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" The Arbeitsgemeinschaft was organized by Jean-Benoit Bost (Bures-sur-
Yvette) and Joachim Cuntz (Heidelberg). The theory of von Neumann al-
gebras ("noncommutative measure theory”) has made tremendous progress-
since the advent of Tomita-Takesaki theory around 1970. It is by now a
well-developed powerful machine -which has found applications. besides the
"classical” ones in representation theory, mathematical physics and ergodic
theory, also in different branches of geometry and topology. The program
covered a large part of the general theory as it stands now (with the exclusion
of the important recent developments on subfactors and their indices) and
some selected applications.

Von Neumann algebras were introduced and studied in the classical Murray-

. " von Neumann papers in 1930’s and 1940’s. They identified factors (i.e. al-
= gebras with trivial center) as the basic building blocks of the theory and
made a first classification of factors into type I, II or III. While type I factors
are easily shown to be isomorphic to the algebra of all bounded operators
on a Hilbert space, the classification of type II and III factors posed serious
problems.

By associating von Neumann algebras to discrete groups and more gen-
crally to groups acting on measure spaces. Murray and von Neumann were
able to construct factors of type 1. [1 and a factor of tvpe IT1. The type
[17 factors (purely infinite case) seemed particularly intractable. The next
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breakthrough caune in 1960’s with the series of work of Powers, Araki-Woods
and Krieger resulting in a.wealth of type III factors. Powers’ construction
is an analogue of the construction of infinite products of measure spaces.
By taking infinte tensor products of matrix factors (M»(C), ¢), (¢ a suitable
state ), one obtains a continuous family of pairwise nonisomorphic factors
of type IIL: factors Ry, A € (0,1), of Powers. By analyzing the infinite ten-
sor product construction, Araki and Woods were able to construct type I
factors. nonisomorphic to the existing ones: e.g. the R, factor. Krieger's
factors were constructed using ergodic transformations of measure spaces.
The starting point of Connes’ classification of amenable factors is Tomita's
theorem: each faithful weight on a von Neumann algebra M gives rise to a -
canonical one-parameter group of automorphisms of M; the modular auto-
morphism group. The modualr group is uniquely characterized by the so
called KMS condition of quantum statistical mechanics. The first algebraic
invariant, defined by Connes, for a type III factor M is Connes’ spectrum

S(M) = NnSp(A,)

where A is the generator of the modular group associated to ¢ and ¢ runs
over all faithful weights over M. Now S(M)\{0} is a closed subgroup of
the multiplicative group of positive real numbers. There are only three pos-
sibilities and one defines factors of type I1ly, III,(0 < A < 1),andII]
accordingly. A crowning achievement of Connes’ theory is his complete clas-
sification (except in the type 7], case which was completed by Haagerup)
of amenable factors. (Also called injective or hyperfinite, these algebras are
generated by an increasing sequence of finite dimensional subalgebras). For
example, the only amenable type /11, factors are factors R, of Powers. .
These developments and more were reported in this conference. In partic-
ular various applications of von Neumann algebras and their interplay with
questions in geometry, topology and number theory were highlighted. Among
them we may mention the covolume formula of a discrete series representa-.
tion due to Atiyah and Schmid; the L%-index theorem of Atiyah; Gromov's ‘ -
Kiéhler hyperholicity and L%-Hodge theory and finally the Connes-Bost ap-
proach to statistical theory of prime numbers and class field theory.
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Abstracts of the talks

1. Basic notions in C"-algebras and von Neumann algebras (I)
H.Knospe

A von Neumann algebra M C B(H) is an ultraweakly closed «-subalgebra of
the algebra of all bounded operators on a Hilbert space which contains the
. . identity operator. Von Neumann's bicommutant theorem asserts that the
- topological condition on Af is equivalent to M be equal to its bicommutant
. M". (The commutant of a subset S C B(H) is defined by S’ = {T € B(H) :
' TS = STVYS € S}. The clssification of von Neumaun algebras is up to
algebraic isomorphism. A more restrictive notion of isomorphism is that of
spatial isomorphism. A factor ("indecomposable algebra™) is a von Neumann
algebra with trivial center M N A’ = CI. Factors are building blocks of-more
general von Neumann algebras. Using the Gelfand representation théorem.
one can describe abelian von Neumann algebras as algebras L>(\#u) of
bounded measureable functions on a measureable space (.X.u). Every von
Neumann algebra is algebraically isomorphic to a direct integral of factors

/ M(t)du(t).
X -

Finite-dimensional von Neumann algebras are exactly direct sums of ma-
trix algebras.

2. Basic notions in C*- algebras and von Neumann algebras (II)
E.Landvogt

A state on a C*-algebra A is a positive linear functional on A of norm.};,' The
fundamental GNS-construction gives a 1-1 correspondence between cyclic
- representations of A on a Hilbert space (up to unitary equivalence) and states
on A. Pure states correspond to irreducible representations. A normal state
on a von Neumann algebra is a state which is o-additive with respect to
‘ orthogonal families of projections. The noncommutative analogue of a prob-
) ability space is a pair (M, @), where M is a von Neumann algebra and ¢ is a
faithful normal state on M. In the simplest example Af = M, (C) every state
¢ is of the form (for z € M,(C))

#(z) = Tr(pz),

where p is a positive matrix of trace 1.

DFG Deutsche
Forschungsgemeinschaft




3. Dimension function and type
A.Huber -

Given a factor M on a Hilbert space H, one can introduce a notion of di-
mension relative to M (whose values are non-negative real numbers or oo ).
on the set of all projections of Af.” The dimension function is unique up to
an scaling factor. The properties of the dimension function lead to a first
classification of factors into types I,/I,1II. Namely, let A be the image
of the dimension function (up to an scale). Then M is of type [, (resp. .
I.) if A = {0.1,...,n} (resp. A ={0,1,2,...}) and is of type I, (resp.
II,), provided A = [0,1] (resp. A = [0,00]). Finally M is of type [II if -
A = {0.x}. ’

A factor of type [ is isomorphic to B(H), where dimH = n ( type I,),
or H is infinite dimensional (type I).

4. Examples of factors of type II and of type III
~ R.Holtkamp

The group-von Neumann algebra W*(G) of a discrete group G is the com-
pletion of the group-algebra CG in its left regular representation over the
Hilbert space [*(G). If G is an ICC group, that is all of .its (nontrivial)

. conjugacy classes are infinte, then . W*(G) is a II; factor. Moreover, the
corresponding factors for G locally finite are all isomorphic to each other. A
non-isomorphic /1, factor is obtained when G is the free group on two gener-
ators. The first example of a type /1] factor was constructed by Murray and
von Neumann using the group-measure space construction. More generally,

- when a group G acts as an automorphism group a : G —_Aut(M) of a von
Neumann algebra M, one can construct the crossed product von Neumann )
algebra R(M,G,a). When M is abelian, G acts by measureable transfor- ’
mations on a measure space, and the corresponding crossed product algebra
is the group- measure algebra. For [ = PSL(2,Z) acting by homographlc
transformations on P;(R), one obtain a factor of type II].

5. Finite factors and coupling constants
A’ Meister

Let M be a finite factor and P(M) the set of projections in M. Given a
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dimension function D : P(M) — [0.1]} (sce 3. above) and a self-adjoint
clement h with spectral decomposition f Adey in M. one can define the
trace of h by T'(h)-= [ AdD(ey) . The functional T has the trace property
T(uhu™) = T(h) (v a unitary in M) and is linear on commutative subal-
gebras. The problem is to show that T is additive in general. Apart from
Murray-von Neumann's original proof of this fact. we have also Yeadon's
proof which acheives this via the Ryll-Nardzewski fixed poit theorem.

Considering a representation @ : M — B(H) of a factor as an M -module
structure on H. both ¢(M) and its commutatnt Endy, (H) are factors. If M
is a finite factor. then an M-module H is called finite if Endy (H) is a finite
factor. For a finite factor M there is a.canonical finite M-module L*(M),
the GNS representation with respect to the trace. Everv \/-module?H can
be considered as a submodule of L2(M) ® K. where K is a Hilbert space.
The dimension function D on End (L%(M)® K) allows to compare the size
of such a submodule to the size of the submodule LZ(M). which defiries the
coupling constant dimp(H). It is a positive real number that characterizes
the module completely. = ) '

If ¥ C M is a subfactor of a type I]; factor M. then the index [M : V] of
N in M is defined as dimy(L?*(M). The possible set of values of this index,
L, is given by an striking result of V.Jones: ‘

ERY

L= {4cos2% :n >3} U(4,00).

6. Hilbert algebras and left Hilbert algebras
J.Michalicek

A Hilbert algebra is an involutive algebra with a compatible scalar product.
The GNS-construction gives a connection between normal traces on a von
Neumann algebra and Hilbert algebras . Associated with a Hilbert algebra
are its left and right von Neumann algebra U and V. These algebras are
commutants of each other and there is an operator .J which carries U to
V.V =JUJ. If G is a unimodular locally compact group. the left and right
regular representations generate the left and right von Neumann algebra of
a Hilbert algebra. If G is not unimodular, one obtains a "quasi-Hilbert
algebra™. and the modular function A defines an unbounded operator on the
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corresponding Hilbert space. The GNS-coustruction for a non-tracial faithful
normal statc or weight of a von Neumann algebra gives rise to, what is called

"a left (or gencralized) Hilbert algebra. It is possible to define left and right

von Neumann algebras U and V' which are commutants of each other and
operators J and A that generalize the corresponding operators in the case of
the left and right regular representation of a group. The fundamental result
is Tomita's theorem:

JUJ =Vand A"UA™* = U

for each real number t.

7. Proof of Tomita’s theorem
K.Kiirsten

For the important special case of the GNS-construction for a faithful nor-
mal state (or, equivalently for a cyclic and separating vector), a proof of
Tomita’s theorem is sketched. Tomita’s theorem is the basis for all of non-
commutative integration theory and for the modern structure theory of von
Neumann algebras.

8. The KMS (or modular) condition.
G.Illies

This condition (which has its origins in quantum statistical mechanics) can
be viewed as a generalized trace condition for a state w with respect to a
one-parameter automorphism group 7; of a C*- or von Neumann algebra A.
One possible definition uses the extension of 7, from R to C on the subalgebra
of analytic elements and requires that, for a fixed § > 0,

w(yz) = w(zTis(y))

on a dense set of analytic clements x,y. Another way to express this condition
uses complex analytic function theory.

Concerning modular theory, one has the following important result: let w
be a faithful normal state of a von Neumann algebra /. Then there exists

“a unique one-parameter group 7; of automorphisms of M that satisfies the
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KMS condition with respect to w and with ,3 = 1. namely the modular group
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from Tomita-Takesaki theorv.

9. Modular invariants for type 17 factors and examples of amenable

factors
W.Gubler

The starting point for Connes’ analysis of type /1] factors is his "2 x 2-matrix

trick” which shows that up to inner automophisms. the modular automor-
phism group o® of a type /1] factor M does not depend on the choice of the
faithful normal state ¢. Thus the essential Connes spectrum [ = ['(0°) is
an invariant of the factor M. It is a closed subgroup of R and M is said to
be of type I1ly, I11, with 0 < A < 1. or /1], according to wether .= {0},
[ = (logA\)Z or I' = R. An important class of examples of factors is obtained
from an ergodic transformation T of a standard Borel probability space with
measure u. Here, the invariant I can be determined from the local bcalmg

- properties of the measure p under T.

10. C.las.siﬁcation of amenable factors
H.Hofmeier ‘

Amenable factors are also called injective, matricial, approximately finite
or hyperfinite in. the literature. Many of the factors appearing in applica-
tions and arising from seemingly very different constructions are amenable.

The definition of amenability has a cohomological nature. A von Neumann

algebra M is said to be amenable if for every normal dual Banach bimod-
ule X over M, the derivations of M with coefficients in .X are all inner.
Most of amenable factors can be obtained by taking infinite (algebraic) ten-
sor products of finite-dimensional factors and then completing in the GNS-
representation with respect to an appropriate state (factor state) on the ten-
sor product algebra (ITPFI-factors). A tensor product state ¢ on an infinite
tensor product of 2 x 2-matrix factors is a factor state and the invariant [
can be easily computed . For appropriate choices of ¢ one obtains exam-
ples of amenable factors of type /71, or I1I,. The complete r‘lasaﬁcauon of
amenable factors (due to Connes) is sketched.

11. Discrete series representations and von Neumann dimension
A .Deitmar
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The goal of this talk is the proof of the followmg formula, due to Atiyah and

Schmid :
d‘mW'(r)H = covol(T)d

for the coupling constant of a discrete series representation 7 : G — U(H) of
a semisimple real Lie group G with respect to the factor W*(T') defined by
a discrete ICC-subgroup I of G (d, is the formal degree of = and covol(T") “-
the covolume of T'). This result can be generalized as follows. Let S C G be .

" a measureable set of irreducible representations of G and H := fg Hdp(7),
where p is the Plancherel measure. Then

dimw.ryH = u(S)covol(T).

12. An L%-index theorem
T. Schick

This talk is devoted to the proof of the following L?-index theorem of Atiyah:

Theorem. Let M be a closed smooth manifold with vector bundles £ and
F over M and D : C®(E) — C*(F) an elliptic differential operator. Let
M be a normal covering of M with covering group I. Lift E,F and D to
E,F and D : C®(E) — C=(F). Then,

. inderD = indezrD.

Here, indezD := dimkerD — dimcokerD is the usual index of Fred-
holm operators. To define indexrD), we note that Lerf) {f e L"'(E)
Df = 0} is a [-invariant subspace of L*E), and ‘similarly for cokerD.
For a [-invariant subspa.ce H of L%(E), define dimrH = Tra(pry), where
4 = W) ® B(L*(E)) and Tr, is induced by the traces on W*(T') and
B(L?(E)). Using this, one defines indexD := dimpkerD — dimpcokerD.

13. Kihler hyperbolicity and L?-Hodge theory
W.Liick

| DFG 2
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A Kahler manifold is a éomplex anlytic manifold M equipped with a hermi-
tian metric such that the associated fundamental 2-form w is closed. Let w
be the canonical lift of w to the universal cover M- M is called Kihler hyper-
bolic iff & is the boundary of a bounded 1-form. Compact Kéhler manifolds
such that mp(M) = 0 and (M) is word - hyperbolic. are Kihler livper-
bolic. CP™ is Kihler but not Kahler hyperbolic. Let H"(M) be the space
of harmonic L?-r- forms on M and HP4(M) the harinonic p.q-forms. The
following theorem is due to Gromov.

Theorem. Let M be compact and Kahler hyperbolic of complex dimension
m. Then - :
. HPMY(M) =0 p+qg#m.

From this, it follows that (—1)™x(M) > 0.

The proof is based on an L2- version of Lefschetz theorem; a perturbation

technique of Vafa-Witten and the L?- index theorem of Atiyah.

14. Euler products and type III factors
M.SpieBl

Let I be a discrete groupand Ty C Ta suBgrou;S which is almost normaﬁ that
is the orbits of 'y acting on the left on I'/Ty are finite. One defines the Hecke

algebra H(T',T'y) as the convolution algebra of C-valued functions with finite-

support on [g\I'/Ty. The C"-algebra H = C(I',Ty) is the completion of H
in its regular representation in {*(To\l). One has a canonical one-parameter
group of automorphisms of H (A C*-dynamical system) defined by

L{y) it
a( = ( —= R
«(f)(7) (3(7)) )
where L and R are certain 'y bivariant functions on . Let us now consider

the Hecke algebra for the groups I' = Py and Ty = P, where P is the group

(1) 2) . The following theorem of

Connes and Bost shows that the C*-dynamical system associated to H has
a phase transition with spontaneous symmetry breaking.

of invertible 2 x 2-matrices of the form (
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Theorem. Let (A, 0,) be the C*-dynamical system associated to the almost
normal subgroup P, of Py. Then:

a) For 0'< 3 <1 there exists a unique KM S, state ¢3. Each ¢y is a factor
- state and the associated factor is the hyperfinite factor of type /1], : R,,.
b) For 3 > 1 the KMS, states form a simplex whose extreme points are
parametrized by imbeddings x : K — C of the field K = Q,,b and whose
restriction to C (Q/Z) are given by the formula

$.x(v) = ¢(B)! Z n=fx(y)".

These states are type [, factor states.

The normalization factor is the inverse of the Riemann ( function evaluated
at 3.

The next step is to study the statistics of prime numbers and class field
theory using C*-algebraic formulation of quantum statistical mechanics. To
this end one constructs, via a Bosonic Fock space (second quantization) a
selfadjoint operator whose spectrum is the set of prime numbers and the
corresponding C*-algebra (obtained by polar decomposition) from creation
and annihilation operators. The algebra turns out to be the infinite tensor
product of Toeplitz C*-algebras .

Berxchterstatter' M.Khalkhali
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