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Die Ta.gung fand unter der Leitung von Herrn Jun.gnickel (Augsburg) nnd
Herrn van Lint (Eindhoven) statt. .

The 1994 meeting on Designs and Codes was the second one on this topic
in Oberwolfach after the first conference in April 1990.

Design Theory and Coding Theory are two areas in Discrete Mathe­
matics which are closely related and of. course. hoth communities benefit
from the opportunity to bring together leading researchers working in both
areas, which was one of the main aims of this conference. There were 43
participants from 12 countries. among them 16 from North America.

Of the many interesting lectures, two talks provided particular hi~h··

lights by solving major longstanding open problems. First. the puzzling
formal duality betwP.en the Preparata and Kerdock codes has finally been
~~pla.ined by realizing tha.t these non-liD.ear binary codes are projections of
linear 7l4 -codes which are in fact duals. Secou(Uy, a major hreakthrough
in the asymptotic existence of (lesigns has heen a.chieved hy proving that
ortho~onalarrays of arbitrary stren~th t (with k rows and index 1) ~xist for
a.l.l sufficiently lar~e orders (for fixed k. t). This is thc first asymptotic resl1lt
for desi~ns with t 2 3. .
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Vortragsauszüge

R .. Ahlswede:
N umber theoretic correlation inequalities' for Dirichlet densities.

For sets ~-l! BeIN! the set of positive integers! consider the set of least
common multiples tA. B] = {[a, b] : a E ~4, bEB}, the set oflargest camman
divisors (A,B) = {(a!b): a E A,b E B}., the set ofproducts A x B = {a·b:
(l E A. bEB} and the set oftheir multiples ilf(A) = Ax iV~ J.~(B), A{[A~B],
.!Y.f(A. B), and ~vJ(Ax .(1), respectively.

Dur first discoveries are the inequalities

dAl(A,B)· dM[A,B] ~ dM(A) ·dM(B)

dM(A) .. dM(B) ~ dM(A x B)

(1)

(2)

where d denotes the asymptotic density and A, B are finite. The first in­
equality is hy' t"he fa.c~or di\l(A, B) sharper than Behrend's well·kno~n In­
equality. The sec~nd inequality does· not seem to have number theoretic
predecessors". \,

The next discQvery" is that( 1) can easily be d~rived from the Ahls­
wede/Daykin inequality via, Diri~et series. Actually, we found this way
the much more general inequality

Il( A, B) .Q[A, B] ~ .!lA . J2.B~ (3)

wher~ !2 denotes the lowerDirichlet densityand A. B a.re arbitrary subsets of
IN. T4e applications of the AD-.inequality ~ive now correlation inequalities
not only in Statistical Physics (Harris. FKG), Probability Theory (Holley)~

Combinatorics fKleitman. SeymourIWeh~tct. MaricajSdiönheim)~hut also

in ~umber Theory.
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E.F. Assmus, Jr:
Where does the Mattson-Solomon polynomial Hvp. .:

\Vp. ~i\" .... a.n plementary proof of Bprman's Th('()r~m chara("t('rizing t.he Reet!­
ylll11er n)(le 'R.( IJ.! 111) a.s .Im-re where J is t hf.' .JaCObSOll r;ulic:u of thca ~rOllp

rin~ IF~{Gl wbcre G is a.n elementary ahp.lain 2-grnllp uf ordpr ~fJI. Tlw
f'ssentia.l UCW iUJ!;rcdient is the obs~r\"ation rhat R.c n. m) is ~{,llPra.t(ld by tlw

chara.cteristic functions ·of thc (.,n - n )-dimensional .":fLb.-:pt1l:t?s of thf' atfinca·
geometry of G ::::: 1FT.

\Ve c.ontra.st this \·ery easy prooi ~ith the CUrrf'Uf. 1110rt' involved proof
of Charpin!s generalization to IFp of Berman's Theoreul. \Vp. nlake same
progress in simplifying this discussion by describing . in r.he tuost general

case - an Irq-algebra isomorphism between the IFq-algehra

lFq [x J, ••.• X m II ~..t1- ~ 1 ~ ••.• X~ - .r f/I )

and the lFq-algebra. of fixed points of theFrobenius nlap. "
algebra

Th.Beth:
Designs, Codes and- Puzzl~s.

Owing to the more practical problem of finding . the algebraic classification
of the solution for a special rather complicated toy puzzle! commerciäJiy
available under the name DISCO! we consider the follo\ving

Pegging Problem: Let ~V = {wo, .. ~ •Wd-l} be a tr~.nsvp.rsal for the d =
14 orbits of the group G = ~6 acting regularlyon the coordinates of W =
GF(2)6. By canonically embedding W ~ GF(2)[=J!( _~6 - 1) with the action
716 3 i : w(z) ~ ziw(z) mod (z6 - 1) the problem reads:

Find an arrangement ik E G.j E Sd

of cyclically rotated words of 1V in such a way t.hat rovery. r.olumn .4j in
A( :,) = L?=o Ai zi .can bp partitioned into disjoint words ()f 3 consecutive .
ones. forming the pegs.
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() () ()
St~veral a.pproaches to solving tll.i5 problem alJ?;orithmi-

1 0 0 (:~illy in· spite of the huge searchspace of (13!) .6:).32 .2
1 1 0 ;lJ:'e presented. Byconsidering the pa.tterns in ~V a.s
1 1 1 vectors of GF(2°) with respect to a normal basis over
t1' 1 1. G F( 2) the canonical isomorphism71f) :::= 713 x Z2 allows
n 0 1 a design type solution in an efficient ;Ugebraic rlefini~
n n '0 Hon ofsequences in GF(4)3 withGF(4) = {l.o,u +
() O! {\' 1 =0 2 ,O}. The solution reads a.s in the figure. •1 n er From here it was similarly easy, to give an algebraic
1 0 fl construction for the modified Pewng Problems
1 Cl' Ct

0' Cl' Q
(a.) with G. = JZ6 on W - {ll

0 Cl' 0
(b) with G =D6 on ltV

0 0 0 the latter one being the commercially available toy.

Open questions are posed as to which dass of designs or codes the presented
solutions belang.

1.- F. Blake:
'Decoding Reed-Solomon eod.es.

The \Velsh-Bcrlekamp _algorithm is an efficient means of deco.ding Reed­
Solomon codes thcit does not involve ,the camputation of syndromes. A.
brief description of this algorithm is given~ showing in particular how.the
set of equations requiring simultaneous solution~ is carried out. It is also
shown the problem can be translated to an algorithm for the solution of
polynomial congruences. A new module theoretic approach to the solution of
such congruences is proposed. From this approach new and efficient parallel
algorit~ms to salve the WB equa.tions are derived.

A. Brouwer:
Correspondence between symmetrie bilinear forms and alternat-
ing forms.
In a dual polar space (in the classical situations where ma..'Cimal totally

.isotropie or totally sinKUlar subspaces have half the dimension of. the sur·
rounding space) the collection of Li. (Ls.) subspaces .clisjoint from a ~ven

one can be naturally ideutified with aspace of forms or matrices: one gets

•
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(i) ;ill a.lcl'rua.till~ Ultl.trif'ps (frOlll D,,)
(ii) all S~"IUllnl('tric matrit:ps (froul e,. J

(iii) all HprIllitian matricps.

Not.ill~ tha.t a. nOllc.legenerat.e h~'p(lrplilll(, in a D" ~Pc)lÜc.'tr~· ":lrries a.

IJrr - 1 ~('Om(t'try. and that in- ev('n- rhar;\rteristic D,I-l .~ e,,-I. WP find in
"'"Pll rhara<:teristic a one-to-oue. corr(3Spoll<lPllCP.

hetwffn symnietric matriees of order m and alterna.rin~ Inatrices of order
order m+1. One of the eonsequenees is a geometrie f3xplanation of a propert~·

noted by Calderbank. ._~ ...;'

.0.\. A~Bruen:
(a) 103 configürations in Desarguesian planes.
(Joint work with J .C.Fisher)
(b) Independent sets- of points in projective and affine sp~ces.

(Joint work with D.Wehlau and L.Haddad
O

)

(a) \Ve brieily discuss a beautifül observation by ·G. Pickert~ pursuant to a
paper by Bruen a.nd Fisher, on the embeddability of a ('ertain 103 configu-
ration in a projective plane which is Desarguesian but not Pappian. -

(b) In PG(n.q) let S be line-free. Then S. the complementof S, intersee-ts
all lines. H 5 does not ocotitain a. hyperplane wc say t.hat .S is projecii~p.:
otherwise, S.is affine. H S is projective, eaeh hyperplane r.ontainsat least
one point of S. ·We elaborat~ on the following observation: -

lfl51 is large, S mu.sOt bEi affine. In particular. in PG(n.2l. if 151> .j·2n -:l .

then S must be affine.
We also desribe other intersection properties in PG( n. 2),0 Results similar

to some of these have been obtained by E. Clark alld by A.A. Davydov and
L.M. Tombak.

The.geometries AG(n.3l and PGt n. 2) are Steiner tripie s~'stems i\ud
(olourin~s oftheir points. such that no line is Inonochromatic. are of interest.
These colourings give line-free sets. In AG( 4.3) we show-that a line- free set
l1as at most 20 p«?ints and WP. tlescriohe geoluetrically.rhe nnique line-frett spt.

0n 20 points. (Part "oC-titis fpsult. a.t Imtst. is duft orü~inally·to R..Hill.) \Vp.
also skirinish with linc-free s~ts in .-\Gl:>. 3).
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·A.R. Calderbank:
Codes, Geometries and Extremal Sets of Euclidean Lines with
Prescribed Angles.

We dcscribe how Kerdock codes over the binary field 71 2 and over the rinl!;
7l.. c.;f integers nlodulo. 4 determine e..xtremal sets of iines in real and com­
plcx Euclidean space with only two angles. Extraspecial 2-groups serve a.s

the hridge between discrete and Euclidean geometries. Classical geomet-­
ri,cIgraup theorctic connections between binary symplectic -and orthogonal
ge<?metries are expressed as a. correspondence between binary symmetrie
m x Tn matrices and binary skew-symmetric (m + 1) x (m + 1) matrices.

G. Cohen:
GeneralizedoWeights (upper bounds).

The generalized i-distance d. of an [n~ k] binary linear code C is the minimum
size of the union of the supports of i independent codewords of C. \Ve derive
new tIpper bounds on d. (Hamming, Plotkin. Elias). For the last one. which
is -the strongest asymptotically, we need a nonlinear extension of the concept
of i-distance:

Definition: Let C be any binary code (subset of lF2). Then set

d.(C):= minlsuPP(Ct + t) U SUPP(C2 + t) U ... U SUPP(Ci + t)l,

where the minimum is taken over all (i +1)-tuples (t, CI, C2, ••• , cd such that
Cl + t. C2 + t~ ... ~ Ci + t are linearly independent.

Theorem: Fix i. Let R(6.) be the largest possible asymptotic rate (kin)
ofa code with normalized- i-distance di/n = 6i . Then

where H ( .) is the binary entropy flLlction and ..\ is the smallest root of

6•.= 1 ~ xi+1 - (1- x)i+l.

M. Daberkow:
Computing invariants of algebraic number fields.

We gave a list of major problems in the field of constructive algebraic number
theory, which is due to H. Zassenhaus: .

For a. given number field F \Vp, are intcrested in the (amputa.tion of the

followin~ in~ia.nts of F:

G

•

•
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· thC' rinJ?; c)f iut<,gcrs 0,..
· fhe nnit .~ronp (iF

· t.hC' dass .~rOllp Cl,.. and the rIa.-;s Ilunlhp.r h /0'

· diP GaJois grollp.

Startin~ with i:he Round-2 ~orithm by H. Za..,;sp'Ilhans. we presf?nt('d Sl)Il1t~ ­

al~orithms for the r.onstruction ofilltegral basis anti iutrotlufc·d th(' ic.lea of p­
ma.xinlal ovprorders. Based on the ROlllld-2 we s"llow~d SOlO<' impron:trnents
nsing. p-a.dic numbers. If the field·F = Q~( fl') is gellerar.ec.l hy a. root of

the -polynomial f(t) E 7l[tJ;one can use a fac.tor~zatiou uf f Il1odulo p anti
Hensel"s Liftin~ to get polynomials fl • ...• fk, such that"thp. p-ma~ma.1order
of lZ[ü] can"be derived from the p-nia.ximal orders of Gi := Q[tJ/(I.(t))
(1 S; i ~ kl.

The final part of the talk dealed with the problem of rela.tive integr~

bases in extensions ElF with Q'~ F ~ E. In the rase [E : .F] = 21:~a
solution 'of this problemhas been given. ~~ .

F. De Clerck:·-·
On' Generalized Q':ladrangles l11:inus a Hyperplane.

P.J. Cameron raised the question' of finding a characterization of partial
quadrangles. which have linear representa~ions. An almost complete answer
was given by R. Calderbank et· al., the proof was a number-theoretic one.
Here we discussed a more generaJ.class of geometries. Sp~ those coming from
generalized quadrangles 'S by deleting the set pi." for a point "p of S. SP"
has the .property that -it is a (0,1 )-geometry, hut the graph-is only strongly
regular (hence Sp is a partial quadrangle) if t = s1. Sp h<;LS ihe property (*):

If L and 1.\1 are two disjoint liries of Sp, then there are either O~ s - 1 or
s lines of Sp concurrent' to both -~ and Jl.

Dur result (joint work with Hendrik Van j\!laideghem) is:"_
If T~(K) (n 2: 3) is a linear representation of a {O.l )-geometry satisfyi~g­

(*),~d if s > 2~ then T~{If) is the·partial quadran~leT';(O), 0. an ovoid.

J. Doyen:
Lotto Numbers'and Steiner Systems..

The Lotto number L( n~ k.l. tj is defined as· the smallest Ilumber of k-subsets
(= Lotto tickets) of the set l.V = {L:2..... IL} :-inch th~t any l·subset of :V .
meets at least oue of them in at least telements t this l-snbset is interpreted
as th~ set of winning numbers). \Ve gave lowp.r a"nd. llpper hOllnds for the
numbers L(42.6.6. t) and L( 49.6.6. t) r.orr!'spondint( to the Lotto a.s playn~l
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in Dt'IAilllll a.11tl G(~rmany. The llpper hOllnds often llse Steiner systpms. For
C'xc\luple~ llsin~ Denniston 's S( 4.6.2;), we get 1014 $ L(49.6,6.4) $ 13120
(a.fter thc .talk, this llpp~r hOllrid w~ lowe-red to 3784by Andries -Brollwer).

D .. A .. Drake:
A Theorem on Squeezes in the Game of Bridge..

Let p he the number of eards remaining per hand, and let r be t.henumber
of tricks which can run by NorthjSouth· in a no-trump contract. Then
North/South can only "squeeze" East/West out of another trick if r = 1
and p = 3 or if p S; 2r. There are no squeezes with p < 3. and the inequality
is best possible for every p with 3 =5 p =5 12. It is also true that the only
no- trump squeezes with p = 2r are tripie squeezes.

T. Etzion:
Generalized designs and constant weigh~ codes over finite alpha­
bets.

We consider optimal constant weight codes over finite alphabets. These
codes can be considered as generalization of Steiner systems. Other codes
a.re reductions of orthogonal arrays inta constant weight codes. Finally,
in same of these' codes two types of Steiner systems exist, generalized a.nd
non-generalized.

M. van Eupen: .
An optimal ternary [69~ 5,45] code and related ,codes.

A ternary [69.5145] code is constructed, thus solving the problem of finding
ehe minimum length of a temary code of dimension 5 and minimum distance
45. Furthermor~. this code is shown to be a unique two-weight code with
weight enumerator 1 + 210Z45 + 32z54 • It is also shown that a temary
[70, 6. 45]code~ which would have been a projective two-weight code giving
rise to a. new strongly regular graph, does not exist. In order to prove
the main results, the uniqueness of same other optimal temary codes with

·sp·ecified weight enumerators is also established.

D. Hachenberger:
On Finite Elation. GeneraliZed Quad~angleswith Symmetries.

\Ve consider thc strllcture of finite p;roups which act a.s elation groups with
symmetries on finite generalized qlladran~es. Such a group is related to
the translation group of a translation transversal desi,e;n with parameters

•
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llcpPIldin~ on that of t.hc cluadra.u~le. Using; rp~l1Its on t.h(' :-;trncttu(' of 1'­

~rOllps whir.h act a.s translation ~rOllps on il rra.ns\~crsal (l('~i~ll. ;UlJ f{'snits
on the index of the Hll~hes 511b~rollp of a. finite p-~r()llp. WP cau show how
fp.strictcd ehe strllcture of an elation gronp with sYll1111etri(~s uf SOIlH' fillitf'
~eIleralized Cl lla.drangle iso One of onr main results is rlu' followillg:

If G is a. finite .e;ro-llp of f'ven order s'!t which ;uhllits :l -t-~Olla.l fanlil~'

(F, F-) of t.YPt~ (s. t). and if one melnber of F is a Horn1al sl1b~ollp uf G~

then. lleccssaril~l. G is an elementar~' abelian 2-grollp~

W. Haemers:
Spreads i": Strongly Regular Graphs.

Let G be a strongly regular graph with eigenvalues k. rand $. (k > r > .~).

Deisarte proved that a clique has at most 1 - k/s vertices. Cliques witp.­
this size are called lines. A spread of G is a partition of the \'ertex set into
lines_. Such a sprea.d gives rise to a 3-class association scheme. A necessar~~­

condition for the complement of G to have a spread is kr ~ $2. Examples
corne from.spreads and f~s in (partial) geom"etries. An interesting exampJ~

was found by Tonchev, who found spreads in t~e NIcLaughlin graph. ~..

R. HilI:
"M~termind" for four-year-olds.

We consider some variants of thegame of "Mastermind" including the f()l-
lowing version. which is suitable for plaY. with 4·year-olds. .,.

A coder chooses a codeword which is apermutation (i.e. no repetition~).

of k calours from n. A guesser must determine .the codeword by makirig
guesses, each guess being a permutation. After each guess the -coder s~y~

which· colours are correct. Let f( n, k) be the smallest number of guess~s'

needed to determine any codeword. Clearly f( n~ k) ~ n and we co~jecture

that f (n, k) =n for all n and k (k ~ n). The' conjecture is easily proved for
k ::; 4 (all n) and for n = k .

J.W.P. Hirschfeld:
Projective Geometry Codes.
Let Al be a b x v incidence matrix of v = IPG(O)( n~ q)l points and b
IPG(r)(n, q>lsubspaces of dimension r for a finite projective spacePG(n. q).
Let C( T, n, q) be the code generated over Irp, p prime where '1 =ph ~ by the
rows of lvf anq let C·( T. n. q} be the dual code. whirh therefore represent5
setsof wei~hted points meeting each r-space in a. tnultiple of p points.
Hamada ~s· formula says that
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where the first Sllm is over+ al1 ordered sets (.so, ... ~ Sh) of h + 1 integers Sj

such that

Sh= ·~o, 0 ::; .'3j :5 n - r, 0 S Sj+1P - Sj :5 (n + l)(p - 1),

~d

L(Sj+l' Sj) = l(Sj+lP -' Sj)jpJ.

1t 'is shown that, when h = 1-, this fonnula can be replaced by a single

summation:

C.Y.Ho:
Regularcol1ine~tiorigroups oi a ßnite projective plane.

Wemention the following results:.

(1) A characterizati~n of an abelian planar Singer group .....
(2') The multiplier gronp of a planar Singer gronp always fixes a line.
(3) Let H be an abelian group of multipliers. of a planar Singer group of

planar order 'ri. If IRI :::: n'+ 1; then,n2 + n + 1 is'a prime.· H IRI is odd,

then IRI is at most n + l.
(4) For any comple.;" number x, let v( x) :::: x 2 .+ X + 1. If pis any prime

different from 3 and m is any positive integer! then v( m P ) =Ot7E<O> v( mu),

where () is a. comple.."( p-th root of unity. Also the greatest common divisor
of v(m) and v(mP)jv(m)divides p.

(.:;) Suppose an abelian Singer grollp is not normal in the collineation
group. If the planar order n, is not a squareor n :::: m l with m =2.3 ( mod

4). then the plane is Desar~uesia.n.

10

•

•
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J.D. Key:
Extending Steiner tripie systems using codes.

\Vp llSt' the linear eod<- assoc.iatcd with a dcsiJ,!;ll by fOrtllill~ the ~pan" spa.nned
by the incidence vectors of the blocks over a finite field lFJH where p is a..prim('.
to givp same partial a.nswers to thefollowing questioll: Can l."\"('r~· St.einpr
tripie system he extended? . -

Let 'D be a. 2 - (I'. 3. 1) design a.llel let Cp( V) (lpIlote i lS code o\"(~r Ir1).

"Thcn if p = 2 and 2d - 1 ~ I.' < ~+I - 1. C'.!( TJ) ~ 'Hd~ a. Halulning ro(le:
if p = 3 alld 3d __ 1 "~ 11 < 3c1+1 • C:i(V) ~ 'RIF1 (2(d - l).d). a generalized
Reed-ivluller code. From this we have:

(i) If·v = 2d - 1 and dim( C2( 1») =2d - d. theil D can he extended and
in such a. way that the binary code of the extension is the extended code:

(ü) if v = 3d and dim(C3('D) = 3d - d, then V can be extended. ~.~

I. Landgev:
Nonexistence of some Quaternary Codes.

We demonstrate the nonexistence of quaternary codes with parameters
(56,4. 41], (104~ 4, 77]. . .

This result violates .also codes with parameters [5;.4.42], (105.4. ,S);
[106~4~ 79], [10i,4~80].

Thus the only value of d, for w~Ch n4( 4. d) remains "unknown is d = 37.

S.L. Ma:
Regular Aut?,morphism groups ~n partialgeometries.

Suppose a partial geometry pg( s+ 1, t +La) admitsan automorphism group
G a.cting regularlyon the points so that the points of the geometry can 'be­
identified with the' elements' of G. Let ~o, L., . .. , L t be the lines passing
through e. I find that G is a direct product of two groups of relatively prime

orders and if L, = L~-l) for all i: then the geometry is a translation net. ­
Applying the result to the case when s = t and G is abelian, I find that
either the geometry is a translation net or all "the lines of the ~eometry are
of the form gLo, 9 E G. Also. for the latter case~ ill known. exa:mples have
p~ameters a' = S or".') + i except for the pg( 6.6.2) ohtained by van Lint
and Schrijver which has (s. a) = (5.2). I have checked thai this is the only .
p.xample if s ~ ·500.

LI.
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s. S. Magliveras:
Block Transitive Resolutions of t-designs and Room Rectangles.
(Joint \~ork with R.,A. ,Liebler and -5. V. Tsaranov)

We fall ~ i)a.rtition of_the trivi~ design (~) of all k-subsets of a. tJ-set .X
-int~ t. - (v' ~ k• ..\) designs, v' $ - l}~ aresolutio,n- of t~designs. Aresolution uf
t-«1csi~l1s with I} = v, is also caIled a 'la7YJe set of t-designs.. A Room rectangle
R. bas(~d on ("~) i.s a reetangular array whose nonempty entries are k-sets.
This array has the fur~ter property that taken toge~her the rOWl; (columns)
form aresolution of t, -(t2)-designs. One of these structures admits G as a
block transitive automorphism group if G is apermutation grOllp on the set
...\ leaving in'variant the structure and the k-sets of ...Y fall in a single G·orbit.
Some examplesof bloCk transitive resolution~?f ~ontrivial t·designs t ~ 2

are:
(1) an.JJu-invariant set.of 3 - (10,4,1) designs,
(2) an l\;I,'z-invariant set of 4 - (11, 5~ 1) designs,
(3) an .tlf2.a-invariant set of 2 - (21~ 5, 1) designs~

(4) a prL"1( 26 )-invariant set of 3 - (26 ,4,1) designs (s = 3 or 5)~

(5) a prL2 (.32)-invanant set of 2 - (16~4.1) designs, and
(6) a varlety of PSL2( q)·invariant sets of 2~d~signs wii~ k =.3.

We show that this is a complete list. In particular there are no bloc~ tran­
sitive targe sets of t-designs. Moreover,. if 1 f:. a < b < c are odd integers
such that gcd(a. b) = 1 andablc,· then we eonstruct a block transitive Room
rectangle based on the 3-subsets of a 7c + I-set whose rows (columns) are
Steiner tripie systems on 7° (7b) point.

K. Metseh:
Characterization of certain distance regular .graphs.

We pres~nt some recent results that characteIize the following distance reg.:.

Ular graphs in te.rms of their .parameters.

(1) The folded Johnson graphs J(2m,m)~ m-~ 6.
(-2) The folded halved cubes' of diameter d ~ 8.

(3) The Grassmann graphs r(e~ q, n) for q ~ 4, 2 < e < n~l.

G. E. Moorhouse: .
New distance regular graphs related to Preparata codes~

(Joint work wirb D. de Caen and R. ~lathon.)

\-Ve present a new family of antipodal (lista.nce rc~ular graphs f( q~ 0) uf
mameter three. relateu to thc rlassical Prcparata. codps. Here q =2lt

-
1 and

12 -

j'

•

•

                                   
                                                                                                       ©



•

•

((T) = :\11 t( G F( q)). TIte ~ra.ph f( q. (1) is a. tI-raid ro\'(~r of l\"'!q. For '/ ~ ~;'.

\VP hav(' IAlltr(q~~)J = 2q(q-1)(2t-l)~ ;uul f(q,tT') ~ r(,/.lT) iff(T' = rr±l.

These rp511lts are analogous to tbosp. of Kantor (1983) for (~xt('nded Prf'parata.
codes. Moreol"cr. the Pr('parata. codes. Ina~" he syntll('tic:a.ll~· protlucecl from
our graphs. TIte three.c1ass association scheme for f( q. (1) is formally dual
to the scheme for the known systems of linked S~·l1111wtric clesi~ns arisin.g
from Kcrdock sets. This formal duality apppars to be rf'lat.,d to the formal
cluality hetween Preparata and Kerdock codes. It is h("~p(~tl that tbc algehrair.
duality hetween 7l4-linear freparata and Kerdock codes (rerently discovered
by Sloane, Calderbank et al.) may help to explain this.

R. Mullin:
The Structure of Normal Bases over Finite Fields and same --.::-

. ".?,

Specific Completely Normal Polynomials.

A normal basis of a. finite field GF(qn) over GF(q) -can he Jefined" to be"' a
set 5 of zeroes of an irreducible polynomial of degree Tl; over GF( q) which
has the additional property that S is linearly independent. Such bases have
applieations in certain aspeets of Communications Engeneeting. In thi~ tal.k:·
an example of such an application will be used to motivate the investigation
of norm'al bases. A structural charaeterization of such bases will be given.
and this will be used to construct infinite families of completely normal .
polynomials~ that 'is~ polynomials whose zeroes contain normal bases for all
subfields between GF(q) and GF(qn).

S. E. Payne:
New Hyperovals in PG(2,q).

Let q = 2e
, F =GF(q). A q-clanis a se~

c = {A. = (~. ;:): t E F}

of q 2 x 2 matriees over F for w hich As - A.t is anisotropie for all s. t E F!
S ~ t. Since q = ~. a q-c1an gives a generalized quadrangle of order (q2, q)
with subquadrangles of order q associated with ovals in PG(2.q). A.s for
all prime powers q there is also a flock of a quadratic cone. a line spread of
PG(3·.q} and a translation plane. For each iJ =2r tbere is a new so-r.a.lled
Subiaeo q-clan. When e ~ 2 (mod 4), Le.. 5rloes not divide q+ 1. ther~ iso ttp
to projeetive ~u..ivalence. just one oval with a. stahilizer of order 2e. When
p. == 2 (mod 4). there are two Subiaco ovals. one with stabilizer isomorphie

13
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to Cr, :--tC·le , the other with stahilizer isomorphie -to C~ ><! Ce/ 2 • We give here
thc Olle with the lar~er p;rollp, since it is the only case where the description
is r;'Lther easy to give. HereGF(4) ~ F. so let 10 E F saÜsfy w2 + tu + 1 == O.
Then the oval has the form 0 = {( 1. t, J( t)) : t E F} u (CO, 1, O)}, with

I (0 -0 1) h J(). U1:Z(t{+t) ·1nuc C\15·, • ,w ere t = (t 2+wt+l)' + t:z.

\

K."Phelps: _
Perfeet Codes and Quadruple Systems.

"vVe c:ollsider the question of whether every Steiner tripie system of order 15
occurs as the wards of weight 3 of some nonlinear perfeet binary code of
length 15. We review related results and describe an approach to answering
-this question. We also present some new discoveries.

v. Pless:
Generators ror quadratie residue codes. over various fields.

A dass of eyclic codes called quadratic residue (Q.R.) codes:over GF(q) e..~st

at all prime length p where q is a square (mod p) aild gcd(p, q) =1. For such
a 'pair of pand q we- define Q( x) =Lxi where i ranges over the quadratic
residues in GF(p)a.nd iV(X) =. E xi for -i a non-residue. The idempotent
generator of any Q.R. code is of the- form ao +atQ +a21V. We. give explicit
values of ao, at, a2 for Q .R. codes over fields of characteristic 2 an-d 3 and
also for GF(q) where q is odd, the length of pis =:: 3 (mod 4), and q divides
p+ 1.

A. Pott:
A new elass of symmetrie designs~

(Joint work With Q. Jungnickel.)

We describe a construction ofsymmetric (v, k, A)-designs with par~eters

v =p.. q:zm_ t . k =p..-lq2m-t and A = p",-lq2m-2 P,-1_t
q-l ; p-l

of order p28-2 q2m-'l provided tha.t p is a prime and q is a prime power with
f:=lq == p-l .

M. J. de Resmini:
Hyperovals in Figueroa Planes.
(Joint work wit.h Nicholas Hamilton, U. \V.A. Perth.)

\Ve construct Hyperovals in the Figueroa planes of order q3. q apower of
2. which are inherite.d from rc~u1ar hyperovals in the· Desarguesian plane

l-l -

e·
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PG( :!.qJ) whirh an' srabiliz('tl h~' r.hl' ~'l1r.onlorphislll It uf onh'r :1. {n}

= AutlJo'" ( lFflJ ) whic.h providps. r.h(' c:oIlstrllrtioll or rhc' Fi~~1C'roa. plaut'.

M.A. Shokrollahi:
Stickelberger Codes.
Let p he ~Ul oti(l prime. The Stick{'lberger ideal Sp is an ideal in rhl' intc~ral
grollp ring 7l[G]. G heing; th(' Galois grollp i;f rohe cydntolDir fi{'ld a~«(p)/<Q.

Sp a.nnihilatcs the dass ~rOl1p of Q«(p). LeT. rz he anoth(\f prÜDe which is
119t a. di,,;sor of p - 1 (q =p possible!). \Ve ~tudy r.hf' eyclic codC' (SI) find
(J) :::!" lFq [G] of length (p - .1) anti show t hat i ts «lim~usioll is dosel~' related
to the relative dass number of Q((p).

G. Simonyi:
Entropy" and Uniform HypergT3.phs.

Hyp~rgraph entropy is an information theoretical functional on a. li~;per'­

graph with a. probability distribution on its vertex set. It iso sub-additive
with respeet to the union of hypergraplls. In ease of simple graphs. exact
additivity for the entropy ofa graph and its complement with respect to:·
every probability distribution on the vertex set gives a charaeterization" of
perfect graphes.

Here we investigate uniform ~ypergraphs· ~ith an analogous behaviour
of their entropy. The main result is the charaeterization of 3-uniformhy~

pergraphs having this entropy splitting property. Partitioning the edge set
of the complete uruform hypergraph into more than two parts" with similar
criterfa is also discussed. ·For klarger than 3 it turns out that no non-trivial
k-uniform hypergraph splits entropy in the above manner.

E. Spence:
HadaJPard Matrices of·order 28.

.\Ve report on an· independent verifieation of a. recent result of Kimura that
there are preeisely 487 pairv.jse non-isomorphie Hadamird matrices of order
28. We eonsider also t~e classifieation· of skew Hadamard matrices of .order
28 (in total there are 54) and mentionan application of these to the possible
construetion of asymmetrie (81. 16.3) design. l1sing an idea of Tonehev.

T. Szönyi:
Cyclic caps.

Consider "a. eydie Singer group S of a Dpsar~uesian J>r~jf;'ctivP. space PG( n". fJ}.

1.)
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an<! lp.t H hp. a. sl1b~ronp of s. We f.onccntrate on the followin~ question:
\Vlwn are the point-orbits of H caps (complete caps)?
Usillg clelnentary prop"erties of fields we give a short proof of some the­

or~ms by Ebert. Kceping IRI fLxed. these orbits are always caps if the
ch~actcristic uf GF(q) is large enough compared to lEI.

J.A. Thas:
Symplectic spreads in PG( 3. q), inversive planes and projective
planes. •
A (line.) spread in PG(3~q) is any set of q2 + 1 disjoint lines in PG"(3~q).

The spread S is called symplectic if alliines in S are totally isotropie for
some symplectic polarity ( of PG(3, q). An ovoid of PG(3. q), q > 2. is a
set of q2 + 1 points~ no three of which are collinear; an ovoid oi PG(3.2) is
the same as an elliptic quadric. An ovoid of the nonsingular quadric Q(4, q)
of PG(4. q) is any set 0 of points of Q(4, q) which has exactly one point in
common with each line of Q( 4. q). Symplectic spreads of PG( 3~ q) and ovoids
of Q( 4~ q) are equivalent o~jects, and~ for q even, also ovoids of Q(4. q) and
ovoids of PG(3, q) 'are equivalent objects.

\rVith ea.ch symplectic sprea.d of PG(3, q) there corresponds a. plane of
order q2. A 3 - (q2 + 1, q +1, 1) design is called an inversive plane of order q.
With each ovoid" of PG(3,q) there corresponds an inversive plane of order q.

Here we survey same important characterizations of inversive planes,
the inversive planes of small order, the planes of small order arising from
symplectic spreads of PG(3~q), and all known cIasses of ovoids of PG(3,q)
resp. Q(4, q).

V.D. Tonchev:
(a) Preparata Codes and a Class of 4-Designs.
(b) The Existenee of extremsl self-dual [50.25,10] codes and
quasi-symmetrie 2 - (49,9.6) designs.

(a) An extension theorem for t-designs is proved. As an application, a dass
of 4 - (4m + 1,5,2) designs is constructed by extending designs related to
3-designs formed by the minimum wei~ht vectors in the Preparata code of
length n = 4m

, m 2: 2. The derived designs are doubles of AG(2m~2).
A..lthough these 4-designs contain repeated blocks, they provide an infinite
dass of 4-desi~ns with the smallest known fi...xed A.

(b) All extremal binary self-dual (50.25. 10] codes with an automorphism
of order i fi.xing oue coordinatf' arp. ~ntlmerated. The minimum w~ight

IG

•
- i

                                   
                                                                                                       ©



•

·e

nulewnnls yiehl (pn~violls1y llnknown) cl'lasi-sytllinetric' ~ - (-.l9. a. u) cll'sil:~ns"

S.A. Vanstone:
Graphs, Codes and Dift"erence Sets.

Let G be a finite .!!;raph havillg p verticcs. fJ edges aud ,~irth !J. t{t is wpll
knowu [hat thc cycle spacc oeG givps rise to a binary [q, f[ - P+ l.!J]-code C.
In this talk we (liscuss variolls properties of these codes., For (lxample. when
p is f.'Vf'ß and p ~ 2g (p odd and p ?: 29 + 1) then Ollt' rau :uways .'nlbed C·
in a billary [q. q - p+ 2. g)-code. This is accomplishcd .~)~. showing that cvery
connecr-ed graph with an even llumber of vertices cOlltains an odd spanning
-subgraph. We also determine when the code C coniing from the complete
graph is contained in a Hamming code. This result relies on ehe 'existe~ce o.f
certain düferencesets in" the elementa.ry abelian 2-group. \Ve conclude t.~~

talk with the discussion of constructing ternary codes from clirpcted gr~phs

and '''arious open problems. .

W. Willems:
Radical Cod~s.

Hy results of Ber:man and Charpin, Reed-Muller Codes over ehe prime field .
IFp may be considered as powers of the Jacobson 'radical of ~ elementa.ry
abelian ~group C;. From this point of view. one easily sees. that the affine
general linear group AGL(m,p) acts on the radical powers ,J"{IFpC;). ~lore·:

over, via this .action JFpC; becomes a uIliseriallFp.A.GL(m.p)-m~dule. As-~'

consequence we have the Theorem (Knö~r, \Vi.):. :"
Let C be a linear'code Qver IFp oflength pm. Then AGL( m. p) ::; .-tut(C),

if and only if C is a Reed~Muller Code.

This e.'q)lains why the Reed-Muller Codes Jk(P-I)(If'pC;;a) (1 ~ k ~m)

a.re exactly the duals of the affinegeometry codes" Now. from the point
of View of group theory, there is no reason to restriet Oluself 'to elementary
abelian p-groups and the prime field. So let K be any finite field of char­
acteristic p and let G be a finite ]rgroup. Let U be a subgroup of Gwith
IG : UI' =.ya a.nd consider the radical powers IBJr(KG) of the permutation
'module Iff endowed with thenatural basis {Ugig E G}. \Vith this notation.
a student of mine, A. Faldum, proved:

:Theorem: (a.) !f.dim 15.Jr (I1-G) ~ dim J8(KC;) ~ 1. then for the

minimu'm distances we have (l( IBJ"(A"Gn ~ dLJ!'( A"C;)).

{b) Suppose equality holds eVf'rywh_er~ anti <1imJ"{ A"C;:'} et. {O.l.pTn,-
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l.jlU}. Tbcn (\ithcr.( 1) U ~ G and G/U ~C~ or (2) p =2~ r =2s.:.... 1 and
sonlC conditions on rohe group G.

Rl~illa.rk: TheCode lUJr.( ]\-G) in the latter case is equi~ent to J!I( ],:C;:')
for r :: 2s - 1.

. SUlnmarizing ~he above res1l1ts we see that in the l~ge cla..C\s of radicals
of permuta.tion ~no<ll1les aver IJ-groups. the radical powers of a grollp-algebra
over a11 elemcllta.ry abelian p-group (wIDch are the Reed-l\lullerCodes for
[( = lFp) are optimal.

R.M. Wilson: .
Two-error-correcting codes and absolutely irreducible polynomials
over GF(2).

Let 11 = 2r + 1, let w be a. primitive element in GF(2r
), and let Ct denote

the set ofbinary polynomials fex) of degree $ n so that f(w) :: f(w t ) = O.
That is! Ct is the binary cyclie code oflength n generated by mI(x)mt(x}.

\Vords of weight ~. 4 in Ct correspond. to zeros of the projective plane
curve.

with distinct 'coordinates bver GF(2r
). Factorizations of 9t(X,y,=) for t =

2i + 1 and t = 22i - 2 i + 1 can be used to prove that such words da not" exist!
i.e. th~t Ct is two-error-correcting! when t has either of. these forms with
(i,r) = l.

We conjecture that 9t( x, y, z) is absolutely irreducible if t does not have
one öf these two fo..~ms. If 9t(X! y, =)- is absolutely irreducible! then the codes
C t are two-error-correcting for at most fini~ely many values of n = 2r

- 1.
Weprove the absolute irreducibility of gt(x~y,z) for t == 3(mod 4), t > 3.

.. This is joint work .with H. Janwa and G. McGuire.

R.M. Wilson: .
Blanchard's theorem on asymptotic existence of transversal
designs of strength t ~ 3.

This ta.1k describes arecent result of .lohn Dlanchard. A tmnsversal de·
sign TD(t. k~ -n) cOllsists ofa set .\ of kn points partÜioned into k groups
GI ~ G2 , • •• ~ Gk of size n and a family A oftransverse k-subsets so that every
transverse t·subsetof .\ is c:ontained in exactJy one member of A. Here. a
transverse subset of .\ is one that mcets ('ach ~rollp Gi in at most one point.

l~
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Tra.nsv.'rsalllt'si~llS TD(2.k.,,) a.rt' eqllivalt'ut TO k - :! pajrwisl' orthogonal
Latin ;'\(llla.r~ of ilrdcr I! a.nd the Chowla.- Erclös-St.ra.lls r.lll'Orl"nl a.ssPrf.S thar.
these exist for all n sllfficiently large with respf'ct t.n k. ßlauchanl"s theo­
rem is r.hat for ;U1Y strp.n~th f a.Iul hlock sizl' k. 'f ~ 1.'. tra.lls\"(~rsal llesi~ns

TD(t.k.n) pxjst for a.ll n > n(l.:}.

The proof fombines recursivp. constructions and (lirl'ct ('onstrllctions in­
\"olving finite fields. \Ve specifica.lly discllsS a tt'chniquc that luay b(' rilled
'spreadin~ blocks' wherE~ a. family of subsets A uf a set er r:hat rovers so~~

t-subsets q times a.nd others not a.t an may be 'lifted ~ to a fanlily 01" trans­
verse subs~ts o(U x V that covers uniqueLy those and ouly those transverse
t-subsets that project onto covered subsets of U. when q isa prime power
and where v· is a vector space over GF(q) of dimension d ~. (Ir;l).

V.A. Zinoviev: --­
On Prepara'ta-iike Codes and" 2-Resolvable Steiner Quadruple ;"
Systems. .~

(Joint work with A.R. Calderbank.)

A binary code with length n = •.!'n, m = 2.3..... minimal distance d = 6
and caxdinality !V = 24'"-4m we cäll (extended) Prepatrata-like code and

denote it by P . .~ binary code with parameters n =2" ~ d =-4:. ;.V = .2n
-

t - u

we call (extended) Hamming·like code and denote it by H. \Ve have ~everal

new statements;

Theorem 1: Let P be a.ny Preparata-like code of length n = 4m
_. Then

the Hamming-like code H which contains P (for any P there is a1~ays a H
such that P C H) is partitioned into P and 'i~s translates. This partition is"
compietelY,regular in this Ha.mmiilg code H. ,

Theorem 2: Let P be any Preparata-"like code of length n. Then this
code implies the existence of a 2-resolvable Steiner system S( 3.·1. n).

Theorem 3: Let P and pi be any two known nonisomorphic Preparata­
like codeso! length n, n = 4m

, m = 3.4,.... Then these codeos induce
- nonisomorphic 2-resolutions of the same Steiner system 5(3.4.~) (which

are planes of the affine geometry AG(2m.2)).

Berichterstatter: D: Hachenber~er
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