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Designs and Codes
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Die Tagung fand unter der Leitung von Herrn Jungtﬁckel (Augsburg) und '
Herrn van Lint (Eindhoven) statt. ’ .

The 1994 meeting on Designs and Codes was the second one on this topic
in Oberwolfach after the first conference in April 1990.

Design Theory and Coding Theory are two areas in Discrete Mathe-
matics which are closely related and of course. both commaunities benefit
from the opportunity to bring together leading researchers working in both
areas, which was one of the main aims of this conference. There were 43
participants from 12 countries, among them 16 from North America.

Of the many interesting lectures, two talks provided particular high-
lights by solving major longstanding open problems. First. the puzzling
formal duality between the Preparata and Kerdock codes has finally been
explained by realizing that these non-linear binaryv codes are projections of
linear Z4-codes which are in fact duals. Secondly, a major breakthrough
in the asymptotic existence of designs has been achieved hy proving that
orthogonal arrays of arbitrary strength t (with k rows and index 1) exist for
all sufficiently large orders (for fixed k. t). This is the first asymptotic result
for designs with t >- 3.
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Vortragsauszige

R. Ahlswede:
Number theoretic correlation inequalities for Dirichlet densities.
For sets 4,8 C NN, the set of positive integers, consider the set of least
common muitiples {4, B} = {[a,b] : a € 4,b € B}, the set of largest common
divisors (A, B) = {(a,b): a € A,b € B}, the set of products 4 x B = {a-b:
a € A.b € B} and the set of their multiples M(A4) = AxN, M(B) M[A. B],
M{(A.B), and M(A x B), respectively.

QOur first discoveries are the inequalities

dM(A, B)-dM[A, B] > dM(A) - dM(B) (1)

dM(A)- dM(B))dM(AxB) (2)
where d denotes the asymptonc density and A, B are finite. The first in-
equality is by the factor dM{(A, B) sharper than Behrend’s well-known in-
equality. The second mequalxty does not seem to ha.ve number theoretic
predecessors. J

The next discovery-is that (1) can easily be denved from the Ahls-
wede/Daykin inequality via Dirichlet series. Actually, we found this way
the much more general inequality

where D denotes the lower Dirichlet density and 4. B are arbitrary subsets of
IN. The applications of the AD-inequality give now correlation inequalities
not only in Statistical Physics (Harris. FKG), Probabilitv Theory (Holley),
Combinatorics { Kleitman. Sevmour/Webster. Marica/ Schonheim), but also
in Number Theory.
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E.F. Assmus, Jr:

Where does the Mattson-Solomon polynomial pr ?

We give an clementary proof of Berman's Theorem characterizing the Reed-
Muller code R(n,m) as J™=" where J is the Jacobson radical of the group
ring F.[G] where G is an elementary abelain 2-group of order 2™. The
essential new ingredient is the observation rhat Rin.:n}is generated by the

characteristic functions of the (m - n) dimensional subspaces of the affine .

geometry of G = 7.

We contrast this very easy proof with the current more involved proof
of Charpin’s generalization to I, of Berman's Theorem. We make some
progress in simplifying this discussion by describing - in rthe most general
case - an [F,-algebra isomorphism between the F,-algebra

Folzra. o zml/b] = z1e 28 = 200)

and the F,-algebra of fixed points of the Frobenius map. { — (9. of the:

algebra
Fon(2]/(2°7 - 2).

Th. Beth:
Designs, Codes and Puzzles.
Owing to the more practical problem of finding the aigebraic classification
of the solution for a special rather complicated toy puzzle, commetc:a.llv
available under the name DISCO, we consider the following

Pegging Problem: Let N = {wo,..:, wq_;} be a transversal for the d =
14 orbits of the group G = Zg acting regularly on the coordinates of W =
GF(2)5. By canonically embedding W ~ GF(2)[]/(:® — 1) with the action
Zg 3 i w(z) - *w(z) mod (z® - 1) the problem reads:

Find an arrangement ix € G.j € Sy

Alz) = (M), mod (- 1)

of cyc].ica.llv rotated words of V in such a way that every column 4; in

A(z) = E‘_OA z' can be partitioned into disjoint words of 3 consecutive -

ones, forming the pegs.

-
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cally in spite of the huge searchspace of (13!)-6°-32-2
are presented. By considering the patterns in W as
vectors of GF(2%) with respect to a normal basis over
G F(2) the canonical isomorphism Zs = Z3 x Z; allows
a design type solution in an efficient algebraic defini-
tion of sequences in GF(4)? with GF(4) = {l.a,a+
1 = a*,0}. The solution reads as in the figure.

2
o
RS = oo

~
~

From here it was similarly easy, to give an algebraic
construction for the modified Pegging Problems ~ -
(a) with G = Zg on W — {1}

(b) with G = Dg on W

the latter one being the commercially available toy.

|
Several approaches to solving this problem algorithmi-

QRN - —, 3
OR R RO
OCOR QR

Open questions are posed as to which class of designs or codes the presented
solutions belong. ’ : .

I1.-F. Blake:
‘Decoding Reed-Solomon codes.
The Welsh-Berlekamp . algorithm is an efficient means of decoding Reed-

- Solomon codes that does not involve the computation of syndromes. A -
brief description of this algorithm is given, showing in particular how the
set of equations requiring simultaneous solution, is carried out. It is also
shown the problem can be translated to an algorithm for the solution of
polynomial congruences. A new module theoretic approach to the solution of
such congruences is proposed. From this approach new and efficient parallel
algorithms to solve the WB equations are derived.

A. Brouwer: .
Correspondence between symmetric bilinear forms and alternat- |

ing forms.

In a dual polar space (in the classical situations where maximal totally

‘isotropic or totally singular subspaces have half the dimension of the sur-

rounding space) the collection of t.i. (t.s.) subspaces disjoint from a given
- ome can be naturally identified with a space of forms or matrices: one gets
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(i} adl alternating matrices (from D,,)

(i) all symmmetric matrices (from C,, )

(iii} all Hermitian matrices. )

Noting that & nondegenerate hyperplane in a D, geometry carries a
B, veometry. and that in even characteristic B,—y = C,_y. we find in
even characteristic a one-to-one. correspondence

r N

pﬁ_.( 0 v L)
\ Vd P+vv’5\/r71 :

between symmetric matrices of order m and alternating matrices of order
order m+1. One of the consequences is a geometric n\planatmn ofa property
noted by Calderbank. N

A. A. Bruen:

(a) 103 configurations in Desarguesian planes

(Joint work with J.C.Fisher) . R
(b) Independent sets- of points in projective and affine spaces.
(Joint work with D.Wehlau and L.Haddad)

(a) We briefly discuss a beautifil observation by -G. Pickert, pursuant to a
paper by Bruen and Fisher, on the embeddability of a certain 103 conﬁgu-
ration in a projective plane which is Desarguesian but not Pappian. .
(b) In PG(n.q) let § be line-free. Then S. the complement of S, intersects
all lines. If S does not contain a hyperplane we say that § is proyectwe
otherwise, 5 is affine. If § is projective, each hyperplane contains at least
one point of §. We elaborate on the following observation:

If|S] is large. S must be affine. I.npa.rtlcular in PG(n.2).if |§] > 5- 7" ”‘4

then S must be affine.

We also desribe other intersection propertxes in PG(n.2). Results similar
to some of these have been obtained by E. Clark and by A.A. Davvdov and
L.M. Tombak.

The geometries AG(n.3) and PG(n.2) are Steiner triple systems and
colourings of their points, such that no line is nonochromatic. are of interest.
These colourings give line-free sets. In AG(4.3) we show that a line-free set
has at most 20 points and we describe zeometrically.rhe unique line-free set
nn 20 points. (Part of this result. at least. is due originally o R. Hill.) We
also skirmish with line-free sets in AG(5.3). -

o




"A.R. Calderbank:

Codes, Geometries and Extremal Sets of Euclidean Lines with
Prescribed Angles.

We describe how Kerdock codes over the binary field Z; and over the ring
Z,4 of integers modulo 4 determine extremal sets of lines in real and com-
plex Euclidean space with only two angles. Extraspecial 2-groups serve as
the bridge between discrete and Euclidean geometries. Classical geomet-
ric/group theoretic connections between binary symplectic and orthogonal
geometries are expressed as a correspondence between binary symmetric . .
m x m matrices and binary skew-symmetric (m + 1) x (m + 1) matrices.

. G. Cohen:
Generalized" Weights (upper bounds).
The generalized i-distance d; of an [n. k] binary linear code C is the minimum
size of the union of the supports of ¢ independent codewords of C. We derive
new upper bounds on d; (Hamming, Plotkin, Elias). For the last one, which
is.the strongest asymptotically, we need a nonhnea.r extension of the concept
of i-distance:
Definition: Let C be any binary code (subset of 7). Then set

d;(C) := min|supp(cy + t) U supp(ca + ) U ... U supp(c; + t)|

where the minimum is taken over all (i+1)-tuples (¢, ¢y, ¢2,...,¢;) such that
¢y +t.ca+t, ..., ¢+t arelinearly independent.

Theorem: Fix i. Let R(4;) be the largest possible asymptotic rate (k/n)
of a code with normalized i-distance d;/n = é;. Then

' R(E) <1-H(),
where H(-) is the binary entropy fuaction and A is the smallest root of

§i=1-2"% = (1-z)*L

M. Daberkow:
Computing invariants of algebraic number fields.

We gave a list of major problems in the field of constructive algebraic number

theory, which is due to H. Zassenhaus:
For a given number field F we are interested in the computation of the

following invariants of F:
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- the ring of integers op

- the nnit gronp Up

- the class sroup Clp and the class number by
- the Galois group.

Starting with ihe Round-2 algorithm by H. Zassenhaus. we presented some -

algorithms for the construction of integral basis and introdnced the idea of p-
maximal overorders. Based on the Round-2 we showed some improvements
using. p-adic numbers. If the field F = Q) is generared by a root of
the polynomial f(t) € Z[t], one can use a factorization of f modulo p and

Hensel's Lifting to get polynomials f;..... fi, such thatthe p-maximal order
of Z[] can be derived from the p-miaximal orders of G; := Q[t]/(fi(t))
(1<i<k)

The final part of the talk dealed with the problem of relative integ a.l
bases in extensions E/F with Q'C F C £. In the casé [E F] =
soluuon of thns problem has been given. -

F. De Clerck:’

On-Generalized Quadrangles minus a Hyperplane

P.J. Cameron raised the question of finding a characterization of partial
quadrangles which have linear representations. An almost complete answer
was given by R. Calderbank et al., the proof was a number-theoretic one.
Here we discussed a more general class of geometries. Sp. those coming from

genéralized quadrangles S by deleting the set p*. for a point p of §. §p.

has the property that it is a (0,1)-geometry, but nhe graph-is only strongly

" regular (hence Sp, is a partial quadrangle) if t = s2. S, has the property (*):

If L and M are two d.ls;omt lines of S, then therc are cither 0,5 -1 or
s lines of Sp concurrent to both 'L and M.
Our result (joint work with Hendrik Van \Ialdeghem) is:

If T;(K) (n > 3) is a linear representation of a (0.1)- geometry satisfying -

(+), and if s > 2. then T;(K) is the partial quadrangle T5(0), O an ovoid.

J. Doyen:
Lotto Numbers and Steiner Systems.

" The Lotto sumber L(n,k.l.t) is definéd as the smallest number ofk subsets
(= Lotto tickets) of the set ¥ = {1.2..... n} such that any l-subset of V

meets at least one of them in at least ¢ elements (this l-subset is interpreted
as the set of winning numbers). We gave lower and upper bounds for the
numbers L(42.6.6.t) and L({49.6.6.t) corresponding to the Lotto is played

:
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in Belgium and Germany. The upper bounds often use Steiner systems. For
example, nsing Denniston’s §(4.6.27), we get 1014 < L(49.6,6.4) < 13120
(after the talk, this upper bound was lowered to 3784 by Andries Brouwer).

D. A. Drake:

A Theorem on Squeezes in the Game of Bridge.

Let p be the number of cards remaining per hand, and let r be the number
of tricks which can run by North/South in a no-trump contract. Then
North/South can only “squeeze” East/West out of another trick if r = 1
and p = 3 orif p < 2r. There are no squeezes with p < 3, and the inequality
is best possible for every p with 3 < p < 12. It is also true that the only
no-trump squeezes with p = 2r are triple squeezes.

T. Etzion:

Generalized designs and constant weight codes over finite alpha-
bets. : A

We consider optimal constant weight codes over finite alphabets. These
codes can be considered as generalization of Steiner systems. Other codes
are reductions of orthogonal arrays into constant weight codes. Finally,
in some of these codes two types of Steiner systems exist, generalized and
non-generalized.

M. van Eupen:

An optimal ternary [69 5,45] code and related codes.

A ternary [69. 5,45] code is constructed, thus solving the problem of finding
the minimum length of a ternary code of dimension 5 and minimum distance
45. Furthermore, this code is shown to be a unique two-weight code with
weight enumerator 1 + 210245 + 32z%. It is also shown that a ternary
[70,6,45) code, which would have been a projective two-weight code giving
rise to a new strongly regular graph, does not exist. In order to prove
the main results, the uniqueness of some other optimal ternary codes with
-specified weight enumerators is also established.

D. Hachenberger:

On Finite Elation Generalized Quadrangles with Symmetries.
We consider the structure of finite groups which act as clation groups with
symmetries on finite generalized quadrangles. Such a group is related to
the translation group of a translation transversal design with parameters
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depending on that of the quadrangle. Using results on the stracture of p-
gronps which act as translation groups on a transversal design. and results
on the index of the Hughes subgroup of a finite p-gronp. we can show how
restricted the structure of an elation group with symmetries of some finite
generalized quadrangle is. One of onr main results is rhe following:

if G is a finite gronp of even order s°t which admits a 4-gonal family
{F.,F) of type (s.t). and if one member of F is a normal subgroup of G.
then. necessarily, G is an elementary abelian 2-groupa

W. Haemers:

- Spreads in Strongly Regular Graphs.

Let G be a strongly regular graph with eigenvalues &.r and s (k > r > s).
Delsarte proved that a clique has at most 1 — k/s vertices. Cliques with
this size are called lines. A spread of G is a partition of the vertex set into

lines. Such a spread gives rise to a 3-class association scheme. .-\ necessary-

condition for the complement of G to have a spread is kr > s?. Examples
come from spreads and fans in (partial) geometries. An interesting e\:ample
was found by Tonchev, who found spreads in the McLaughlin graph. -

R. Hill: n

“Mastermind” for four-year-olds.

We consider some variants of the game of “Mastermind” including the fol
lowing version. which is suitable for play. with 4-year-olds.

A coder chooses a codeword which is a permutation (i.e. no repetltlons)
of k colours from n. A guesser must determine the codeword by malung
guesses, each guess being a permutation. After each guess the-coder says
which- colours are correct. Let f(n,k) be the smallest number of guesses
needed to determine any codeword. Clearly f(n.k) < n and we conjecture
that f(n,k) = n for all n and k (k < n). The conjecture is easily proved for
k < 4 (all n) and for n = k.

J.W.P. Hirschfeld:

Projective Geometry Codes. .

Let M be a b x v incidence matrix of v = |PGY)(n,q)| points and b =
|PG'")(n, q)| subspaces of dimension r for a finite projective space PG(n. q).
Let C(r,n,q) be the code generated over I, p prime where ¢ = pt. by the
rows of M and let C*(r.n.q¢} be the dual code. which therefore represents
sets of weighted points meeting each r-space in a multiple of p points.

Hamada’s formula savs that

o




n+l_1
dim C*(r. n. q)_ €+~ _
q-1
h-—lL(=+|-’) . .
Z H Zl( 1)|(n+1>(n+s,~+|p—s,--tp)
(300man) JZ0 i=0 . " '

where the first sum is over all ordered sets (so,...,ss) of h +1 integers s;

such that . .

sh=50, 085, 8- 0 s1p-s5;<(n+1)(p-1),

and . o
L(sjs1,85) = [(s;01p = 5)/p).

It is shown that, when h = 1, this formula can be replaced by a single

summation: i

(r=ip- 1)—1) ( n+(r-j)p—r)
i n-j '

dim C(rymp) = S(-1) (
=0

- C. Y Ho'

Regular colhneatlon groups of a finite projective plane
We mention the followmg results:.

(1)A cha.ractenza.tlon of an abelian planar Singer group. ~

(2) The mu.lupher group of a planar Singer group always fixes a line.

{3) Let H be an abelian group of multipliers. of a planar Singer group of
planar order #. If |H| = n-+ 1, then.n? + n + 1 is a prime.- If |H| is odd,
then |H|is at most n + 1. ~

(4) For any complex number z, let v(z) = z2 + z + 1. If pis any prime
different from 3 and m is any positive integer, then v(m®) = [[,¢ g5 v(mo),
where 8 is a_complex p-th root of unity. Also the greatest common divisor
of v(m) and v(mP)/v(m) divides p.

(5) Suppose an abelian Singer group is not norma.l in the collineation
group. If the planar order n.is not a squareor n = m? with m = 2.3 ( mod
4) then the plane is Desarguesian. .

10
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J.D. Key:

Extending Steiner triple systems using codes.

We use the lincar code associated with a design by forming the space spanned
by the incidence vectors of the blocks over a finite field IF,,, where pis a prime.
to give some partial answers to the following question: Can every Steiner
triple system be extended? '

Let D be a 2 - (r.3.1) design and let Cp(D) denote its code over [,
“Then if p=2and 29 ~ 1 < » < 29% _ 1 Co(D) > H,. » Hamming code:
ifp=3and 37 - 1< v <3 CyD) > Ry, (2(d — 1).d). a generalized
Reed-Muller code. From this we have:

(i) fo =29 -1 and dim(Co(D)) = 2¢ - d. then D can be extended and
in such a way that the binary code of the extension is the extended code:

(ii) if v = 3% and dim(C3({D)) = 3% — d, then D can be extended. .

B

I. Landgev:
Nonexistence of some Quaternary Codes
We demonstrate the nonexistence of quaternary codes with para.meters
(56, 4.41}, (104,4,77]. _
This result violates also codes with parameters [57.4. 49] [105 1.78);
{106.4, 79], [107.4.80].
Thus the only value of d, for wluch n..( 4.d) remains unLnown isd = 37.

S.L. Ma:

Regular Automorphism groups on partial geometries. ’

Suppose a partial geometry pg{s+1. t+1.a) admits an automorphism group
G acting regularly on the points so that the points of the geometry can be-
identified with the elements of G. Let Lg,L,,..., L, be the lines passing
through e. I find that G is a direct product of two groups of relatively prime
orders and if L; = Lg’l) for all i. then the geometry is a translation net.
Applying the result to the case when s = t and G is abelian, I find that
either the geometry is a translation net or all the lines of the geometry are
of the form gLo, g € G Also, for the latter case. all known. examples have
parameters a = s or s + 1 except for the pg(6.6.2) obtained by van Lint
and Schrijver which has (s.a) = (5.2). I have checked that this is the only
example if s < 500. .

S
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S. S. Magliveras:
Block Transitive Resolutions of t-designs and Room R.ectangles.
(Joint work with R.A. Liebler and S.V. Tsaranov)
We call a partition of the trivial design (Y) of all k-subsets of a u-set X
into ¢ = (v’ k. N) «lesngns, v <, a resolution: of t~desxgns A resolution of
t-designs with ¢ = v’ is also called a large set of t-designs. A Room rectangle
R. based on (',:) is a rectangular array whose nonempty entries are k-sets.
This array has the furhter property that taken together the rows (columns)
form a resolution of t-(22)-designs. One of these structures admits G as a
block transitive automorphism group if G is a permutation group on the set
X leaving invariant the structure and the k-sets of X fall in a single G-orbit.
Some examples of block transitivé resolutions of nontrivial ¢-designs ¢ > 2
are: - . ’
(1) an My;-invariant set of 3 — (10, 4,1) designs, .
(2) an Mo-invariant set of 4 ~ (11,5,1) designs,
(3) an M,,-invariant set of 2 — (21, 5,1) designs,
(4) a PTL,(2*)-invariant set of 3 — (2°,4,1) designs (s = 3 or 5),

" (5) a PTL,(32)-invariant set of 2 — (16,4,1) designs, and

(6) a variety of PSLy(g)-invariant sets of 2-designs with k =

We show that this is a complete list. In particular there are no block tran-
sitive large sets of t-designs. Moreover, if 1 # @ < b < ¢ are odd ixitegers
such that ged(a.b) = 1 and ablc, then we construct a block transitive Room
rectangle based on the 3-subsets of a 7° + 1-set whose rows (columns) are
Steiner triple systems on 7¢ (7%) point. .

K. Metsch: :
Characterization of certain distance regular graphs.
We present some recent results that characterize the following distance reg-
ular graphs in terms of their parameters.
(1) The folded Johnson graphs 7(2m,m), m > 6.
(2) The folded halved cubes of diameter d > 8.
(3) The Grassmann graphs ['(e,¢,n) for ¢ > 4,2 < e < %5~

G. E. Moorhouse- - .-
New distance regular graphs related to Preparata codes

(Joint work with D. de Caen and R. Mathon.)

We present i new family of antipodal distance regular graphs ['(g,0) of
diameter three. related to the classical Preparata codes. Here q = 2%~' and

12




(7) = Ant(GF(q)). The graph I'(q.a)is a g-lold cover of K. For ¢ > 25,
we have |JAutD(q; o) = 2¢(g— 1)(2t = 1), and T(q,0') = T(q.0) iff o’ = o*!,
These results are analogous to those of Kantor (1983) for extended Preparata
codes. Morecover, the Preparata codes may be synthetically produced from
our graphs. The three-class association scheme for [{q.a) is formally dual
to the scheme for the known systems of linked svmmetric designs arising
from Kerdock sets. This formal duality appears to be related to the tormal
duality between Preparata and Kerdock codes. It is haped thae the algebraic

. duality between Z,-linear Preparata and Kerdock codes {recently discovered
by Sloane, Calderbank et al.) may help to explain this.

R. Mullin:
The Structure of Normal Bases over Finite Fields and some _:

Specific Completely Normal Polynomials.
A normal basis of a finite field GF(¢") over GF(g) can be defined to be a
set S of zeroes of an irreducible polynomial of degree n over GF(q) which
has the additional property that S is linearly independent. Such bases have
applications in certain aspects of Communications Engeneering. In this talk,
an example of such an application will be used to motivate the investigation
- of normal bases. A structural characterization of such bases will be given,
and this will be used to comstruct infinite families of completely normal
polynomials, that-is, polynomials whose zeroes contain normal bases for all
subfields between GF(q) and GF(¢").

S. E. Payne:
New Hyperovals in PG(2,q).

Let ¢ = 2%, F =GF(q). A g-clan is a set

C={A.=(f; ";‘:):teF}

R ‘ of ¢ 2 x 2 matrices over F for which A, — 4, is anisotropic for all s.t € F,
s # t. Since ¢ = 2°. a ¢-clan gives a generalized quadrangle of order (42, q)
with subquadrangles of order ¢ associated with ovals in PG(2.¢). As for
all prime powers q there is also a flock of a quadratic cone, a line spread of
PG(3.q) and a translation plane. For each 4 = 2° there is a new so-called
Subiaco g-clan. When e # 2 (mod 4), i.e.. 5 does not divide q+ 1. there is, up
to projective equivalence. just one oval with a stabilizer of order 2e. When
e = 2 (mod 4), there are two Subiaco ovals. one with stabilizer isomorphic

13
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to Cs N Cye, the other with stabilizer isomorphic to Cs » C,;,. We give here
the one with the larger group, since it is the only case where the description
is rather casy to give. Here GF(4) < F.solet w € F satisfy w? +w+1= 0.
Then the oval has the form O = {(1.¢, f(t)) t € F}u{(0,1,0)}, with
nucleus (0,0,1), where f(t) = —['7"%(&%’%- +t5.

\
K. Phelps:
Perfect Codes and Quadruple Systems.
We consider the question of whether every Steiner triple system of order 15
occurs as the words of weight 3 of some nonlinear perfect binary code of
length 15. We review related results and describe an approach to answering
-this question. We also present some new discoveries.

V. Pless:

Generators for quadratic residue codes over various fields.

A class of cyclic codes called quadratic residue (Q. R.) codes over GF(g) exist
at all prime length p where g is a square (mod p) and ged(p, ¢) = 1. For suchk
a pair of p and g we define @(z) = 3} z' where ¢ ranges over the quadratic
residues in GF(p) and N(z) = 5z for i a non-residue. The idempotent
generator of any Q.R. code is of the form ap + a1Q + a2V. We give explicit
values of ag,a;,as for Q.R. codes over fields of characteristic 2 and 3 and
also for GF(g) where ¢ is odd, the length of pis = 3 ( mod 4), and ¢ divides

p+1

A. Pott:
- A new class of symmetric designs.
(Joint work with D. Jungnickel.)
We describe a construction of symmetric (v, k, A)-designs with parameters

,,=pay’_"‘:l k=p"~1¢*'and )= ps—lq2m-2g"‘l

of order P? "2 q*™~? provided that p is a prime and g is a prime power with

M. Jv. de Resmini:

Hyperovals in Figueroa Planes. )

(Joint work with Nicholas Hamilton, U.W.A. Perth.)

We construct Hyperovals in the Figueroa planes of order ¢*. q a power of
2. which are inherited from regular hyperovals in the Desarguesian plane
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PG(2.4*) which are stabilized by the antomorphism « of order 3. {a}
= Auty,(F3) which provides. the construction of the Fizueroa plane.

M_.A. Shokrollahi:

Stickelberger Codes.

Let p be an odd prime. The Stickelberger ideal S, is an ideal in the integral
group ring Z[G]. G being the Galois group of the cyclotomic field Q(g,)/ Q.
S, anuihilates the class group of Q({p). Ler q be another prime which is
not a divisor of p — 1 (g = p possible '). We study the cyclic code {Sp mod
q) 9. TFo[G] of length (p — 1) and show that its dimension is closely related
to the relative class number of Q((,). )

G. Slmonyl'

Entropy and Uniform Hypergnphs.
Hypergraph entropy is an information theoretical functional on a hyper- .
graph with a probability distribution on its vertex set. It is-sub-additive

with respect to the union of hypergraphs. In case of simple graphs. exact

additivity for the entropy of a graph and its complement with respect to:
every probability distribution on the vertex set gives a characterization' of

" perfect graphes.

Here we investigate uniform hvpergraphs mth an analogous behaviour
of their entropy. The main result is the characterization of 3-uniform hy-
pergraphs having this entropy splitting property. Partitioning the edge set
of the complete uniform hypergraph into more than two parts with similar

_ criteria is also discussed. For k larger than 3 it turns out that no non-trivial

k-uniform hypergraph splits entropy in the above manner.

E. Spence:

Hadamard Matrices of order 28.

We report on an mdependem verification of a recent result of Kimura that
there are precisely 487 pairwise non-isomorphic Hadamard matrices of order
28. We consider also the classification of skew Hadamard matrices of order
28 (in total there are 54) and mention an application of these to the possible
construction of a symmetric (81,16, 3) design. using an idea of Tonchev.

T. Szényi:
Cyclic caps. )
Consider a cyclic Singer group S of a Desarguesian projective space PG(n. q).




and let H be a subgroup of §. We concentrate on the following question:
When are the point-orbits of H caps (complete caps)?
Using clementary properties of fields we give a short proof of some the-
orems by Ebert. Kceping |H| fixed. these orbits are always caps if the
characteristic of GF(q) is large enough compared to |H|.

J.A. Thas:

Symplectic spreads in PG(3.q), inversive planes and projective
planes.

A (line) spread in PG(3.q) is any set of ¢? + 1 disjoint lines in PG(3.q).
The spread S is called symplectic if all lines in S are totally isotropic for
some symplectic polarity ¢ of PG(3,q). An ovoid of PG(3.¢), ¢ > 2.is a
set of q° + 1 points, no three of which are collirear; an ovoid of PG(3.2) is
the same as an elliptic quadric. An ovoid of the nonsingular quadric Q(4, g)
of PG(4.q) is any set O of points of Q(4, ¢) which has exactly one point in
common with each line of Q(4.¢). Symplectic spreads of PG(3, ¢) and ovoids
of Q(4.g) are equivalent objects, and, for ¢ even, also ovoids of Q(4.¢) and
ovoids of PG(3,q) are equivalent objects. )

With each symplectic spread of PG(3,q) there corresponds a plane of
order ¢®. A 3-(g%>+1,¢+1,1)design is called an inversive plane of order g.
With each ovoid of PG(3, ¢) there corresponds an inversive plane of order g.

Here we survey some important characterizations of inversive planes,
the inversive planes of small order, the planes of small order arising from
symplectic spreads of PG(3.¢), and all known classes of ovoids of PG(3,¢)

resp. Q(4,9)-

V.D. Tonchev:

(a) Preparata Codes and a Class of 4-Designs.

(b) The Existence of extremal self-dual [50.25,10] codes and : -
quasn—symmetnc 2 - (49,9.6) designs.

(a) An extension theorem for t-designs is proved. As an apphcatlon, a class

of 4 — (4™ + 1,5,2) designs is constructed by extending designs related to . -
3-designs formed by the minimum weight vectors in the Preparata code of ’
length n = 4™, m > 2. The derived designs are doubles of AG(2m.2).

Although these 4-designs contain repeated blocks, they provide an infinite

class of 4-designs with the smallest known fixed A.

(b) All extremal binary self-dual [50.25.10] codes with an automorphism

of order 7 fixing one coordinate are enumerated. The minimum weight
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codewords viell ( previously unknown) quasi-svmmetric 2 —(49.9.6) designs.

S.A. Vanstone:

Graphs, Codes and Difference Sets

Let G be a finite graph having p vertices. ¢ edges and girth g. 9t is well
known that the cycle space of G gives rise to a binary [q,¢—p+ 1. g]-code C.

In this talk we discuss various properties of these codes. For example. when
pis even and p > 2¢g (p odd and p > 2g + 1) then one can always embed C -
in a binary {q.¢ - p+ 2. g]-code. This is accomplished by showing that cvery
connected graph with an even number of vertices contains an 0dd spanning
‘subgraph. We also determine when the code C coming from the complete
graph is contained in a Hamming code. This result relies on the existence of
certain difference sets in"the elementary abelian 2-group. We conclude the
talk with the discussion of constructing ternary codes from directed lrraphs
and various open problems. :

W. Willems:

Radical Codes.

By results of Berman and Charpin, Reed-Muller Codes over the prime field
I, may be considered as powers of the Jacobson radical of an elementary
abelian p-group C*. From this point of view, one easily sees that the affine
general linear group AGL(m, p) acts on the radical powers J"(F,C;"). More- '
over, via this action ]F,,C"' becomes a uniserial F,AGL(m. p)-module. As’ a
consequence we have the Theorem (Knorr, Wi.): .

Let C be a linear code over IF,, of length p™. Then AGL(m.p) < 4ut(C )
if and only if C is a Reed- Mu.ller Code.

This explains why the Reed-Muller Codes J""‘”(lF;,C;") (1<k<m)
are exactly the duals of the affine geometry codes. Now. from the point
of view of group theory, there is no reason to restrict ourself to elementary
abelian p-groups and the prime field. So let A be any finite field of char-
acteristic p and let G be a finite p-group. Let U be a subgroup of G with
|G:U|= y"‘ and consider the radical powers 1$J"( KG) of the permutation
‘module 1 endowed with the natural basis {Uglg € G}. With this notation.
a student of mine, A. Faldum, proved:

VTheorem: (a) i dim ng'(KG) : dim J*(KC;') > 1. then for the
minimum distances we have d(15J"(KG)) : dLJMRCT)).

(b) Suppose equality holds everywhere and dimJ*( KC) ¢ {0.1.p™ -

17




1.p™}. Then cither () UL Gand G/U = Cl or (2) p=2,r =25~ 1 and
some conditions on the group G.

Remark: The Code lPJ '(I\ G )in the latter case is eqmvalent to JY(A'CY)
for r=12s~1. -

Swnmarizing the albove results we see that in the large class of radicals
of permutation 1 modules over p-groups. the radical powers of a group-algebra
over an clementary abelian p-group (which are the Reed-\lluller Codes for
K = [F,) are optimal.

R.M. Wilson:

Two-error-correcting codes and absolutely irreducible polynommls

over GF(2).

Let n = 2" + 1, let w be a primitive element in GF(2"), and let C, denote

the set of binary polvnomials f(z) of degree < n so that f(w) = f(w') =

That is, C, is the binary cyclic code of length n generated by m,( z)m,(z).
Words of weight < 4 in C, correspond.to zeros of the projective plane

curve .

) '_ ' -'_'z‘+y‘+.z‘+(z+_y+z)"‘
)= T G A+ 9

with distinct coordinates over GF(2"). Factorizations of g;(z,y,z) for t =
241 and t = 2% ~2° +1 can be used to prove that such words do not exist,
i.e. that C, is two-error- correctmg when ¢ has either of these forms with
(i,r) = 1.

We conjecture that g¢(z,y, ) is absolutely irreducible if ¢ does not have
one of these two forms. If gi(z. y, ) is absolutely irreducible, then the codes
C, are two-error-correcting for at most finitely many values of n = 2" — 1.
We prove the absolute irreducibility of g,(z.,y,z) for ¢ = 3(mod 4), t>3.

- This is joint work with H. Janwa and G. McGuire.

R.M. Wilson:

Blanchard’s theorem on asymptotxc existence of transversal
designs of strength ¢ > 3.

This talk describes a recent resuit of John Blanchard. A transversal de-
sign TD(t.k,n) consists of a set X of kn poiats partitioned into k groups
G1.Ga, . ... Gk of size n and a family A of transverse A-subsets so that every
transverse t-subset of .\ is contained in exactlv one member of 4. Here. a
transverse subset of ' is one that meets cach group G; in at most one point.
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Transversal designs TD(2.k. ) are equivalent to & — 2 pairwise orthogonal
Latin squares of order n and the Chowla-Erdés-Straus theorem asserts that
these exist for all n sufficiently large with respect to &. Blanchard’s theo-
rem is that for any strength 7 and block size k.t < k. transversal designs
TD(t.k.n) exist for all n > n(k).

The proof combines recursive constructions and direct constructions in-
volving finite fields. We specifically discuss a rechnique that may be called
‘spreading blocks’ where a family of subsets A of a set U rhat covers some
t-subsets q times and others not at all may be ‘lifted’ to a family of trans-
verse subsets of U x V that covers uniquely those and ouly those transverse
t-subsets that project onto covered subsets of U/, when q is a prime power
and where V is a vector space over GF(q) of dimension d > (“," h.

N

V.A. Zinoviev:
On Preparata-hke Codes and 2- Resolvable Steiner Quadruple

Systems.
(Joint work wuh A.R. Calderbank.)
A binary code with length n = 4™, m = 2.3..... minimal distance d = 6

and cardinality N = 297%™ we call (extended) Prepatrata-like code and
denote it by P. A binary code with parameters n =27, d = 4. .V = n=l-u
we call (extended) Hamming-like code and denote it by 'H. We have several
new statements.

Theorem 1: Let P be any Preparata-hke code of length n = 4™. Then
the Hamming-like code H which contains P (for any P thereis a.lwa.vs al
such that P C H) is partitioned into P andits translates. This partition is
completely regular in this Hamming code H.

Theorem 2: Let P be any Preparata- like code of length n. Then this
code implies the existence of a 9-resolvable Steiner svstem S(3,4,7n).

Theorem 3: Let P and P’ be any two known nonisomorphic Preparata-
like codes of length n, n = 4™, m = 3.4,.... Then these codes induce

- nonisomorphic 2-resolutions of the same Steiner system §(3.4.n) (which
are planes of the affine geometry AG(2m.2)). )

Berichterstatter: D: Hachenberger
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