.
R. F. Werner: : i
The Classical Limit of Quantum Theory

For general quantum observables we define convergence to a classical limit in norm. According to
this notion, which is based on a generalization of inductive limits of normed spaces, the product of

convergent sequences is convergent, and the quantum time evolution converges uniformly on finite time
intervals to the classical Hamiltonian evolution.

Berichterstatter:
M. Skeide
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