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The cOllference. organized by Gene H. Golub (StanfQrd). \·Vilhel'm xiet.han~nlel' ([~adsruhe)

andRicha.rd S. Varga ([\:ent), was attended by 43 individuals from l:] countries. The :38
contributed lec'tures at this meeting offered a broad vie\v 'Of acttlal topics in numericallillear
algebra. One' lnajor topic ,vas the. iterative solution ,of large linear systems of equatiolls
and - to SOme exte'h~ .:.- eigenvalue pr~blems. In addition. developments in other äreas
were included. where iools from linear, algebra were used,. '
In connection with iter~tivemethods.the6retical problems, such as the stability of different
cg.like and Krylov' subspace ~ethods! 'were ·examined. Several t.alks considered iterati\"(:,

methods for 'the ~avier·Stokes, theHelmholtz and the ~:laxwell equations. Substructuring
and Inultisplitting techniques were also dis·cusse'd. -
~umerical methods trom linear algebra ·in control,theory and signal processing were con­
sidered.. Other applications discussed were the useof matrix least squares fo~ adjusting
deformable mirrors in telescopes~ ~nd the simulation~ via .matrix theory. of material prop­
crtiesof plating devices. Several ,talkS were devoted to .inverse problenis and corresponding
regularizin~ method~. Finally~some'th~retical quesiions.such as the minimlzation 01'
l'ondition numbers and the stability of matrix norms! were trec;tted. .
:\s· a result of the wide \'ar-iety of related. topics (lnd the ~ood mixture ot~ experts fronl
t.heory and applicatjons~ the i-ntimate attTIosphere of the ronfer~nce led -to nlany fruitful
discussions anu inifiated forthcomingjoillt projects.
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Vo rt. ra.~sal1sz,i ,l!;( ,

G. S. Alnnlar:

Computing t he zeros oe Szegö polynomials

The zeros of Szegö polynomials anse in time s~ries and signaJ processing applications as
the poles of autoregressive processes. We present a new procedure for computing these
zeros~ based Oll' the fact that a Szegö polynomial is tbe characteristic polynomial of a
Hessenberg matrix determined by the associated Schur parameters (refiection coefficients).
The procedure nrst conlputes the eigenvalues of a unitary Hessenberg matrix~ using •
of several eigenvalue algorithms for this problem. These eigenvalues are then used F
starting points for a continuation (path-following) procedure, which terminates at the

. desired eigenvalues of a particular "sub-unitary" matrix. In this way we cao exploit the
special strueture of the Hessenberg matrix. The procedure is efficient and parallelizable,
and may therefore be suitable for real-time implementation.

This is joint work with D. Calvetti and L. Reichel.

z. Bai:

Parallel solution of nonsymmetrie eigenvalue problems and its applications

With the growing demands from a large number of disciplines and interdisciplines of sei-
.ence and engineering for the numerical solution of the nonsymmetrie eigenvalue problem,
competitive new techniques have. been developed for solving the problem over the past
decade. In this talk, we examine the state of the art of the algorithmic teehniques and the
software scene for the problem. A design of a nonsymmetrie eigenroutine tool box will be
proposed.

Part of this work is joint with James Demmel at University of California, at Berkeley.

A. Bjötck:

Lanczos methods for ill-posed linear systems •The conjugate gradient me~hodis among the.most efficient iterative methods for iU-posed
linear ~ystems. However, it is essential that the iterations are terminated after the optimal
number of steps. Methods base<! on Lanczos bidiagonalization canbe combined with regu­
larization in a Kryov subspace. This avoids problems with semi-convergence. Ir performed
with fuH reorthogonalization generalized cross validation general.lY provides a reliable rule
for chosing t.he regularizatiotl paranu~ter, Finally it is discussed how the implicit shift
La.llt'ZOS n~ethoJ of Son~nsen ean hr~ userl ta achicve. rcgularization.
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:\ I,lol'k IIOIl:-'.\'IIIIJWt.ric l,ilflCZ()S algorit.hlll wir.h Inllll.ipl(~ :-Ol.artillg' \"('(''')I'~

\Vf~ 'proposp ~l llollsYlnnH~trit: Lanczos algorit.hnt for rllulliple sl.tlrt.in.~ ,"pctors. rilis is 1110­

r.i\·ated b.v applicatiolls in control. \Ve willforIllltlattc» tht" Ilu"t.hud t.t) inC'lttcl(" It)ok-a.head h~'

con1binillg I.hr t.\Vo-'sicied f:rant-Schnlidt proccss of Parlett with Cl 'process t.o ~t.·llera(.(~ t IIl'
t.wO 'I\l'ylo\' seqllenccs (I;"ft and right). \·Ve discuss thc generalization t)f t he.sin~lt' st.Clrting
\·C'c.t.or al~orithln front t.he vie\vpoint of the stnl(·t.lire of ('ontrol rnodf"ls. ;anti .~i\"t"" an t'XCllll­

pl(~ in\'oh'ill~ t.he (~i~envailles of a niatrix.. '

:\. Bttuse-(;~rstener:

l:nitary Hessenberg methods for signal p'rocessing problerns

.-\ basic problem in signal processing is to find an approximation tq an übser\~~a'si~nal hy
a sunl uf \\"eighted sinusoids or exponentials, Methods for ~oiving t.his probie~~ are ·often
based.on the idea of approximating the Toeplitz matrix of autocorrelation ta.~s 'bf a certain
dimension by a. singular Toeplitz matrix T and receiving from its kernet approximations
to t he desired frequenci~s. Ta any' Hermitianpositoive semidefinite Toeplit.z matrix we can
associate a unitary Hessenberg matrix Hand the eigenval~esof Hand the first components
of its eigenvectors give the information about the frequencies and weights. respectively.
Efficient eigenvalue methods eSpeeially developed for unitary (natrices cao th4~ be employed
to compute the desired qualities. 'Making use oJ the relation'between Toeplitz m~trices and
unitary Hessenbetg matrices we can solve the Toeplitz approxiqlation probleril posed by
Kung under a mild restrietion. In particular for ~e~l'signals this solution turns out to be
a generalization' of the composite sinusoidal \vave method and has an- interpretation as an
isometrie Arnoldi process applied to the downshift operator and the observed sIgnal.

This is joint \Vork with C. H~. .' -. .

D. Calvetti:

• An adaptive Richardson iteration method for indefiiÜte linear systems'

An adaptive- Richardson iteration method is presented for t he solution of large linear sys­

tenl~ of equations with a. sparse. symmetrie. nonsirigular. indefinite matrix. The relaxation
° pa.ralueters for Richardson iteration are chosen t.o. he reciprocal values of Leja points for

a c"olupact set /\' = {a. b) U fe.dJ. where [a. bJ is an interval Oll, t.he ne~ativp. r~al axis and
[r:. tlJ is an intC'r'·al on the 'po~itive real fLXis. Eudpoints ()f tlH~se, intervals are det~rmillt·d

adapt in··ly hy conlputing ('ertain rnodified nlOlllcnts during t hp it~rations. Complltf'd «'x­
illIlI)lc's an" pff~s(~ntt~d to show t.hat this adapli\'f' H.idaarclsoll al~{Jrilhm can I)(~ ("Onlf)(~(ir j,op

\Vii h' SY~I~IL(~ find ('H.
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This is joint work with L..Reichel.

T. F. Chan:

Analysis of a C(;-ha.~c·~d method for solving l,inear systems with .multiple right hand sides

Vv·e analyze t.he c.onjuI-;ate gradient method propose'd by Smith, Petrson and Mittra to solve
the linear syst.~m /1.\ = B where .4. is SPD and B is a multiple of right hand sides. This
method ~enerates aKrylov subspace from aset of direction vectors obtained by solving
one of the systems .( the seed) by the CG m~thod and th~n project ,the residuafof the
ather systems to get an app~oxima.tesolution. Tbe whole process is repeated' with _another
unsolved syste.m. as' Cl. .seed un.til all the systems are solved. We observein practice a •
perconvergence behavlor of the ca process. We also observe that only a few restarts
required to soJve aJl ~. he systems if the right hand sides are elose to each other. These
two features together make the method particularly effective. We give theoretical proof to
justify these two ober\"~tions. Furthermore, we propose a block extension of thismethod.

L. EIden:

Accurate .least squares solutions for T~epliz matrices

We present a new algorithm for triangularizingan m x n Toep~itz matrix. The algo­
ritb.m is a modification of a previous algorithm that exploits theToeplitz structure and
computes each, row of the triangular 'factor by updating and downdating steps. Due to
ill-cond.itioned downdating transformations, the previous algorithm gives inaccurate re­
sults Jor certain problems. We show that it is possible to postpone such iU-conditioned
downdates,and perform. thein: at t~e end using a more accurate downdating method based
on corrected seminormal equations. Num~rical exa~ples are p'resented~ which show that
the new algorithm improves the accuracy significantly, while the complexity remains only
O(nin). '

T. Elfing:

A constrained Procrustes problem •The following constrained matrix problem is studied. Find the matrix )( which minimizes
the Frobenius norm of A.\ - B~ with .4 andB given matrices and where.X' is restricted to a
c.:-Iosed c'onvex cone. In particular ~ we consider the cone of symmetrie positive semidefinite
matrices 'and the cone of (symmetrie) elementwise nonnegative matrices. The optimal
rnatrix is characterized and t.he result is specialized to the two cases above. Further we
report from a numerical slucly of some projection type algorithms.

T'his i~ joint work with Lars-Erik Allderssoll.

                                   
                                                                                                       ©



e

e.

,r

11. EIIIWI1:

Disc:rct.i~at..iutl \lf thl" st.(~(uly st.ate ~(\.vier-St.ok('s t·<luati\}ns

-V~U+U'Vll+\1]J f·
-divll 0

~IVPS riSt' r·o asYSt.~nl \)1" lluulillear algehrai'c :t'quations for diStTct i~('d '·t'locit ies (11) illiel

presslIl"PS (p). LinearizaLioll llsinp'; aPicarcl" ileratiün lea~ls tü a IHal riXt'qllil.l.iOIl \)f t.11t~ fann

\Ve present sen:~ral preconditioiling strategies fOf this s~:steHl thai; pro,lun" t>igell\-ahlt' dis­
tributions t.hat are independent of the mesh ·size llsed in t.he disrreriz,nion. ~ltIHeri('ai

experinlents with G~iRES and QwlR iterative solvers contlrnl fhis lne~h independence öf
convergence rates on"the viscosity.Jl.

This is joint work with David Silvester.

L. Elsner:

Nlinimizing condition numbers by completion

There are app~ications. for ex~mple whe~ solving block tridiagonal sysiems~'" wh~re in a
matrix a rectang~lar block .1;- has to be specified so that 't-he condition is m_~derate. Th('
question of an optimal choice:is unsolved. Here we give ~he solut.ion in an important special

. case. where

1',·( \r)' ['~'B""] A= .~tH . .\.... = _\.H.
'........l. = -BH .\" • 1 -

A is pos.itive definite and .\'" is restricted to the s~t of all +\ = +\H. such th.at I·V(.r_) > O.
The. problem . -

min{!fW.(.X")II· IIW-1(.\')I1 : .\ = .'(H. "l·J/(A') > ,O} _

can be reduced to tbe problem of finding the-minilnurn of a st.rictly c.on\+p.x function on illl

interval.
Thi~ is joint work with C. He and V. :\,Iehrrnann.

O. Ernst:

:\11 il.t·rati\'~ imheddin~ al~oritlltn for c'xt~rior lIelrnholt z prohlems
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Hctmholt~ c'quation iL.to; t.hey typically arise in scaltering prohlenls. lL is shown how an
FFT-ha.st~d fast sol Vc'" can he llsed to solve this problem for special dOluains t.aking into
account (~v(~n an c'xacf. radia.tion boundary condition. An itnheddin~ method is then used.
Lo treat arhit.rary dOlnains. 'rhese methods require the solution of a slnall dense linear
system of (~qllations. lTsing th~ t~eory of integral equations, we show that Krylov subspace
methods converg(~ fnesh 4 independently when used to solve this systems.

B. Fischer:

Practical use of Bernstein-Szegö polynomials in matrix computations

In. this talk we inv~stigate the use of Bernstein4 Szegö (BS) polynomials in matrix eom~
tations. These polynontials may be viewed as weighted Chebyshev polynomials. Theb~
idea is to tllodel the associated weight funetionafter the (unknown) eigenvalue distribution
of a given large symmetrie matrix.

Beside the actual computation of the weight function and the corresponding BS polyno­
mials we will outline two problem classes where these polynomials may used to advantage.

First, we consider the problem of computing a few eigenvalues of a given matrix using
the Lanezos proeess. Here the BS polynomials serve a.s so-called polynomial filters for either
the initial vector or the tnatrix itself. Second, we discuss polynomial iterationmethods for
the· solution of large linear systems of equations (with possibly multiple right hand sides).
We will show that the BS polynomials define a powerful polynomial preconditioner and
may be used as kernel for a competitive semi-iterative method.

The effectiveness of the proposed applications will be demonstrated in a yariety of
numerical examples.

This is joint work \vith Roland W. Freund.

R. W. Freund:

. Efficient circuit analysis by Pade approximation via the Lanczos proeess

Recently, a new approach, called asymptotic waveform evaluation (AWE), for the simula­
tion of large linear networks has been proposed. TheAWE method is often cODsiderably
raster than traditional circuit-simulation techniques such as SPICE~ However, AWE suffA
from a number of serious numerical difficulties. In this talk~ we show that AWE is actua""
numerically unstable. \Ve propose a new implementation of the Pade approximation~ on
which A\VE is based~ via the look-ahead Lanczos process. The resulting algorithm. called
Pade via the Lanczos process (PVL), is numerically stable. \Ve present results of numerical
experiments with P\'L for a variety of circuits. Finally. we discuss extension of PYL to
the Inulti-input~ multi-output case that is haset.l on a new general block Lanczos process.

This is joint work with Petpr Fpldrnanll (.-\T&T ßell Labs).

fi
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St.ahilil..'" ur dU' I\r.,·lu\" hc~",is anti slihspae:t's

•
The prohl(~lus \)1" 11 II IIll'ricit I analysis with l(lr~t~ sparSt.' IHtl1.rin.~ in\'oln' uft,eau " proj.'ct.ioll

of t.his Illa.trix llll (\. I\rylo\" ~Ilbspace to ohlain ilslllaller luatrix whidt .is llsecl 10 soh'C' du'
initial prohlen1- The slIhspact' depends on lht' lllill.rix anti on' an il,rhitrary \"('cl,or. \Vc'
considpr. in rhis paper. a Inethod t·o stndy t.he st ability l)f t.tw I\rylo\' subspa.ce thr()l1~h

a. matrix pert.urba.tion. This Inethod indudes i\ definit.ion t)f thl' ("olldition nt'lI11bt-,s fur
t.he r.olllputation \)f t,ht'· Krylov hasis and (,he I\rylov snb:-;pace. :\ pra.ctical Inet hod für
pstimating t.he~e Ilumbers is provided. It. is based u'n l.he solution l)f a l~r~e triangular
system.

This is joint work with -.1. F. Carpeaux and S. V. Kuznet.so\'.

M. Coldberg:

Nlatrix norms: multiplicativity. quadrativity. and st..ability

Let 11· 11 be a norm or a seminorm on cnxn
: t.he algebra of n x /l. complex matrices..-\

constant J.l > 0 is called a multipiicativity·factor for 11·11 if 11.4BII ~ JllIA11'- IIBII for all
A, B in cnxn

• Similarly, ..\ > 0 is a: quad~ativity lactoT for 11·11 if 11.42 11 :s; ..\IlAII 2 .for all .4
in cnxn

. Furth,er we say thatll·1I is stahle if for some (j > 0 we have IIAk " S;ullAll k for
all 44 in cnxn

and all positive integers k. In particular. we call 11 . 11 strongly .5tabl~ if 11 . 11
is stahle with (j = 1. .

We begin this talk by discussing the existence of multiplicativity and quadratiyity fac­
tors. for arbitrary seminorms and norm on cnxn

. 'Vi! exhibit the best. (least) factofs far
certain well-known nonn~~ and then proceed to show that while norms always have such
factors, proper s~minormsdo not. The second.'part of the talk isdevoted tostabiljty. Gur
main objective here' is t~ ~rove that not all stable norms on c"xn are strongly stable.

A. Greenbaum:

e Accuracy of corneuted solutions frorn conjugate gradient-like methods

A framework is establisbed for determing t.he aeeurac.y of cornputed solutions froln ("011­
jugate gradient-like metbods for solving linear syst.enls. It is shown that the ditferenn o

het.ween the flet ual residual \'ectors generated hy such Cl IIH~thod depends on t he nlach i Hf'

prccision ~ anel on th(O maxinlum growthin 1l0fJIl ur t.hp.. it.(~rates O"P.T t.heir initial valllP
cUt<! t.he norn} of t he f.rIle solution. To (~stilnate 1.llt~ siz(~ 01" t.he smallest. actual residual (JlIe'

sh.ollld: I) show r.hat t he update<! approxirnate rf!Sidual '.·('("tors("on\·p.r~e 10 zero. ilfld .~ 1
hOIl ud I h(! .~rowt hin nOrln of I he i t(~ra.tf's.

(.sin~ I his It·chi.iqlle.' it. is shown I hat. rlw ... t.cof'rH'sl. .I.·sc·('lll IUt°r.hud illlt! t hc- 1'()l1jll~ill ('
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gra.dient In(~thod fOI' SPD prol~I(~ms ~(·~n(~rate. approximate soltltions wätlt relative residuals
of ordt.'r~. This i:-; a.lso I.he CilS(" for the rGNE nlethod for nonsynlJuetric probJenls, anel
it is c:onjer.tl1n"d 1,0 he t.llc c.ase for the eR method applied to syminetric indefinite prob.
leIns. It is ~ho\Vn "ha.t t.he ()lrrHC)DIR method for nonsymmetrie problems generates an
approximate solutioll with relative residual bounded by ~O(c), where I\. is the condition
number or the Illatrix. It is ar~ued that tbe smallest residual vector for stationary iterative
Inethods~ c~ weH a.s some other methods that do not minimize auy standard error horrn,
cannot be bounded~ in general. and that occasionally these methods may fail to produce
a.n accurate approximate solution to even a well-conditioned linear system.

~l. H. l~lltknecht:

Local minimum residual smoothing •Schönauer (198;) introduced a smoothing process suitable for nonmonotonically (or even
"'erratically~) converging iterative methods for solving linear systems, such as, in particular,
BieG. H~re. we first generalize this smoothing process (LMRl) by replacing the one­
dimensional loeal minimum residual computation of each step by a. two (LMR2) or even
higher dimensional (Li\tIR( I)) minimization process. Numerical results exhibit that LMRI
and LMR2 are very effective in smoothing the residual norm history of BieG and (Bi)CGS,
aild Lß1R2 is'~ in general, somewhat superior to LMRl.

All: alternate idea is to integrate the LMR principle direct1y into a transpose·free
Lanczos-type product method. BiCGStab can be understood as sucha product method
wi th the second factor being determined by LMRl, However, integrating LMR2 does not­
lead to BiCGStab2, hut to a more effective method, BiC'G*LMR2.

M. Hanke:

Stopping rules for conj ugate gradient regularization based on error estimation

The conjugate gradient iteration is one of the most powerful methods for computing reg­
ularized approximations of linear and structured 2D or 3D inverse problems. Here~ the
regularization effect sterns from early stopping of the iteration, since the iteration index
takes the role of a regularization parameter. As a consequence, the development of reliable.
stopping rules is oue of the major demands in this context. In the talk~ we present a new
o.heuristic stopping rule~ (i.e.~ a rule which avoids any information about the noise level in
the right-hand side data): it is "hased on the theoretical analysis of the discrepancy prin­
ciple a.s given by Nemirovskii. 'rhe method is shown to perform better than the scrcalled
L-cur\'e r.riterion. T'he new stoppin.~ rule can a.lso be generalized to a particular minimal
rf"Sidual type method for selfacljoilll indefinite problems.
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( '. IIt':

Tlte Illeürix si~n fllUt,tioll lu(~thod is discusst·d as il 1I1Pt.hod tu :-;plit. tlu' t·i,1!;t'IlSPil.l'CO 01' :1

rnatrix A il1to 1\\'0 ill\rariant. subspan~ c()rrpspolldin~ to il.s st.ahlt' anti lltlsr.ahle t"i.~('n\·alll("s.

resppct.i\·C'I.v, ,\ 'U'W (lt-rturhation t.ht.~rcm for t.he rnatrix si~n rUllctioll is prest~l1tecl whieh
shows t.haJ t.he rllethod is I"oillpfl'titive t.o I.he <:on\'(~ntional nlC~lhods far co.upuLing invariant
suhspaces. provided Cl lJum(~rically stahle nlethod für r.onlputin~ (he si~tl ftltll't.ion is ~in~11.

\Vp will analyzt' t.he' properties or t.he Newt.on it~ration in t his contt..xt..
This is joint \Vork with Ralph Reyers iUld \/olkpr ~\'[ehrnlann.

N. .1. Highanl:

From the Inatrix sign funetion to the polar decomposition

\Ve show that it is useful to regard the matrix signfunetion as being part of ~~:rnatrix sign
decomposition. This leads to ·a new representation for sign( ..1) and reveals a-halys5s wit.h
the polar decomposition.vVe .derive a parallel method for ("oolputing r.he polar" de~ompo­

sition from a corresponding method of Kenney and Laub for the Inatrix sign ftinction. anel
describe its implementation on the Kendall Square I~SRI computer.

NI, Hochbruck:

A Chebyshev-like semiiteration for inconsistent linear system's

Semiiterative methods are known as a powerful tool for t.he iterativ'e solutionof nonsingu­
lar linear systems ofequations. For singular hut consistent linear systems with coefficient
matrix of index one. one can still apply the methods designed for the nonsingular case.

. However. iE the system is 'inconsistent, the approximations usually fail to con~erge. Nev­
ertheless. it is still possible to modify c1assical methods like the Chebyshev semiiterativf.'
method in order to fulfill the additional convergence requirements caused by the incon­
sistency. These modifications may suffer from ins'tabilities since they are based on the
computation of the diverging Chebyshev iterates.. In this '.alk we present an alternative
algorithm which allows to construct more s~able approximations. This algorithm can he

.etficiently implemented with short recurrences. There arese\'f~ral reasons indicatin.~ t.hat.
t.he new al~orithm is the most natural generalization llf tht:> Chehyshev semiiteration to

inconsistent linear systems.
In addition. we show that l his rranlework can also lu~ applip.d to r~-type methods,

Herp. different choices ror t he llllderlying inner product leadt () f hp. stabilized () Drnethod.
a rnillimal residual nlelhod. anti a new ale;orithm which rninilniz(~ the prror i.n r.hf· (~nprg~·

1101'111.

This is joint work \...·ith ~dal'till Jlankt'. Pli i \·('rsit.iit l'arlsrllhc"'.
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T. A. iVlantculf<,l:

F()SLS: A In(·t.h()<I()lo~y ror solving systems of PDEs

The process of rnodelill~ a physical system involve creating a. mathematical model, form­
ing a rlis(:ret(~ approxiJuation, and solving tbe resulting linear or nonlinear system. As
numerical linear algebraists, we are most interes.ted in the last step. Tao orten. however,
we are handed Illa.trix equations that possess properties that make them ditficult to solve,
for e~ample. nonsymlnetry and indefiniteness. Too often, the solution, when found, is a
poor approximation to the solution of the model. In this talk I will outline a method~

ology for rearranl9ng the mathematical·model in a way that naturally leads to accurate
discretizations th~t elre especially amenable to numerical solution. In particular, we wwa
examine general second.orde~ elliptic. partial differential equations. The methodology i_
volves expanding the original equation as a system of first-order equatioßs by introducing
new variables~ adding extra constraints, and constructing a least squares functional. The
bilinear form associated with the func.tional will be shown to be elliptic with respect to
the H1 norm in each variable. .This .guarantees that a discrete system based on simple
finite element subspaces will possess particularly niee properties; for example, they will be
symmetrie positive definite with condition.O(h-2

). Moreover, multilevel techniques yield
rapid convergenc~.

G. Mayer:

Multisplitting methods

Multisplitting methods are parallel iterative methods for linear systems Ax = b, where A
is a non-singular n x n matrix and b is a vector with n components. They are based on p
splittings A =1\tl1 - lVt, lVii non-singular, 1 = 1, ... , p, and some averaging process. More
exaetly, the new iterate X

k+1 iso defined by

P

X
k+1 := E E,1\,[,-

1{Ntxk +b),
1=1

where the weighting matriees EI are non-negative diagona.l. matrices of which the sum is
the identity matrix. . •

In our talk we will consider particular multisplitting methods for band matrices. We
will present new comparison results which we illustrate by numerical examples.

v. ~'Iehrmann:

St.aircase like rarms for the <"omputation of invariants or descriptor systems

Thi~ talk concerns the structur.(' I.hat ran be achiev('d by feedhack in descriptor systems

10
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l.ltcll Itu'k ,"prt ain nml.rullahilit.~· arul/nr uh~t1n·ahilil.\·nJlldil inll:-;~ St airC;l~l' ;1I1cl dtUlhlt· ~. ai r
c:a'ie ("olulpllst-cl fUrins ..hlaillt~d throllgh a :-,cqUt'llCP ur ort:lhl~(.".~tl ~t.al t" I r;Ulsforlllclt.iun:-, arl'

Ils(~d 10 dpl.t·rluifU· lhe illvariants t)f t,ht" sySIc'111 andrlispla.\· wlwrt and Ih)\\' rt~'dhilck ,'au IH'

l.lSf~cI t.o achit"\'f' luinirnal indpx. Furt hL'rnllH'p. t.hey re\"('al t ha.t. .Itl, I1h)tlt·~ " .. a.t a.n'lItH·OIl­

I.rollabl~ aud Iluobservahh" aL intinit)" han:s a fixed '.ninilllal inclt-x t hat. ('an HOl. hf"A n'dun'c1
hy fepclhac:k. lIowe\'er. this fixet! hj~hl'r i'ndex part. üf t.he cüntrol :-;~'slt-t11 is c·ollst.rained In

he zero. Tlte rc~lnaindcr is a. redll('t~-d order' Systclll that is ("0111 rollahlt- allel llhsPT\'ablt' ;11
illfinjt,~· ",hielt "a.u Iw rnadn 10 ha\'e index one hy feedback.

c:. :\:1 eH rau t :

S6lving the ~;Iaxwell equations llsingc"onfonning finite t·'.lernents. Lagrange multipliers
and iterative nlethods

[
.4 B

T
]

~~l = B -tl .

T4epreconditioned system at each iteration is alsq s~lved with an iterati\'e method (actuA
ally· G~IRES or Bi.:CGSTAB)~so we have nested iterations. .

\Ve describe n~merical experim~nts o,oth on this d'ifficult .problem and also far tht:>
Helrn:holti cq~ation. It turns out that ~'1axwell equations are more diffictilt to solve and
that the inner iterations have also to oe preconditioned. This is dane by an incomplete L{.
decomposition where we keep same fill ins accordin~ t.o their site. The ~xperimentsshow
that t.his leads to an efficient rflethod for s'olvin,~ the ~laxwell ~Ilations while ret.ainiilg t.1H'
sirnpli(it~· or implernentation of llsual (:onfor'nlin~ df'lnents.

11
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(Jl tranlctric Illiltrin's

Reccntly, ~:Iartill('z, ~1ich()n. (tnd sän fvlartin introduced the new class of (sytnmetric)
slrictly 'tllm'llelri(~ ",.ttlrir.r.s. They. proved that the inverse of a strictly ultrametric ma­
trix is it strictly row and strictly column diagonaliy dominant Stieltjes matrix. lIere, we
generalize this result hy introducing' a class of nonsymmetrie matrjces~ called ge.neralized
ultraTnetric Inalricc$. WP. give a necessary and .sufficient condition for the regularity of
these matrtees anti prov~ that·the. inverse of a nonsingulargeneralized ultrametric matrix
is a row and 'colt,tmn diagonally". dominant M-ma~r:ix. "Ve establish" that a nonnegative
matrix is a generalizecl liltrametric matri~ if and only if the matrix is a certain sum of at
most rank-t\volnatrices. Mor~ver.• we give a characterization ofgeneralized ultra.meta
matrices, based Oll weighted trees. "The entries of generalized ultrametric matrices th.
arise as cer-tain "'distances" between the leaves and the foot ~f the tree.

N. M". Nachtigal: "

First principles simulation of material properties.

In rec~nt years~ as the available ~omputing power has increased, the capability to predict
.material properties from first principles based m~dels has also increased. As a result, more
and more emphasis is placed' on· predictive computer models that ~an assist experimental
.designe~ in their work... .

The talk will present an overview of the- material sciences effort at Oak Ridge National
Lab, with an emphasis on the linear algebra and computation issues that arise.

A. Neumaier:

Iterative regularization for large-scale ill~conditioned linear systems

Ta-solvea 'constraint regularization problem

Ax ~ b, x ~ 0, Jx not large

we propose methods which are based on the convex envelope of ~ finite set of approximae
solutions XI, represented as a 2d plot of (q(x,), r{i,), where

q(x) = IIJxll~, r(x) =HAx -·bll~.

The envelope is updated after each iteration of a ce method with preconditioning for
J.\(.r) = r(.r) + ..\q(x). a.ntl ..\ is uprlateddepending on the geometryof the envelope.

\Vhen the noiseis smalI. an ~lternativemethod applies CG 1,0 the compromise function

f(.r)· = {j1J(.r.)r(:J:)ti.
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whosp inlc'riur loc"al ,"illiulIlIlI lypiC:llly .~i\"l':-: a do~c- IIlaldl Id :.:i'"I1I;llt'd prohlc'lltswic Ja ;.
kuown dC'si~lh"d :,uIUI i&>IL

Tlw Ipc'huiquc' i:-: applit'il Co a li ... ·ttr :-0.'":-:1"111 ilrisin!!; in lucllo.~r:lph.'" t PET)." allel Ilw

rc'solulion 01' iht' rc'consLnu·t..'d illla~(' is IIllwh IwH.•·r titan fur ·'II.lu'r ilc-ral.jn· Illt.'IJlod:--.

whil.· t hl' cUlhllllll. of wnrk is III()clerat.c~ ( ....... :!o Inatrix~v,.ct.or prodtlct.s).
This is joint work with Linda (\aufnlllu.

YI. ~(-"Ilnla.nn:

COIlv<'r.genn° ur infinit.e products of Illatrin·~ anti iuner-oulc'r it~ralion ~dl~nH's

• \Ve de,"('lop l"t)nditions under which Cl productn~o TI.; of In.ltri('~s ,,"hosen froHl Cl. pössibl.,"

infinit~ set uf Inatrices S = {Til) E J} con\·erges. \Ve obtain l.he following cOlldit.ions ,,"hieh
are sufficient for t.he convergence of the product: There exists a '"ector nornl ~llch .. hat all
matrices in S ar~ nonexpansive with respect to this nünn and I here "exists a subsequenn~

{i k }~o of the sequence of the nonnegati ~;e integers such that t he corresponding seqtlence
of operators {T",J~o converges to an operator which is paracontracting \V~>tJl respect to

t.his norm. \Ve deduce tohe continuity of the limit of "the proouct. of nlatrices··as a ~unction

of the sequence {i k } bO' Bnt more import.antly." we apply our result.s to t he question 01' t he
convergence 01' inller-outer iteration schemes for solving singular consistent .linear syst.ems
of equations. where the outer splitting is regular anci the inner splitting is weak regular.

N. Nichols:

•

Computation of smooth singular value decompositions with an application to
the regularization of time-varying differential-algebraic contral systems'

Smooth singular value decompositions are tlsed to reducea t.ime-varying descriptor systen1.
governed by the equations ~t.

dx
E(t) dt = A(t).z: + B(t)u~

to a condensed form that reveals controllability and observability properties. LInder suitable
conditions derivate and proportional output feedback controls are then constructed 1.0

cnsnre t.hat rhe systemsis index one a.rid pointwise regnJar. Initial p.xperiments show t.hat
the feedback can also he selected 50 that the closed loop rnatrix E + BGC has ("onstaut.
rank over the interval of interest a.rid is "near optimally'~ conditioned. .

Thc slTlooth sin~ular va.lue dp.romposition~ are deJ.ermined from the solutions to a. sys­
t('lll of ordinary differential rnatrix (~quations. :\ 1l0Vf'I ··ort.hogonality-prf.'servin~·· llIHllC'r­

ieal int(~~rati()u sch('nH.' is Ilsed (0 c'olnpllte the ri~ht a.nd I('ft. sin~tllar ractors. :\ fOl'lll IJ["

,)pfc'rn'd C"orrprlion It~ads to r~stllts of tllHlsually hi~h l)rd('r l)f acnlrac:y.
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R. J. Plt~rll1l10nS:

A t.rac~ tnaximization prohlcm in control

~rhi.s pl'()blt~ln illvolVt's tobe control of a set of very fast-acting deformable mirrors .designed
for atmospheric tl.irhlll(~ncc compensation in atmospheric imaging. Here t.he control model
rerluces t.o thl~ Ini\xitnizationof the functiona.l. J( U) given by

R

J(U) = E max{.(UT .!\1j(J)ii}
j=1

over unitary matriccs {j, where tbe Mj are the mirior ma..trices associated with the. ada.p­
tive optics cont.rol. problem..Vario.us a.i~orithm.s are suggested .for partial solution to th_
problem and several·open problems are, discussed. ' '- . •

-This .i.s Joint work with B. Ellenbroek, C. Van Loan andN. Pitsiani~. -

L. Reichei:

Incomplete partial'fractions ror parallel evaluation of rational ma.trix furictions

.Frequently one needs to evaluate expressioris of the form (p(A»)-lq(A)b where A E
R~xN, b ERN and p ~nd q eire polynomi8.ls with 8q'_$ 8p and such that uo zero of p
is a.ri eigenvalue of A. Algorithms based on- the partial fraction representation of. q/p when .
eva.luating (p(~4))-lq(A)b lend themselves weIl toimplementation ot;l parallel computers, .
hut might yi~ld.poor accuracy. We discuss ho~.to determine an incomplete partial.fraction
representation of q/ p which allows parallel computation while retaining high accuracy.

This is joint work with D. Calvetti and E. Gallopoulos. -

. -G. Starke: -

Subspace orthogonalization and substructuring for nonsymmetric linear systems

We consider ~ubstructuring preconditioners in combination with vanous Krylov subspace
methods for the solution of nonsymmetric systems of linear equations: In particular~ we
propose. modifications of optimal iterative methods like GMRES by -restricting the comptA
tation of inner products and storage of basis elements to a subset of the unknowns. Thi'"
allows us to run the optimal iterative m~thods for much longer and procluce an accurate
approximation at these unkno~ns. Ir the subspace is chosen such that it constittites a sep­
ara_tor set! clividing the original problem into smal1~r pieces~ these subproblems can then be
solved independently in a final extension phase. The'effectiveness of this approach will be
illtistrated by numerical experiments for non-self-adjoint elliptic boundary value pr~blems.
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G. \0\'". St..'wart.:

()n graded (~R deconlpositions oe products ()e rnatricc-s

This ~papt'r is concerned with the sill~ular \i\lll~ ano \·~<.·t.()rs ,)1' i\. product. uf I.h(' 1"')rt11

("m = AI:\:?' :\m' The chief cornpntational problem is that with inc:n'a.sillg IU Ihe.' ra­
t.ios of .. IH' snlaller t·o t.he lar~er singular \~alues ur (:". may raH Ot.. low t.ht' ronnhding IIl1il.

so t.hat t hc fornler are ('ornputcd inaccurately. The solution present('d l1C"rt~ is ta fal·tor
("m = QRpT. where (j is ort.ho~onal. 'Il is llpper trian~ular. and P is apermutation. Tltt..
lnatrix R is graded. with ils ith row heiog approximately t.he size of t.lu" ith.sill~111ar \·alue.
This Ineans r.hat even t.he sl11aJl singular \'alues can be computed ;u:cllratp)y. The heart
of the method is an aJgorithm for updating a graded Q RP factorizatioll of .·l t·o i\ grade<!
QRP factorization 01' the product C = :-\B.

z. Strakos:

On the numerical stability of thc Krylov space methods for solving
nonsymmetric systems

We will base our analysis on the basic recurrence formula for the basis of the ··Ktylov space
(or the Krylov residual spac.e)

(1 )

where Vi. is the matrix of the basis vectors Vj as its columns. Hk+l.k is the upper Hessenberg
matrix and Fk characterizes the rounding errors. IIFkl1 is of the'order O(iV, €)IIA,II~ where
o(N, e) denotes terms involving the product of the machine precision f with a small power
of !V and a constant. Using the recurr~nce_ tbe o~iginal problem for the matrix A is
transformed in the Krylov methods to the more feasible problem for the matrix' Hk+l.k '

When the matrix A.-js highly nonnormal, then, using the bound 11,,4*A-~-tA*11 ::; 211A11 2 , the
matrix Fk may have large entries. Therefore, any method based on the matrix Hk+1•k can
be very inefficient or can even fail. For IIAII reasonable bounded. the actual size of IIFkll
does not play an important role in our analysis. Then, a key quest ion in the analysis and
designing method based on (1) is ··How to construct the e.Jficient recurrence preserving /he
nonsingularity 01 the matrices Vk+l andH"+l.k ., (weil preserved nonsingularity of H,,+l.J.:
guarantees~ e.g.! that the norm of the residual of the transformed least squares problem
(Arnoldi residual) is sufficiently elose to the norm of the residual computed di rectly).

VVe wi II examine different approaches using both long and short term recurrences. \Vf!
will present an error analysis of the GMRES method - including its newly proposed· \'ari­
ants - and try to give a quantitative theoretical «~xplanation 01' the experimental reslllts
reported in the literature.
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H. van (Ier Vorst.:

A .J acohi- OavidsOll i t,eration .nethod for linear eigenvalue prohlems

Davjuson !las (lrOp()Sf~t (L rnpthod for tbe iterative computation of a. few extrenlal ej~envalues
of asymmetrie Inat.rix. The Inethod is reported to be quite snccessful. ~specially far sOIne.
applications in chemist.ry. Success of the method seems to depend quite heavily on strong
(diagonal) dominance of the given matrix. .

The rnethod of Davidson is commonly seen as an extension to Lanczos' method. In
spite of this the met.hod is not weil understood.

As we will show, Davidson's method has an interesting connection with an old method
of .Jacobi. This leads to another vie\v on the method of Davidson, that may help to explain
and to irnprove the nlethod. It turns out that the method can be easily gener~ized"

non-dia~onal dominant and nonsymmetrie matrices as weIl. •

P. van Dooren:

Computing the SV·D of a product/qu.otient of several matrices

We present an implicit bidiagonalization method of a product or quotient of two or more
matrices. The method applies only orthogonal transformations on the matrices of the prod­
uct/quotient and implicitly bidiagonalizes the product/quotient. We analyze the complex­
ity and accuracy of this approach and discuss its advantages over the current PSVD,. QSVD
code. We also show via numerical examples its high relative accuracy for expressions with

. regular values of large dynamical range.. .
Joint work with G. H. Golub and K. Solna.

Berichterstatter: Marlis Hochbruck und Gerhard Starke

l(i
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