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Endliche ~ilodellt.heorie

2;.3 bis :lA.199·1

Die Tagung fand unter Leitung von H.· D. Ebbinghaus (Frei hurg). J. Fl unl (Frei­

burg) und Y. Gurevich (Ann Arbar) statt.

Die Endliche ~1odelltheoriebildet ein Grenzgebietzwischen der lnathenlatischen

Logik und der theoretischen Informatik. Im Nlittelpunkt des Interesses 5tanden

hier mathematische Fragen.

Ein zentraler Bereich der Endlichen 'Nlodelltheorie ist die Untersuchung der :\ llS·

drucksstärke verschiedener. Erweiterungslogiken der Logik der ersten Stufe im

Bereich endlicher Strukturen. In mehreren \'orträgen wurden Fragmente der

Logik der z\veiten Stufe, insbesondere die monadische zweite Stufe~ Fixpunkt­

logiken und Erweiterungen der ersten Stufe um verallgemeinerte Quantoren

beleucht~t.

Diskutiert wurden weiterhin O-l-Gesetze, ein interessantes Phänonlen, das nur

im Bereich endlicher Modelle auftritt und auch in der Theorie der Zufallsgraphen

eine Rolle spielt.

Bezüge zur Informatik wurden in einigen Vorträgen über deskriptive [,om­

plexitätstheorie deutlich. Hier war insbesondere der Zusanunenhang der logischen

Definierbarkeit von Problemen und deren Approximierbarkeit von Interesse.

Die Tagung war die erste ihrer Art. Das gab auch Anlaß. iiber ~ethoden, Trag­

weite und Ziele der Endlichen Modelltheorie zu diskutieren.
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Vortragsauszüge:

M. Ajtai

The lndependence 0/ the modulo p Counting Principles

The modulo p counting principle is a first-order axiom schema saying that it is

possible to count modulo p the number of elements of the first-order definable

subsets of the universe (and of the finite Cartesian products of the universe with

itself) in a consistent way. It trivially holds on every finite structure. An equiv­

alent form of the mod p counting principle is the following: there are no two

first-order definable equivalence relations ~ and 'li on a (first-order definable)

subset X of the universe A (or of Ai for some i = 1,2, ... ) with the following

properties: (a) each dass of 4> containsexactly p elements, and (b) each dass of \lJ

with one exception contains exactly p elements, the exceptional class contains 1

element. We show that the mod p counting principles, for various prime numbers

p, are independent in a strong sense.

A. Dawar

The Expressive Power 0/ Generalized Quantifiers

This talk covers t\\"o papers - one of them jointly with Lauri Hella. \Ve consider

the problem whether there is a logic for the dass PTIME on structures that

are not necessarily ordered. We show that there is 00 such logic obtained by

extending the least fixed-point logic (LFP) by means of finitely many Lindström

quantifiers, even over a fixed signature. We show that if there is any logic that

captures PTIME, then there is one that is an extension of LFP by an infinite

sequence of quantifiers satisfying a strong uniformity condition. This happens if

and ooly if there is a problem in PTIME, complete for this class with respect to

first-order reductions.

M. de Rougemont

The Expressiveness 0/ LVon- Unifonn Datalog

\Ve define tbe class of non-uniform Datalo~ programs (DAC) which combjne the

recursive feature coming from Datalog together with the non-uniformity of the

hoolcan circuits. A query is DAC(w; 11) definable for two functions w, h : n - n
jf there is a sequence of Da:ta1og progranls 'P = {Pn : n E tl}, where Pn has width

,
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w( 11), polynolnial hcight. and CL clOSllre ordillal h( 11). such t.hat r'H' ("ach ". I~il

defincs the qucry on databases of size 11.

We study th~ expressive power of such c1asses a.ud ('Stablish SOln(~ hit'rarchy rt-sU Its

llsing the t.cchniques of chain queries.

[Joint work with I. Guessarian]

R. Fagin

Finite -model IheonJ: A Personal Perspective

Finite model theory is a study of the logical properties of nnite Inatheluatical

structures. Among the topies diseussed in this talk are:

(1) Difference between the 'model theory 0/ finite structures flnd infinite struc/ures

wlost of the classieal theorems of logie fail for finite struetures, which gives us

c~allenge to de~elop new concepts and tooIs, appropriate for finite struc.tures.

(2) The relationship between finite model theory and complexity theory

Surprisingly enough, it turns out that in some cases we can characterize com­

plexity classes (such as NP) in terms of logic, where is no notion of machine,

computation, or time.

(3) O-l-law

There is aremarkable phenomenon which says that certain properties (such a.s

those expressible in first-order logic) are either almost sure true or almost 'sure

false.

(4) Descriptive complexity theory

Here we consider how complex a formula roust be to express a given propertY.

R. Fagin

Descriptive complexity - winning stmtegies

I discuss two suffieient eonditions for the second player (the "duplicator") to have

a winning strategy in an Ehrenfeucht-Fraoisse game on graphso These are llsed

ta give much simpler proofs of the known results that connectivity and directed

reachability are not in monadie NP. Furthermore, the conditions (an he used to

give stronger results than known before in the case of built-in relations.

This talk represents joint work with Arora. Stockmeyer. and Vardio
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E. Grädel

Logical Definability -0/ Counting Functions

The relationship betwcen counting functions and logical expressibility is exploreu.

The most well studied class of counting functions is #P, which consists of the func­

tions counting the accepting computation paths of a nondeterministic polynomial­

time Turing machine. For a 10gic L, #L is the dass of functions on finite struc­

tures (of a fixed signature) couoting the tuples (T,c) satisfying a given Cormula

'ljJ(1', c) in L. Saluja, Subrahmanyam and Thakur showed that on classes of or­

dered.structures #FO=#P (where FO deootes first-order logic) and that every

function in #'E 1 has a fully randomized approximation scherne. We give a prob­

abilistic criterion for membership in #E I (00 unordered structures). A conse­

quence is that funetions counting the number of cliques, the number of Hamilton

cyeles, and the number of pairs with distance greater than two in a graph, are

not contained in #EI • It is shown that on ordered structures #E~ captures the

previously studied class spanP. On unordered structures #FO is a. proper sub­

class of #P and #E~ is a proper subclass of spanP; in fact, DO class #L contains

all polynomial-time computable functions on unordered struetures. However, it

is shown that on unordered structures every function in #P is identical almost

everywhere with some function #FO, and similarly for #E~ and spanP. Finally, it

is shown that #FO is closed under various operations under which #P is closed,

hut that #FO is not elosed under other operations under which #P would be

closed only if certain generally believed assumptions in complexity theory failed.

[Joint work with K. Compton]

E. Grandjean

Monadic Logical Definability 0/ NP-comp/ete problems

It is well-known that (existential) monadie seeond-order logic with linear order

exactly characterizes regular languages (Büchi 1960). On the other hand, J.F.

Lynch (1982) proved that each language in NTIME(n) (linear time on a nondeter­

ministic Tur~ng machine) can be defined by an existential monadic second-order

formula involving addition. (Compare this with Fagin 's Theorem (1974): A lan­

guage is NP iff it can he defined by an existential second-order formula of any

arity.)
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Very few lla t.u ral NP -t·olllpietc prohlclllS bt~lollg to NTI~I E( 1\) (t'.~. 1\ napSill"k).

On t-he other hand. thc author r("Cently notic:(~l (1993) thelt. 11111".'1 'Jf tltcm lt'.g.

the 21 original prohlems oC R. Karp. 19;2) bdol19 io ;V/~ItV. t ht" l"orrt'~p()IHlill~

class for RAwts. In fact we prove that each prohlem in NLIN can be dl~till('tl in

Lynch's logic (existentiallnonadic second-ordcr with addition).

This result i5 proved by essentially using the exact charactt.'rizatioll 'lf thC' dass

NLIN by existential second-order Jogie with "Ullary funclions (Grandjl'all. 1985­

90-93): the new trick is an encoding of each unary function by a unary relation

on a slightly bigger domain .

Improvement: Reeently J.F. Lynch (1992) proved that the dass NTI~IE(Il) is

eaptured by existential monadie second-order formulas (with +) where the first­

order part of the formula is '1*3-. We obtain the same result for NLIN ( and then

for the 21 problems of R. Karp). ':~':,
.~-~~

Hence a praof that a conerete problem is not definable in this logic would yield

a proof that this problem does not belong to NLIN and then requires s/.riclly

more deterministic (or nondeterministic) time than many (m?st"?) natural ·NP­

complete problems.

(Joint work with F. Olive]

M. Grohe

A rity Hierarchies

Partial fixed-point logic PFP is obtaineq by augmenting first-order logic by a

fixed-point operator. If we restriet the arity of this operator to be :;; k (f~r a

positive integer k) we get the k-ary fragment PFpk of PFP. 'vVe call the hierarchy

(PFpk)k2:1 the ~rity hierarehy of PFP.

Similarly we define the arity hierarchy for transitive closure logic (TCk )k~l) and

deterministic transitive closure logic ((DTCk)k~l)' '

We prove that for each k ?: 2 DTCk Cl TCk-l and TCk ~ PF pk-l. In faet we

prove that this holds even on the class of graphs.

As a eorollary we get that the arity hierarchies are strict for the logics mentiollcd

above and also for other common fixed-point logics .

•1)
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Y. Gurevich

Rigid Stnlctu1"eS

This is a joint work with Saharon Shelah. Using probabilistic Inethous, we con­

struct finite rigid structures depending on paramet~r k such that 00 L~ formula

with counting quantifiers distinguishes between particular different elements. Fur­

ther we get a finitely axiomatizable subclass of finite rigid structures where 00

L~ formula with counting quantifiers defines a linear order.

L. Hella

Fixpoint logic vs generalized quantifiers

Neil Immerman proved in 1987 that, in the presence of linear order, first-order

logic extended by the uniform sequence of. alternating transitive closure opera­

tors, FO(ATC<W), captures PTIME. Later E. Dahlhaus showed that a variant

of the ATC-operator captures least fixpoint logic, LFP, even without linear or­

der. Quite recently, lVlartin Grohe defined generalized quantifiers Qx and Q-p

such that FO(Q~W) and FO(Q;c.J) capture inflationary fixpoint logic and partial

fixpoint logic, respectively.

We prove that for every monotone quantifier Q there is another quantifier QATC

such that FO(Q~TC) and LFP(Q<W) have equal expressive power on the class of

all finite structures. The quantifier QATC is essentially a coding of a semantic

game for LFP(Q<~)-formulas.

I. Hodkinson

0-1-1aws and infinitary logics

The talk discusses some results of Kolaitis & Vardi and Dawar & HeJla, the main

one being that if C is a dass of finite structures and k < w, then C has a O-l-law e
in the infinitary logic L~ iff, modulo the almost sure theory T(C) of C, there are

only finitely many first-order Cormulas written with k variables, and T(C) decides

every k-variable sentence.

Thus, ror example, if T(C) is w-categorical then C has a O-l-law in L~ for all

finite k, a theorem of Kolaitis & Vardi. Same examples illustrating these not ions

were giveo, and it was pointed out that an analogue of the theorem holds for the

extension of L:.c.., by a finite set of generalised quantifiers.

6
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Ph. Kolaitis

POIYII011l;al. Til1lt~ O/Jlim;:lIlion. Parn.l/el .·lJlPIYJriI11afioll aUtl FirfJoill/ I.Offi,.

We initiate Cl st.udy or polynonlial.t.ime optil11ization froll! tht' perspecti\'e or c1e­

scriptive conlplt~xity theory. Vve establish that r.he dass uf polynontial-tiua" and

polynomially bounded optimization problenls with ordered finite structlln"S ilS

instances ean be characterized in terms of the ..,lage !rl1u:liolls of positive first­

order formulae. i.e., the functions that compute the nunlbcr of iterations in the

~bottom up" evaluation of the least fix points of such formulae. After this. we

study the stage functions of several first-order formulac whose least fixpoints

form natural P.complete problems a.n:d show that they are not ~C-approxillla.ble

within any factor of the optimum. unless P=NC. Finally, we pro\~e t.hat certain

polynomial-time optimization problems are complete with respect t.o a new k~nd

of restricted reductions that preserve parallel approximability and are defin~ple

using quantifier-free rormulae. . ~

[Joint \Vork with N. Thakur]

c. Lautemann

Logics JOT context·free languages

We want to investigate subclasses of NP, characterised by logics 38J.o. where 8

is a class of binary relations, e.g. order relations: 3 < J.o., successor relations:

3suc J.o., etc. As a first step we restrict ourselves to string logic and show that

the class of context·free languages can be characterized. by such a logic, using

matchings, where NI ~ {I, ... , n}2 is a matching

iff \fi, j, k, I : whenever (i,j) e M then

• (j,i) E lvI, • j # i, • (i,k) E 1\1--. k =j, and

• • (k, I) E 1\tl 1\ i $ k ~ j ~ i :5 I :5 i.

[Joint work with T. Schwentick, D. Therieu]

D. Leivant

Old and new transfer principles in logic.based r.omplexity

Transfer principles bring a measure of unit)' ta the rnultitude fJf a.pproadH~s

to computational c:omplexity. An old exanlple uf a transfer principlc is tll(~

Schönfinkel- Howard nlapping of prüofs to fUl1etional prografns.

;
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In this talk we introduce the transfer principle of boundedncss. (t states

that subterms of computationally-potent elements of a free algebra are also

computationally-potent. This implies a transfer of results in predicative recur­

rence theory to analogous results in Finite Model theory.

J. Lynch

Convergence Laws for the lnfinitary Language 0/ Random Graphs

The infinitary language L~ of graphs is the extension of the first-order language

of graphs where infinite conjunctions and disjunctions of arbitrary sets of formu­

las ai'e allowed, provided onIy finitely many distinct variables occur among the

formulas. Let p(n) be a function from the natural numbers to [0,1]. A random

graph on n vertices has edge probability p(n) if, for every pair of vertices i, jEn,

{i,j} is an edge of the graph with probability p(n). For any sentence (7, pr(O', n)

is the probability that the random graph on n vertices satisfies 0'. Previous work

by Kolaitis and Vardi has shown that when p(n) is constant, for all (7 E L~,

pr((7, n) is asymptotic 0 or 1. We consider p(n) = n -0, where a > 0, and will

show that pr(q, n) always converges when 0: < 1 is irrational or 0: > 1. The

convergence result for the first case is joint work with J. Tyszkiewicz. In fact,

for every (1 E L~ , there is a first-order sentence (7' such that pr( (j ~ a', n)

converges to 1.

J. Makowsky

Arity vs Alternation in Second-Order Logic

Let En be the second order hierarchy with the restrietion that 3UVV3W ... <p E

t n if c.p is a first-order V*3*-sentence.

EI still captures NP, and En captures t: of the polynomial hierarchy.

Now let t~d) (d E H) be the t n sentences with all second-order variables of arity •

5: d.

Theorem: For every n, d there is a sentence (Jn.d E t~d:24) which is not equivalent

to any sentence in E!:').
The proof uses self-satisfying sentences, Le. let 21(# be the structure which corre·

sponds to the string <.p.

Theorem: Let AUTOSAT-FOL be the set of self-satisfyi1l9 first-order sentences.

AUTOSAT-FOL is PSPACE-complele.
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[.Joint work wit.h Y. Pn,wlil

M.Otto

Explicil/y Symllu:/,.ir. Cilruils lln,l FO

We consider infinitary boolean circuits where cOInput.ations are explicitly invari­

ant with respect to the choice of representation of the input st.rUl"ture. This ~

condition is put in tenns of automorphisms of the circuit illducerl by relabellings

of the input nodes. The resulting symmetrie circuils provide an isol11orphisrn

preserving model of circuit camputation.

To charaeterize L~, infinitary logie with a bounded nunlber of variables. a weak

loeal size reslrietion is introduced: asymmetrie circuit is loeaUy polyno'mial if

the orbits of its nades under localizations of the automorphism group are poly-

nomially bounded. --:i~ .
The following characterizations are obtained:

• symmetrie, loeally polynomial cireuits == L~

• syrrunetric, locally polynomial eircuits of finite depth == FO

Generalizing to networks in an obvious way we obtain

• symmetrie, locally polynomial networks with finitely many orbits == PFP

I.A. Stewart

Contezt-Sensitive Transitive Closure

We introduee a new logieal operator eSTe (~ontext-~ensitive transitive ~losure)

and show that ineorporating this operator into first-order logic (with successor)

enables us to capture the complexity class PSPACE. We also show that by vary­

ing how the operator is applied we ean capture the elasses P, NP. the classes of

the Polynomial Hierarchy PH, and PSPACE. We also give applications of these

charaeterizations by showing that P and NP coincide with those problems ac­

eepted by two new classes of program sehernes; by producing some new generic

eomplete prohlems for various complexity classes: and hy giving a simple proof

that first-order logic incorporatcd with the least tixed-point operatur captlll't.·S P.
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J. Tyszkiewicz

Non-con1,ergence res'llits via extension azioms

In the theory of asymptotic probabilities extension axioms have heen llsed as a

typical tool to prove O-l-laws, mainly for first-order logic.

We present a technique that allows us, given a 0-1-1aw for some.logic proven by

extension axioms, to construct a nonconvergence proof for some extension of the

logic under consideration. The typical inferences are:

1. nonconvergence for monadic second order logic derived from a O-l-Iaw for

nrst order logic

2. nonconvergence for fixpoint logic from the O-l-law for first-order logic

3. nonconvergence for first-order logic over signature t7 Ü T from two o-l-Iaws

for first-order logic over signatures q and 1".

J. Väänänen

The Hierarchy Theorem for Generalized Quantifiers

Tbe concept of a generalized quantifier was defined by Per Lindström. in 1966.

Dur main result says that on finite structures different similarity types give rise

to different classes of generalized quantifiers. More exactly, for every similarity

type t there is a generalized quantifier of type t which is not definable in the

extension of first-order logic by all generalized quantifiers of type smaller than t.

This was proved for unary similarity types by Per Lindström in 1993. We extend

his method to arbitrary similarity types.

This is a joint work with L. Hella and K. Luosto.

Problem Session

1. (H.-D. Ebbinghaus) In classical model theory, the methodological scope of

important logics has been clarified by characterization theorems such as Lind­

ström's theorems on first-order logic or Barwise's theorem on LOOwJ • In order to

explore model theoretic properties in the finite~ one should try to perform a Silll­

ilar program for this case. In particular, is there a Lindström-type theorenl for

fixed- point logic '?

10
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2. (R. Fngill) A IlItJntulit: iVP dass is a dass dt,ftn('cl hy ;111 t'xi~4t'lIl ial Illoll~1tli("

second-order sentcncc.

Problenl.· DOt~S one unary relation sytnbol suHle«lI "? That iso is ."vt'ry lllolladi,' ~p

dass (slIch as :J-colorability) detlnable as 38". wherc S is i\ single unary rdal.ioll

symbol?

3. (R. Fagin) The monadic hierarchy consists of classes deiinable hy sentpllces

QIS•... Q"Sktp. where the Sä'S are unary relation symbols. the Qi·S are 3 \)1' v.
and 'i' is first-order.e Problem: 15 the hierarchy strict~ Or does it collapse to soml' fix..d number ,)f

alterations of second-order quantifiers?

Fact: If the polynomial hierarchy is strict then so is the monadic hierarchy. But

we would like to prove this without complexity assumptions.

4. (J. Flum) F02, the fragment of FO consisting of sentences with at most.t\VO

variables, is decidable.

Does E~ over F02 have a O-l-law?

5. (E. Grädel/A. Dawar) Is PLANARITY in FP or L~ '?

Is 3-COLORABILITY in L~ ?

(or other natural NP-complete problems on unordered structures)

6. (E. Grandjean) Prove that the decision problem T2 of tbe first-order randorn

theory of two binary relations is reducible to the sirnilar problem Tl for only one

binary relation via a linear time bounded reduction. That would imply that Tl

and T2 have exactly the same time complexity.

i. (E. Grandjean) Show that for each n there is a boolean circuit C" that can

sort n integers (in binary notation) in the range 0, ... , n" (k fixed) so that the

circuit C"

• has O( n( log n)2) gates

• and is computable in time O(n(/og n)3) (that means: in time linear in tltC"

length of its description) on a Turing rnachine.

11
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Remark: We hope to get this result by a careful inspection cr the :-iorting network

oe [Ajtai, Kornlos, Szemeredi, 1993] which sorts n integers in tinle 0(/09 n) with

n registers.

8. (E. Gmndjean) Investigate the dass of graph properties 1r that call be defined

by an existential second-order formula with unary functions only, i.t!.

G = (V, E) belangs to 1r

iff G satisfies a fonnula of tbe form 3fl' ... ,fk 1/J(E, /1, ... ,JIc)

(where the Ja are unary functions).

(a) Study the extent and the rohustness of this class.

(h) Prove that some problems do not belong to it. (E.g. is G edge-colorable with

d colors where d = degree( G) ?)

9. {Ph. f<olaitis} A Preservation Problem in Finite Model Theory

Suppose<p is a first-order sentence that is preserved under extensions and homo­

morphisms on fini~e models. Is '{J equivalent to an existential positive sentence

on finite models?

Background: (a) preservation under extensions fails finitely (Tait/Gurevich &

Shelah)

(h) preservation under homomorphisms fails finitely (Ajtai & Gurvieh)

(c) A positive answer to the above problem will yield as an easy corollary the

theorem of Ajtai & Gurevich that a Datalog program is bounded jf and only if it

. defines a first-order property.

10. (J. Lynch) Let Lk be the fragment of binary second·orcler language of graphs

consisting of sentences of the form

where Rb .... Rk are binary second·order variables and E is interpreted as the

graph edge relation. Let L = Uk L/t:.

(a) Find an isomorphism invariant property of graphs that is not definable in L.

That is, find a collection of graphs C stich that there is no f1 E L for which

GEC <==> GFO'·

12
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(h) Silnilar. hut for 1Jk' Fllr what ~~ clOl~ this heconu' harer?

11. (J. Lynch) \Vhat cla.."ises of randoln finite st.rll(tur~ hav~~ rc·lt~\·i\l1c,' t.u:

(a) database theory

(b) statistical verification of prograins

(c) algorithll1 analysis

12. (J.A. i\/akotL'sky) Let L be a logie. y E L[r UR).

Definition: ...,:; is invariant under order if for every finite T-strncture ,~ and twoe linear orderings <~. <~ on it we have (~, <~) 1= rp <=> ('lI. <~) 1= :,;.
Problem: Is there a logic L C FP or C L~ such that for cvery order invariant

c;; there isu: E L(Tl (without order symbol) such that '..p == W '?

Notes: (a) If L satisfies the Interpolation Theorem (Ll- Interpolation sllffices) thell
~, :;,

this is true.

(h) There is an order-invariant c;; in FOL such that no sucht!: exists (Gurevlch).

13. (I. Stewart) Take an arbitrary NP-complete problem n and incorporate the

corresponding sequence of Lindström quantifiers into first-order logic to get the

logic (±O)·[FO) (there is a quantifier for each arity a. la Immerman~s transitive

closure logic, but 00 built-in relations such as successor; also .•±" teIls us that w~

can apply n within negation signs and "*,, tens us that we may nest applications

of n as we like).

Question: Is there a logic (±n)*[FO] with a O-l-law ?

Note that H P*[FO] = NP (Dahlhaus) if we have two constants available.

(HP=Hamiltonian Path)

Question: Does there exist a complete problem for NP via quantifler-free trans­

lations without constants or built-in relations?

This second question harks back to Lovasz and Gacs (1977). Also, Blass an

Harary have asked for a logic L which can express Hamilton Cycle and which has

a O-l-law.

Berichterstatter: ~-1a.rtin Grobe (Freibllr~)

-------------------------------
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