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The conference. organized by Gene H. Golub (Stanford). Wilhelm N iethammer (Karlsruhe)
and Richard S. Varga (Kent), was attended by 43 individuals from 13 countries. The 38
contributed lectures at this meeting offered a broad view of actual topics in numerical linear
algebra. One major topic was the iterative solution .of large linear systems of equations
and — to some extent — eigenvalue problems. In addition. developments i in other areas
were included. where tools from linear algebra were used.

In connection with iterative methods. theoretlcal problems, such as s the stability of different
cg-like and Krylov subspace methods, were examined. Several talks considered iterative
methods for the Navier-Stokes, the Helmholtz and the Maxwell equations. Subsuucturmg
and multisplitting techniques were also discussed. . .

Numerical methods from linear algebra-in control theory and signal processing were con-

. sidered. .Other applications discussed were the use of matrix least squares for adjusting

deformable mirrors in telescopes, and the simulation, via matrix theory. of material prop-
erties of plating devices. Several talks were devoted to inverse problems and corresponding
regularizing methods. Finally, some theoretical quesiions. such as the minimization of
condition numbers and the st.a.bllxty of matrix norms, were treated.

As a result of the wide variety of related. topics and the good mixture of experts from
theory and applications. the intimate atmosphere of the ronierenco led to many fruitful
(llsrusxlons and initiated {orthcoming joint projects.
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Vortragsausziige

G. S. Ammar:

Computing the zeros of Szegd polynomials

The zeros of Szegd polvnomials arise in time series and signal processing applications as
the poles of autorcgressive processes. We present a new procedure for computing these
zeros, based on-the fact that a Szegd polynomial is the characteristic polynomial of a
Hessenberg matrix determined by the associated Schur parameters (reflection coefficients).
The procedure first computes the eigenvalues of a unitary Hessenberg matrix, using

of several eigenvalue algorithms for this problem. These eigenvalues are then used
starting points for a continuation (path-following) procedure, which terminates at the

" desired eigenvalues of a particular “sub-unitary” matrix. In this way we can exploit the

special structure of the Hessenberg matrix. The procedure is efficient and parallelizable,
and may therefore be suitable for real-time implementation.
This is joint work with D. Calvetti and L. Reichel.

Z. Bai:

Parallel solution of nonsymmetric eigenvalue problems and its applications

With the growing demands from a large number of disciplines and interdisciplines of sci-

“ence and engineering for the numerical solution of the nonsymmetric eigenvalue problem,

competitive new techniques have been developed for solving the problem over the past
decade. In this talk, we examine the state of the art of the algorithmic techniques and the
software scene for the problem. A design of a nonsymmetric eigenroutine tool box will be

proposed. .
Part of this work is joint with James Demmel at University of California, at Berkeley.

A. Bjérck:
@

Lanczos methods for ill-posed linear systems

The conjugate gradient method is among the most efficient iterative methods for ill-posed
linear systems. However, it is essential that the iterations are terminated after the optimal
number of steps. Methods based on Lanczos bidiagonalization can be combined with regu-
larization in a Krvov subspace. This avoids problems with semi-convergence. If performed
with full reorthogonalization generalized cross validation generally provides a reliable rule
for chosing the regularization parameter. Finally it is discussed how the implicit shift
Lanczos method of Sorensen can be used to achieve regularization.
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. Boley:

A block nonsvinmetric Lancezos algorithim with multiple starting vectors

We propose a nonsyimmetric Lanczos algorithm for multiple starting vectors. Chis is mo-
tivated by applications in control. We will formulate the method to include look-ahead hy
combining the two=sided CGiram-Schmidt process of Parlett with a process to generate the
wwo Krvlov sequences (left and right). We discuss the generalization of the single starting
vector algorithm from the viewpoint of the structure of (omrol models. and give an exam-
ple involving the cigenvalues of a matrix. _ - :

A. Bunse-Gerstener:

Unitar_v Hessenberg methods for signal p'rocessing problems

A basic problem in signal processing is to find an approximation to an obsen" d signal by
a sum of weighted sinusoids or exponentials. Methods for solving this problcm are -often
based.on the idea of approximating the Toeplitz matrix of autocorrelation lags of a certain
dimension by a singular Toeplitz matrix T and receiving {rom its kernel approximations
to the desired frequencies. To any Hermitian positive semidefinite Toeplitz matrix we can
associate a unitarv Hessenberg matrix A and the eigenvalues of H and the first components
of its eigenvectors give the information about the frequencies and weights. respectively.
Efficient eigenvalue methods especially developed for unitary matrices can thus be employed
to compute the desired qualities. ‘Making use of the relation hetween Toeplitz matrices and
unitary Hessenberg matrices we can solve the Toeplitz approximation problem posed by
Kung under a mild restriction. In particular for real signals this solution turns out to be
a generalization of the composite sinusoidal ave method and has an mterpretanon as an
isometric Arnoldi process a,pplled to the downshift operator a.nd the observed sxgnal
This is joint work w1th C. He. :

D. Calvetti:

An adaptive Richardson iteration method for indefinite linear svstems

An adaptive-Richardson iteration method is presented for the solution of large linear sys-
tems of equations with a sparse. symmetric. nonsingular. indefinite matrix. The relaxation

" parameters for Richardson iteration are chosen to be reciprocal values of Leja points for

a compact set N = [a.b] U [c.d]. where [a.b] is an interval on.the negative real axis and
[e.d] is an interval on the positive real axis. Fndpoints of thése intervals are determined
adaptively by computing certain modified moments during the iterations. Computed ex-
amples are presented to show that this adaptive Ru hardson algorithm can be compétitive

wllh SYMMLQ and CR.
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This is joint work with L. Reichel.

T. F. Chan:

Analysis of a CG-based method for solving linear systems with multiple right hand sides

We analyze the conjugate gradient method proposed by Smith, Petrson and Mittra to solve
the linear system A.X = B where A is SPD and B is a multiple of right hand sides. This
method generates a Krylov subspace from a set of direction vectors obtained by solving
one of the systems -(the seed) by the CG method and then project .the residual of the
other systems to get an approximate solution. The whole process is repeated with another
unsolved system. as a seed until all the systems are solved. We observein practice a s
perconvergence behavior of the CG process. We also observe that only a few restarts a'

" required to solve all the systems if the right hand sides are close to each other. These

two features together make the method particularly effective. We give theoretical proof to N
justify these two obervations. Furthermore, we propose a block extension of this method.

L. Elden

) Accutat.e least squares solut.lons for Toephz matrices

We present a new algorithm for triangularizing an m x n Toephtz matrix. . The algo-
rithm is a modification of a previous algorithm that exploits the Toeplitz structure and
computes each row of the triangular factor by updating and downdating steps. Due to
ill-conditioned downdating transformations, the previous algorithm gives inaccurate re-
sults for certain problems. We show that it is possible to postpone such ill-conditioned
downdates, and perform them at the end using a more accurate downdating method based
on corrected seminormal equations. Numerical examples are presented, which show that
the new algorithm improves the accuracy significantly, while the complexity remains only
O(mn).

T. Elfing:
A constrained Procrustes problem ) .

The following constrained matrix problem is studied. Find the matrix X' which minimizes
the Frobenius norm of AX — B, with A and B given matrices and where X is restricted to a
closed convex cone. In particular, we consider the cone of symmetric positive semidefinite
matrices and the cone of (symmetric) elementwise nonnegative matrices. The optimal
matrix is characterized and the result is specialized to the two cases above. Further we
report from a numerical study of some projection type algomhms

This is joint work with Lars-Erik Andersson.
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. Ehnan:

Preconditioned iierative methaods for the discrete Navier-Stokes equations

Discretization of the steady state Navier-Stokes equations

—vXu+u-Yu+Vp /.

—iivu = 0
gives rise to asystem of nonlinear algebraic cquations for discretized velocities (1) and
pressures (p). Linearization using a Picard iteration leads to a matrix cquation of the form

4 BT u f

B U P 0"
We present several preconditioning strategies for this system that produce eigenvalue dis-
tributions that are independent of the mesh size used in the discretization. Numericai

_experiments with GMRES and QMR iterative solvers confirm this mesh independence of

convergence rates on the viscosity. u.
This is joint work with David Silvester.

L. Elsner:

Minimizing ¢ondition numbers by completion

There are applications. for example when solving block tndlagonal svstems w heze in a
matrix a rectangular block X has to be specified so that the condition is moderane The
question of an optimal choice’is unsolved. Here we give the soluuon in an lmponam special

_case. where

Deutsche

LV(.\’):[;, ’\3] A=Al X = XA,

A is positive definite and X is restricted to the set of all X\ = \ . such that 30 ( X) >

The problem .
min{|[W(X)|| - WX : - X W(X) >0}

can be reduced to the problem of finding the-minimum of a strictly convex function on an

interval.
This is joint worl\ with C. He and V. Mehrmann.

0. Ernst: T

Aniterative imbedding algorithm for exterior Helmholtz problems

We introduce a vanational formulation for an exterior boundary vaine problem for the
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Helmholtz equation as they typically arise in scattering problems. [t is shown how an
FFT-based fast solver can be used to solve this problem for special domains taking into
account even an cxact radiation boundary condition. An imbedding method is then used
to treat arbitracy domains. 'These methods require the solution of a small dense linear
system of cquations. Using the theory of integral equations, we show that Krylov subspace
methods converge mesh-independently when used to solve this systems.

B. Fischer:

Practical use of Bernstein-Szego polynomials in matrix computations

In this talk we investigate the use of Bernstein-Szegd (BS) polynomials in matrix com
tations. These polynomials may be viewed as weighted Chebyshev polynomials. The b
idea is to model the associated weight function after the (unknown) eigenvalue distribution
of a given large symmetric matrix.

Beside the actual computation of the weight function and the corresponding BS polyno-
mials we will outline two problem classes where these polynomials may used to advantage.

First, we consider the problem of computing a few eigenvalues of a given matrix using
the Lanczos process. Here the BS polynomials serve as so-called polynomial filters for either
the initial vector or the matrix itself. Second, we discuss polynomial iteration methods for
the solution of large linear systems of equations (with possibly multiple right hand sides).
We will show that the BS polynomials define a powerful polynomial preconditioner and
may be used as kernel for a competitive semi-iterative method.

The effectiveness of the proposed applications will be demonstrated in a variety of
numerical examples.

This is joint work with Roland W. Freund.

R. W. Freund:

" Efficient circuit analysis by Padé approximation via the Lanczos process

Recently, a new approach, called asymptotic waveform evaluation (AWE), for the simula- -
tion of large linear networks has been proposed. The AWE method is often considerably
faster than traditional circuit-simulation techniques such as SPICE. However, AWE suff

from a number of serious numerical difficulties. In this talk, we show that AWE is actuall®
numerically unstable. We propose a new implementation of the Padé approximation, on
which AWE is based. via the look-ahead Lanczos process. The resulting algorithm, called
Padé via the Lanczos process (PVL), is numerically stable. We present results of numerical
experiments with PVL for a variety of circuits. Finally. we discuss extension of PVL to
the multi-input, multi-output case that is based on a new general block Lanczos process.

This is joint work with Peter Feldmann (AT&T Bell Labs).
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S. K. Godunov:

Stability of the KNevlov basis and subspaces

The problems of numerical analysis with large sparse matrices involve often a projection
of this matrix on a Krylov subspace to obtain a smaller matrix which is used 1o solve the
initial problem. ‘The subspace depends on the matrix and on an arbitrary vector. \We
consider. in this paper. a method to study the stability of the Krylov subspace through
a matrix perturbation. This method includes a definition of the condition numbes for
the computation of the Krylov basis and the Krylov subspace. A practical method for
estimating these numbers is provided. It is based on the solution of a large triangular
system. : )
This is joint work with-J. F. Carpeaux and S. V. Kuznetsov.

M. Goldberg:

Matrix norms: multiplicativity. quadrativity. and stability o

Let || - || be a norm or a seminorm on C"*"; the algebra of n x n compleX matrices. A
constant g > 0 is called a multiplicativity. factor for || - || if ||AB}| < u||A|[ ||B|| for ali
A, B in C™*". Similarly, A > 0 is a quadrativity factor for || - || if || 42]| < A[|A||* for all A
in C™*". Further we say that || - || is stable if for some ¢ > 0 we have ||A*|] < al|A|]* for
all 4in C™" and all positive integers k. In particular. we call || - || strongly stable if || - ||
is stable with o = 1. _ o

We begin this talk by discussing the existence of muitiplicativity and quadrativity fac-
tors for arbitrary seminorms and norm on C™*". We exhibit the best (least) factors for
certain well-known norms; and then proceed to show that while norms always have such
factors, proper seminorms do not. The second part of the talk is devoted to stability. Our
main objective here is to prove that not all stable norms on C**" are strongly stable.

A. Greenbaum:

Accuracy of computed solutions from conjugate gradient-like methods

A framework is established for determing the accuracy of computed solutions from con-
jugate gradient-like methods for solving linear systems. [t is shown that the difference
between the actual residual vectors generated by such a method depends on the machiune
precision £ and on the maximum growth in norm of the.iterates over their initial value
and the norm of the true solution. To estimate the size of the smallest actual residual one

should: 1) show that the updated approximate residual vectors converge 1o zero. and 2

hound the growth in norm of the iterates.
Using this techinigue. it is shown that the steepest deseent method and the conjugate
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gradient method for SP'1) problems gencrate approximate solutions with relative resicuals
of order z. This is also the case for the CGNE method for nonsymmetric problems, and
it is conjectured Lo be the case for the CR method applied to symmetric indefinite prob-
lems. 1t is shown that the ORTHODIR method for nonsymmetric problems generates an
approximate solution with relative residual bounded by xO(c), where « is the condition
number of the matrix. It is argued that the smallest residual vector for stationary iterative
methods, as well as some other methods that do not minimize any standard error norm,
cannot be bounded, in general, and that occasionally these methods may fail to produce
an accurate approximate solution to even a well-conditioned linear system.

M. H. Gutknecht: i .

Local minimum residual smoothing

Schénauer (1987) introduced a smoothing process suitable for nonmonotonically (or even
“erratically™) converging iterative methods for solving linear systems, such as, in particular,
BiCG. Here. we first generalize this smoothing process (LMR1) by replacing the one-
dimensional local minimum residual computation of each step by a two (LMR2) or even
higher dimensional (LMR(!)) minimization process. Numerical results exhibit that LMR1
and LMR2 are very effective in smoothing the residual norm history of BiCG and (Bi)CGS,
and LMR? is, in general, somewhat superior to LMRI1.

An alternate idea is to integrate the LMR principle directly into a transpose-free
Lanczos-type product method. BiCGStab can be understood as such a product method
with the second factor being determined by LMR1. However, integrating LMR2 does not
lead to BiCGStab2, but to a more effective method, BiCGXxLMR2.

M. Hanke:

Stopping rules for conjugate gradient regularization based on error estimation

The conjugate gradient iteration is one of the most powerful methods for computing reg-
ularized approximations of linear and structured 2D or 3D inverse problems. Here, the
regularization effect stems from early stopping of the iteration, since the iteration index
takes the role of a regularization parameter. As a consequence, the development of reliable
stopping rules is one of the major demands in this context. In the talk, we present a new
“heuristic stopping rule” (i.e.. a rule which avoids any information about the noise level in
the right-hand side data): it is based on the theoretical analysis of the discrepancy prin-
ciple as given by Nemirovskii. The method is shown to perform better than the so-called
[.-curve criterion. The new stopping rule can also be generalized to a particular minimal
residual type method for selfadjoint indefinite problems.

Deutsche
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The matrix sign function method and the computaiion of invariant subspaces

The matrix sign function method is discussed as a method 1o spliv the cigenspace of a
matrix - into 1wo mvariant subspaces corresponding to its stable and unstable eigenvalues.
respectively. .\ new perturbation theorem for the matrix sign [unction is presented which
shows that the method is competitive to the conventional methods for computing invariant
subspaces. provided a numerically stable method for computing the sign function is given.
We will analyze the properties of the Newton iteration in this context.

This is joint work with Ralph Beyers and Volker Mehrmanu.

N. J. Higham:

From the matrix sign function to the polar decomposition

We show that it is useful to regard the matrix sign function as being part of &'fnatrix sign
decomposition. This leads to -a new representation for signi.1) and reveals gﬁal)'sis with
the polar decomposition. We derive a parallel method for computing the polar decompo-
sition from a corresponding method of Kenney and Laub for the matrix sign functlon and
describe its |mplementauon on the Kendall Squa:e KSRI computer.

M. Hochbruck:

A Chebyshev-like semiiteration for inconsistent linear systems

Semiiterative methods are known as a powerful tool for the iterative solution of nonsingu-
lar linear systems of equations. For singular but consistent linear systems with coefficient
matrix of index one. one can still apply the methods designed for the nomsingular case.

‘However. if the system is inconsistent, the approximations usually fail to converge. Nev-

ertheless, it is still possible to modify classical methods like the Chebyshev semiiterative
method in order to fulfill the additional convergence requirements caused by the incon-
sistency. These modifications may suffer from instabilities since they are based on the
computation of the diverging Chebyshev iterates. In this talk we present an alternative
algorithm which allows to construct more stable approximations. This algorithm can be

-efficiently implemented with short recurrences. There are several reasons indicating that

Deutsche

the new algorithm is the most natural generalization of the Chebyshev semiiteration to
inconsistent linear systems.

In addition. we show that this frame\vork can aiso be applied to cg-type methods.
Here. different choices for the underlying inner product lead 10 the stabilized OD method.
a minimal residual method. and a new algorithm which minimizes the error in the cnerev
norm. ‘

This is joint work with Martin Hanke. Universitit Karlsruhe.
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T. A. Manteulfel:

FOSLS: A methodology for solving systems of PDEs

The process of modeling a physical system involve creating a mathematical model, form- .
ing a discrete approximation, and solving the resulting linear or nonlinear system. As ‘
numerical linear algebraists, we are most interested in the last step. Too often, however;

we are handed matrix equations that possess properties that make them difficult to solve,

for example. nonsyminetry and indefiniteness. Too often, the solution, when found, is a

poor approximation to the solution of the model. In this talk I will outline a method-

ology for rearranging the mathematical model in a way that naturally leads to accurate _
discretizations that are especially amenable to numerical solution. In particular, we wb
examine general second-order elliptic partial differential equations. The methodology i
volves expanding the original equation as a system of first-order equations by introducing
new variables, adding extra constraints, and constructing a least squares functional. The
bilinear form associated with the functional will be shown to be elliptic with respect to
the H! norm in each variable. This guarantees that a discrete system based on simple
finite element subspaces will possess particularly nice properties; for example, they will be
symmetric positive definite with condition. O(h~?). Moreover, multilevel techniques yield
rapid convergence.

G. Mayer:
Multisplitting methods

Multisplitting methods are parallel iterative methods for linear systems Az = b, where A
is a non-singular n x n matrix and b is a vector with n components. They are based on p
splittings A = M; — Ni, M, non-singular, { = 1,...,p, and some averaging process. More
exactly, the new iterate z**! is'defined by

» ,
zhtt = Z EM{Y(Nizk +b),

i=1 -

where the weighting matﬁces E,; are non-negative diagonal matrices of which the sum is

the identity matrix.
In our talk we will consider particular multisplitting methods for band matrices. We -
will present new comparison results which we illustrate by numerical examples.

V. Mehrmann:

Staircase like forms for the computation of invariants of descriptor systems

This talk concerns the structure that can he achieved by feedback in descriptor systems

10
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that lack certain controllability and/or obscrvability conditions, Stairease and donble stair
case condensed forms obtained throngh a sequence of orthogonal state teansformations ace
used to determine the invariants of the system and display when and how leedback can be
used to achieve minimal index. Furthermore, they reveal that the modes that are uncon-
trollable and nnohservable at infinity have a fixed minimal index that can not be reduced
by feedback. However. this fixed higher index part of the control svstem is constrained to
be zero. The remnainder is a reduced order system that is controllable and observable ai
infinity which can be made to have index one by feedback.

(. Meurant:

Solving the Maxwell equations using conforming finite elements. Lagrange multipliers
and iterative methods :

In this talk. we consider solving the harmonic Maxwell equations nsing conformmg finite
elements in three dimensions. The aim of this work is to compute the séattering of an
impinging electro-magnetic wave on a three dimensional perfectly comluctmg:l)gd_\. First.
a variational formulation is described with usual Sobolev spaces. Then. the boundary
condition £ x n = g on the body is handled via a Lagrange multiplier. At this point usual
conforming finite element approximations can be used. This leads to a large sparse linear

systems of the form
"4 BT ’
B o {%= b,

where A is complex symmetric. This svstems is solved with iterative methods We used
GMRES and Bi-CGSTAB as candidates. Of course. a preconditioner has to be used to
improve the convergence rate. The one we chose is .

e ‘_

B —el

The preconditioned svstem at each iteration is also solved with an iterative method (actu-
ally-GMRES or Bi-CGSTAB), so we have nested iterations. -

We describe numerical experlments both on this dnfﬁcult_problém and also for the
Helmholtz equation. It turns out that Maxwell equations are more difficult to solve and
that the inner iterations have also to be preconditioned. This is done by an incomplete LU
decomposition where we keep some fill ins according to their size. The experiments show
that this leads to an efficient method for solving the Maxwell equations while retaining the
simplicity of implementation of usual <onforming elements.

Forschungsgemeinschaft
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R. Nabben:
Ult etric matrices

Recently, Martinez, Michon. and San Martin introduced the new class of (symmetric)
strictly ultrametric malrices. They proved that the inverse of a strictly ultrametric ma-
trix is a strictly row and strictly column diagonally dominant Stieltjes matrix. Here, we
generalize this result by introducing a class of nonsymmetric matrices, called generalized
ultrametric matrices. We give a necessary and sufficient condition for the regularity of
these matrices and prove that the inverse of a nonsingular generalized ultrametric matrix
is a row and ‘column diagonally dominant M-matrix. We establish that a nonnegative
matrix is a generalized ultrametric matrix if and only if the matrix is a certain sum of at
most rank-two matrices. Moreover, we give a characterization of generalized ultrametr
matrices, based on weighted trees. The entries of generalized ultrametric matrices th
arise as certain “distances” between the leaves and the root of the tree.

N. M. Nachtigal: -

First principles simulation of material properties

In recent years, as the available éomputing power has increased, the capability to predict
‘material properties from first principles based models has also increased. As a result, more
and more emphasis is placed on- predlctlve computer models that can assist experimental

‘designers in their work.
The talk will present an overview of the material sciences effort at Oak Ridge National

Lab, with an emphasis on the linear algebra and computation issues that arise.

A. Neumaier:

Iterative regularization for large-scale ill-conditioned linear systems

To solve a constraint regularization problem

Azzb. 20, J:d&tlarge

we propose methods which are based on the convex envelope of a finite set of approx1ma'
solutions £, represented as a 2d plot of (q(.n),r(z:,)) where

qlz) = |Jzllf,  r(z) =]|Az - b|3.

The envelope is updated after each iteration of a CG method with preconditioning for
Silr) = r(x) + Ag(z). and )\ is updated depending on the geometry of the envelope.
When the noise is small. an alternative method applies CG to the compromise function

fle ) = \/q(£)r(c)b.

12
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whose intérior local mmimn typically gives a close mateh o simulated problems with i
known designed solution.

The techuique is applied 10 a linear svstem arising in tomography (PET). and the
resolution of the reconstructed image is imuch better than for other iterative methods.,
while the amount of work is moderate {~ 20 matrix-vector products).

This is joint work with Linda Kaufman.

M. Neumann:

- Convergence of infinite products of matrices and inner-outer iteration schemes
! P

. We develop conditions under which a product [T32, Tk of matrices chosen from a possibly
infinite set of matrices § = {T;]j € J} converges. We obtain the following conditions which
- are sufficient for the convergence of the product: There exists a vector norm such that all
matrices in S are nonexpansive with respect to this norm and there exists a subsequence
{ix 132, of the sequence of the nonnegative integers such that the corresponding sequence
of operators {Ti, };=, converges to an operator which is paracontracting with respect to
this norm. We deduce the continuity of the limit of the product of matrices-as a function
of the sequence {i}72,. But more importantly. we apply our results to the question of the
convergence of inner-outer iteration schemes for solving singular consistent linear svstems
of equations. where the outer splitting is regular and the inner splitting is weak regular.

N. Nichols: R L

Computation of smooth singular value decompositions with an application to
the regularization of time-varving differential-algebraic control svstems -

Smooth singular value decompositions are used to reduce a time- -varying descrxptor system.
governed by the equations

4 |
E(t)5 = Az + B,y =C()r.

to a condensed form that reveals controllability and observability properties. Under suitable
‘ conditions derivate and proportional output feedback controls are then constructed to
ensure that the systems is index one and pointwise regular. Initial experiments show that
the feedback can also he selected so that the closed loop matrix E + BGC has constant
rank over the interval of interest and is “near optimally™ conditioned.
The smooth singular value decompositions are determined from the solutions to a SVS-
tem of ordinary differential matrix equations. A novel “orthogonality-preserving”™ numer-
ical integration scheme is used to compute the right and leit singular factors. A form ol
deferred correction leads to results of unusually high order of accuracy.

Deutsche
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R. J. Plemmons:

A trace maximization problem in control

This problém involves the control of a set of very fast- a.c.ting deformable mirrors designed
lor at.mosplwm tirbulence compensation in atmospheric imaging. lere the control model
reduces to the maximization of the functional f (U ) given by

f-(U) = Z max{{(UT M;U);;}

i=

over unitary matrices [/, where the M; are the mirror matrices associated with the adap-

tive optics control problem. Various algorithms are suggested for partial solutlon to thr.

problem and several open problems are discussed. .
Thls is jomt work with B. Ellenbroek C Van Loan and N. th‘.sw.ms

L. Reichel: |

Incomplete pa,rtxal fractions for pa.rallel evaluation of rational matrix functions

.Frequently one needs to evaluate expressions of the form (p( A))"q(A)b where A 6

RY*N b ¢ RY and p and q are polynomials with 8¢ < 8p and such that no zero of p

is an elgenvalue of A. Algorithms based on' the partial fraction representation of q/p when -
evaluating (p(A))~'q(A)b lend themselves well to implementation on parallel computers, .

but might vield poor accuracy. We discuss how to determine an incomplete partial fraction

representation of ¢/p which allows parallel computation while retaining high accuracy.
This is joint work with D. Calvetn and E. Gallopoulos.

. G. Starke: .

Subspace orthogonalization and substfucturing for nonsymmetric linear systems

" We consider substructuring preconditioners in combination with various Krylov subspace

methods for the solution of nonsymmetric systems of linear equations. In particular, we

propose modifications of optimal iterative methods like GMRES by Testricting the compt’ ’

tation of inner products and storage of hasis elements to a subset of the unknowns. Thi

allows us to run the optimal iterative methods for much longer and produce an accurate
approximation at these unknowns. If the subspace is chosen such that it constitiites a sep-
arator set, dividing the original problem into smaller pieces, these subproblems can then be
solved mdependentlv in a final extension phase. The effectiveness of this approach will be
illustrated by numerical experiments for non-self-adjoint elliptic boundary value problems.
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(1. W, Stewart:

On graded QR decompositions of products of matrices

This paper is concerned with the singular values and vectors of a produet of the Torm
Cn = AyAa - . The chiel computational problem is that with increasing m the ra-
tios of the smaller to the larger singular values of ©,, may fall below the rounbding unit.
so that the former are computed inaccurately. The solution presented here is to factor
Cn = QRPT. where () is orthogonal. R is upper triangular. and P is a permutation. The
matrix R is graded. with its /th row being approximately the size of the ith singular value.
This means that even the small singular values can be computed accurately. The heart
of the method is an algorithm for updating a graded Q RP factorization of -\ to a graded
Q RP factorization of the product C = AB.

Z. Strakos:

On the numerical stability of the Krylov space methods for solving
nonsymmetric systems . ‘ z

We will base our analysis on the basic recurrence formula for the basis of the Krylov space
(or the Krylov residual space)

AVi = Vip Hepu + Fe ' (1)

where V; is the matrix of the basis vectors v; as its columns. Hi4,x is the upper Hessenberg
matrix and F} characterizes the rounding errors. {|Fi|| is of the order oV, ¢)||A||, where
o( N, €) denotes terms involving the product of the machine precision € with a small power
of N and a constant. Using the recurrence, the original problem for the matrix 4 is
transformed in the Krylov methods to the more feasible problem for the matrix Hi4,.y.
When the matrix A4 is highly nonnormal, then, using the bound ||A*A—AA*|| < 2||A||?, the
matrix F; may have large entries. Therefore, any method based on the matrix Hi414 can
be very inefficient or can even fail. For ||A|| reasonable bounded. the actual size of || F}]
does not play an important role in our analysis. Then, a key question in the analysis and
designing method based on (1) is "How to construct the efficient recurrence preserving the
nonsingularity of the matrices Viyy and Hiyy i ” (well preserved nonsingularity of Hiy,

guarantees, e.g.. that the norm of the residual of the transformed least squares problem °

(Arnoldi residual) is sufficiently close to the norm of the residual computed directly).

We will examine different approaches using both long and short term recurrences. We
will present an error analysis of the GMRES method - including its newly proposed vari-
ants - and try to give a quantitative theoretical explanation of the experimental results
reported in the literature.
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. van der Vorst:

A Jacobi-Davidson iteration method for linear eigenvalue problems

Davidson has proposed a method for the iterative computation of a few extremal eigenvalues
of a symmetric matrix. The inethod is reported to be quite successful. especially for some .
applications in chemistry. Success of the method seems to depend quite heavily on strong
(diagonal) dominance of the given matrix. '

The method of Davidson is commonly seen as an extension to Lanczos’ method. In
spite of this the method is not well understood.

As we will show, Davidson’s method has an interesting connection with an old method
of Jacobi. This leads to another view on the method of Davidson, that may help to explain
and to improve the method. [t turns out that the method can be easily generalized
non-diagonal dominant and nonsymmetric matrices as well. '

P. van Dooren:

Computing the SVD of a product/quotient of several matrices

We present an implicit bidiagonalization method of a product or quotient of two or more
matrices. The method applies only orthogonal transformations on the matrices of the prod-
uct/quotient and implicitly bidiagonalizes the product/quotient. We analyze the complex-
ity and accuracy of this approach and discuss its advantages over the current PSVD,; QSVD
code. We also show via numerical examples its high relatxve accuracy for expressions with
" regular values of large dynamical range. . .
Joint work with G. H. Golub and K. Solna.

Berichterstatter: Marlis Hochbruck und Gerhard Starke
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