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The conference was organized by Ra.iner Löwen (Braunschweig), Helmut Salzmann (Tübingen)
.and Viktor Schroecler (Zürich). The intention of the meeting was to bring together people

working in different fields and ha.ving a common interest in the theory of buildings. The
participants were mathematicians working in differential geometry or in topological geometry,

or in the aqf'tract thoory of buildings. Numerous stimulating talks showed the role of
buildings and, in particular, topological buildings, in different geometrie contexts. There was

ample opportunity for discussions in smaller groups and for further exchange of ideas between
the various groups of persons. As a result, everyone could form a dearer picture of some

interrelations of those geometrie theories, and some projects for joint papers emerged.

Vortragsauszüge .

Rank and holonomy of Riemannian mallifolds

Jost-Hinrich Eschenburg, Augsburg

A ("olllpicte Riclualluiiln fllilUifold .\1 has rauk k ir auy geodt~sic lies in cL k-tlat iUld k is

Illcl.;"illlal willt this property. A k-flat in .\1 is iLB isollJetric (.ol.ally ~(~desic irnlllPrsiorl ,)i" ]Rk

illto .\-1.
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TI~eorem . (C:-'ßlnlÜS~ (':.).
I~,:I :\-1 IJ(~ ,.Ol1lPllCl 0/ rll.nk ~~ IHuf ..HIJJ1}(J.o;t~ I/ud Ih,: i,'iomdri,: .'IrolLl1 I ( ;\/) url .... I Ill. 11..'" i! im:ly Oll. 11,,:

..... ,:l 0/ k-jla/.,-;. TIH~'l 1'-'1 i... 'O(;tlJl!l·:';Yl1tlll.dl'ü~. 1/ il1 'ULILilioll 1lJ/ k-.Jlal... ,Ln' f.'lIIbnltlnf Jlul lori,

I/te 11 ,\'1 i... .'Ilobnlly sYlnlne/.ric.

'rhe proof relies Oll Io<:al versiöns or the following t.ht~()rf~ll1S:

Theorem A. Lcl j\-I lJe f1llfllylic anti ilTCdtJ.cible wilh ffillk k ~ :!. ,~~ilLIJP(J,'i~ lhal a/l A>}lal." 111'1'

i,'io1rtt:lric lori llnd that /ht:l'e. is (l geode."ic with not m.ore l!tall ,,~ filll'ar/y iri.,f,pt:11.tlcnl /Jllralid
JlLcobi Jieills. Then Al is lorflily symmetrie.

Theorem B. Lei 1\t{ be r011tplete with ra7lk , such thai a/l 9fnlft:."ii('.~ art? cn"1l!l1"1uut. Then.\1
is symmetrie 0/ rnnk I.

'fhe local version or Theorem A does not use analyt.icity. Tlw proof of ThC'on~111 :\ llSCS

the Theorem of Bergcr and Simons saying that an irreducihle spac(~ is locally syJlllnetric: ir il.s

holonomygroup has princ:ipal orbits of codimension. ~ 2.
In the proot of Theorenl ß one shows that lvI is two-point hOlllogeneous. 1

To pological planes: an introduction

Rainer Löwen, Braunschweig

We consider stable n-spaces, that· is, atomar 1 semimodular lattices of dimension n satisfying
certain co~tinuityand stability conditions as displayed by the subspace lattices of real projective
or hyperbolic spaees. The topology is assumed to be locally cOlnpact and locally connected.
lf the geometrie dimension n is at least 3, then Groh has shown that an embedding into :;orne
., classical" projeetive space PnlF over lF E {IR, C, lHl 1 'O} exists. Hence we concentrate on the
planar ease n = 2, where countless nonclassical examples exist. vVe describe the introduction 01'
c.oordinates from a ·ternary field. Using them, one can show that lines are homology rnanifolds of
dimension l E {1,2, 4, 8}. From the point of view of algebraic topology, each plane behaves like
same (opensubplane of) P21F. This faet (referred to as "classical domination") emerged from the
work of Salzmann~ Freudenthai, Breitspreeher, Dugundji, and Löwen. AJgebraic laws satisfied
by a eoordinatizing ternary field imply the existence of special (" axial") automorphi:;ms. Among
other things, this leads to the theory of translation planes, which is to some extent a "linear"
theory (i.e.~ uses vector space structures) and allows strong classification results (Betten~ Hähl).

The automorphism group l: of a plane is a localJy compac.t group (Löwen). Ir it is transitiv~

on the point set or on two line pencils, then the plane is a dassical projecti,ve or affine ur
hyperbolic plane ara simple modification of the-real hyperbolic plane .( work of Salzlnallll allt! •

-Löwen). The dimension d =dirn E lS conside.red as a Ineasure of hOlnogeneiLy of the plane. For
a given Ilumber I, there is a critical value d, such that only t.he dassical projective plane has
d > tl" and all 2l·dimensional projcctive planes with ti 2: ,[, - 1 are known: this is rnainly duc

1.0 Salzmann, Hähl~ and Betten. Stable planes carrying a cotnpatible structure of a synlmetric

space (noo- Riemannian in general) may he treatcd via ~'infinitesilna) Inodels l
'. likc Lie ~rOllps.

Thc~rc~ arc~ strong classification rcsulls. due to LÖWP.ll. Sc~id{~1. and LÜWf~.

'J

                                   
                                                                                                       ©



Classification of Conlpact, connected translation planes

Hermann Hähl, Kiel

•

H. Salzmann '~ classification program for compact, connected topologil:a1 projective planes
consists in detcrminiug a.lt such planes whose automorphism group E has comparatively large
dimension (cf. thc.~ talk hy R. Löwen; E is a locally compact group of finite topological dirnen·
sion). In this talk, the röle of translation planes.in the classification is outlined. and pertaining
results for tra.nslation planes are given.

Gompact, conncctcd translation planes can be described as projectivc completions oC affine
planes with point set IR21 , l E {I, 2,·4, 8}, whose lines are the elements oe a spread Lo of 1­
dimensional linear subspaces of lR21 and their cosets; {,o is closed in the Graßmann manifold
G,1R21 • Such a.ffine planes are coordinatized by locally compact, connected quasifields. For
I = 1, only the classical plane aver IR results. For I ~ 2, however, there is a plethora of such
planes. Classification programs for these planes have been carried out Cor I = 2 by Betten and
for l E {4, 8} by myself.

In the talk, a specimen of such a classification result- is given in the case I = 8. All L6­
dimensional compact, connected translation planes satisfying dirn E ~ :38 are listed. Af!long
thern is the Classical octonian plane P20, with dirn E = Eb{ -26) of dimension 78:;; Tlie other
planes in the list satisfy dirn E E {38. 39, 40}. For compact, connected 16,;,dimensional prpjective
planes in general, it is conjectured that dirn E ~ 38 forces the plane to be a translation plane;
then the classification result will cover the general case. For dirn E ;::: ,~O, this has· beeo' proved
by Hubig and in a different way by M. Lüneburg, on the basis of results by Salzmann.

Similar and even more complete classification results have been obtained for I = -2 by Betten
and Sal~mann and for I = 4 by Salzmann and myself.

Actions of Cartan subgroups, affine b~ildings and symbolic dynamics ­

Sh~har Mozes, Jerusalem

Let G be a semisimple ChevalIey group defined over -Qp, H < G a maximal split Cartan
subgroup, r < G a torsion free uniform lattice and j1. the G·invariant Borel probability measure
on r\G. ·We are interested in studying the dynamical system (f\G, IJ. H) where"t:2'H acts via

translations Th : r\G ~ f\G, Th{rg) = rgh.
Using the affine Bruhat-Tits Building 6. associated with G we construct a subshift of finite

type (n.lI, H) which is a factor of (r\G, j1., H.). Let Ac 6 be the apartment on which H acts

•
by translations. Let n = {w : A -. f\61 w is locally an isometry }, note that f\~ is a finite
c.:olnplex. Let ,\1 < H be the maximal compact subgroup of H. 1\1 is the stabilizer of A in
G. 'fhe group H acts on 0 via its action on A, thus the action factors through the action of

!1\M == Zd where d = r~nk G. Let "P : r\G ~ n be defined hy ,.,,(fg) = 7r 0 9 IA where 1r is

natural covering rriap fronl 6. ta r\6.. The map f.P gives a surjective factor map commuting
wiLIt the !i action. Let v = cp.j1. be the induccd measure on O. The fibers or \fJ are 1'v1 orhits
clI)(1 i..p induces a homeomarphism between r\GIM and O.

'rhe subshift of finite type (0. v. 11) may he Ilsed ta study varioHs dynamical properties of

( ['\G./t.II).
:\ particular question is t.he strllctUf(~ of dosures of ll·orbits. It is conjectured (see ~'1argulis

IC~·t ~)O lecture) that whcll rank G ~ :! iUH.l r satislies some furtl~er c:onditions (every semisinlple
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'"YE r is rev;ular) tht~Jt c:ach dustlre of cUI orhit FX77 iso it.:·wlf illl tlrhit \)f a.• possihly, lil.q~(·r

sllb~rollp. We hav(- I.h(·~ f()llowill~ rt'sult:

Theorem.
IA~l r; = PGL'l(Q~) x PGL-z(Q,), r < (; an irrrducib/,: llltlin: ",ultl

l/ = {(( ~ ~), (~ ~))} C G.

lf lhe closure r!1 H conlains a closed H -orbit then r!i /I is eith'T d,:n .... '· 0,. do ....nl.

Let n be the subshift of finite type constructed for (f\C;. /1.. 11) i1...'; iu this t.hcoreln lhcn Wt'

can reforrnulate thc tl~l.'Orenl hy:

Theorem'.
Every point wEn such that lhe closure of its orbit contains a pf.riodic orbit ioS t:ither dcnse or .'
periodic. .,

Let p, / == L (mod -l) be distinct primes. Let

- r-' {, .",", k I Xi E Z, x == 1 (nlod :!). lxi:.! := p.'-. ,}
= x = Xo + Xil + I'l) + I3 • ..'

Xo, Xl, X'l, X3 relatlvely pnme -

From tone obtainsan irreducihle lattice r in G = PGL2(!Qp) x PGL·2(Q/l. :\5 Cl corollary ur
the theorem ancl i ts proof we obtain the following:

CoroHary.
Let 0, ß Erbe such that 101 2 = p., IßI2

, = /- then either

1) aß = ±ßo OT

2) Vx E r,. 3n > 0 s.l. anßr& = uxv for some u, v E f.

Minkowskian subspaces ·oC non~positively c~rved met.ric spaces

Brian H. Bowditch, Southampton

Let (..\', d) be ametrie space. A geodesie in X' is a. path 0 : [O~ l] - 4X" such that
d(o:(t), o(u)) = klt -:- ul for aB t~ u E [0,1], and for some constaut k 2: O. vVe say that .\"
i5 a Busemann space if ev~ry pair of points are joined by a (unique) geodesic~ and if~ for any e
pair of geodesics o~p : [O~ l) - .\', the map [t t--+ d(o(t), dU))] is conv(~x. Examples ill-
cltide Minkowskian n-spaces (Rn with metric cl given hy d( X ~ y) = 4>( X - y) for some nornl
ct> :lRn

--t> (0,00)) and CAT(O) spaccs. induding Hadarnard manifolds. \;Ve show:

Theorem. Suppo.<;e (4Y' d) is Bu:;emllnn, anti u.d7nits fl discrele cocompad 'isoTnelric action by
11 yroup r. Then either .X' is .hyperbolic in the .'iense of G'roTn(1) (so thn.l r i.., mord hyperbo/il:) ,

or r.bH~ it contains an embedded totally geode.'Jic A1inkofl)skian plane.

Thc special case wherc (.\~ .1) is CAT(O) was stated by Cr(HIlov! ill1d d(~tailed proofs hil\·"
b(:(~n ~iven inclep{~ndently hy St~veral people indlldin~ lIehpriLnd Briosoll. In t.his ca....i(~ il \1 ill­
kowskian plane is ncccssarily Eudid('iUl.

·1
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An ilnporlallL ()lllstanding (IUeslion is whcthcr tll(~ existp.llep ur such a. plall(~ (in ei1.lwr llw

CA'f(O) or BUS(!1l1C\1l1l cases) implics the existenec or a. ra.nk 2 free abelian suh~rollp or l'.

Symmetrie planes

Harald Löwe, Braunschweig

The ailn ur .ny talk is the prcsentation oe some old and sonle new results in the thcory or
symmetrie pla.llt~s. Für definitions and the neIder" results we rcfer to the articlcs or R. Löwen
(1979).

Theorem. Eve;'y :iplit sYlnmetric plane P is a shear plane. 'file partial spreud P dejini719 P
is a symmetrie ....pace in a venJ natural way. Conversely, any shear plane associaled with f;uch
", ~'symmetricn partial spread i8 a split symmetrie plo.ne .

• Local theory. Every eonnected split symmetrie plane is uniquely determined by its tangent
translation plane.

Classification. Let P be the split symmetrie plane defined by the "symmetrie" partiaJ spread
P. If P is not semisimple (regarded a.s asymmetrie spaee), then P is said t~ .have a huge
radieal. All split symmetrie planes with huge radieal are classified. Every such plahe is an open
subset of some topologieal dual translation plane. .

Remark. There exist split "Ioeally" symmetrie planes (i.e. planes looking like an open subplane
of some symmetrie plane) with no global extension (i.e. no open subplane of these planes
is isomorphie to an open subplane of any symmetrie plane as a stable plane and a loeally
symmetrie spaee). M~reover, some of these planes are not isomorphie to an open subplane of
auy topological projeetive plane.

Application. Le.", Q be a loeally eompaet eonneeted planar quasifield. Assurne that ((ax)a)y =
a( x( ay)) holds for any a, x, y EQ. Let -[,0 be the line peneil in' 0 of the affine translation plane
A2Q. Consider the subset P of Co consisting of allIines y = s2 x with s E Q \ {O}. Then P is a

"symmetrie" partial spread. Moreover, P is not a semisimple symmetrie spaee. Therefore~ the
corresponding split symmetrie plane is known. It turns out that Q is either an alternative real
division algebra or one of the Kalscheuer nearfields. '

Smooth stable planes and their automorphism groups

• Richard Bödi, Tübingen

r\ s7nooth stahle plane S = (P, C) is a linear spaee (P,.c) eontaining a quadrangle, where P
a.nu .c are smooth (=. C('X)) manifolds in such a way that the join map V : P x P \ diagp -+ [,

aud the interseetion rnap /\ : CJ -. P are snlooth, and 0 is an open subset of [, x.c. A smooth
stable pla.ne S is called a smooth projective plane, if (P,.c) is a projective plane (as an incide.nce
st.ructure). Identifying a fine with the set of those points t.hat iLre ineident to it. it can h(-~

sbowil t.hat every line is a. dosed smooth sublnanifold of t.he p~)int space P. and duaHy, evr.ry

liHe pencil .cop is a closcd smooth submanifold of thc line set.c. ~1oreover~ thc (lag space F
(== set of all ineidcnt pointJline pairs) is a dosecl srnooth sublnallifold of the product .nanirold
/) x L. .
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A u,lIi1u:tllioll '1 01' ;\. slllool.h st.ahlt~ planc' S lS a. pair (;/'.!i.) 01' cont.illllOlJS· hijt'cl,iolls
'YJ' : I' -+ /' cLiHI "'f( : (, - (, slI(:h t.hat ·..,(F) = F. " 1·,olli,wal.ic-," 't i~ c:a.IIt'd :Hl1.oolh. if t.ht'

IIlappillgs 7/' anti )( a.re~ SI1.ooth.

Theorem. J.;w'ry col/i,,,'a/.ioll uf (l Slflc!ot.h .'i/.aIJlc p/alU' ;8 ."illloot,h. 111 j>ilr/,icllJ.-Lr. (·v,~r.v sl.ilh/,'
plane adrn;Ls at, " 'os t. olle ...;",ool.ll ,"itructUrf! Oll J' aud (, such i.hai it. ÜCC:OIlWS :1. s,,,ooth :;t.hhlt~ .
plane. '

A~f an immediatc'yonscquence, yve have that thc group r of all (;out.inuolls) ~:ollin(~a.tionsof
S' is a Lie transformation grollp on hath the point set P and thc~ li'nt' set (, with resp(~ct 1.0 t.he
cornpact-open' topology. In 'order to investigatc the structurc 01' r~ we cOllsiderfur t~very point
pEP the set Sp = {T pL I L E Cp } of aH tangent subspac~s of lin('s t.hrotlgh 'p~

Theorem. Thc set Sp is cl cornpact spread (with rcspcet to die (;ra.s~lll;Llllliitll topo/ogy) ill

the tangent space TpP and thus deFines a compaet projective trall:;/atioll plane 'Pp.

Moreover, every collineation "I E rp (= stabilizer of sonle point IJ) induett:' a. collineatioJl
Dp"Y (= derivative of "y at p)of Pp which fixes the origin 0 and thc t.ranslation line L'X) ur Pp'
'The main tool for studying the stabilizers r p is the derivation rnapping Dp : r'p ~ GL(TpP)

, wh ichcan be shown to be continuous.lts kernel consists of all c.enlral collineatioJ1s with center
p (i.e. collineations that fix every line through p) whose axes, ·ir t.hey exist. are incident to p..
In case of a smooth projective plane this means that ker Dp = r[ppl (= grollp of elations with
center p). Using_ the structure of t.he stabilizer of a suitable triangle in the tangent translation
plane 1!p (which isa result of H. Hahl)it is possible' t<? prove t?C folJo~ving result.

Theor~m·. Let S be a smooth stabl~ plane oE dimension '2l with r CiS -its group o[ automor­

phisms.. T~en the following statements hold:

a) Th~ elation group ~[Pp] is a simply connected soJvable Lie group Jor every point p.

b) Every stabiJjzer oE a triangJe o~ oE an antiflag is a linear Lie group.

e) A. Levi subgroup of the stabiJizer oE some !lag is compact.
d) If I $ 2 then the stabilizer of a Rag is solvable.

If I ~ 4 then every Levi subgroup oE the stabiJjzer oE some Hag is isomorphie to s'om'e

subgroup of the Levi subgroup fou~d in the classical plane:; o[ the respective dimension.

er Every stabiJjzer of some point ur oE SOUle line has a linear Levi subgroup.

Compact polygons

Linus Kramer, Tübingen

:\' generaLized n-gon is an inciden(:t~ struclure (P, ('~.F C P x (,), sllhj(~c:t LO t.he following

thf(~e axioms:

(1I.-golll) Every element .t E P U.L: is incidelll with ;Lt Ic~a.~l I.hret~ other denlcnts.
(li-gon:!) :\ny two derrlents I.!J E Pu (, c"all-ht~ joillt'd hy ;l daaill of lc~n~th :s 1L. Tlw dist;U1CC·

d(.c~.'I) is the Icn~th of tL 11lillillLlll chai .. joiuiJl~ .1~ tLlld !J.

(Il-gon:n Ir d(.I:.!J) = k < n. t.hrn tht'n' is pn"C"isf'ly oup A>dlcliu juillilll4 .[·.lud y.

•
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Thc gellcraliz(~d triallgles are prccis{~ly thc projective plancs~ c.g. a. generalized u-gon 'p is callcd
a. cornpacl n-gOll. ie 'p and {, are conlpact lIausdorff spaccs, 'and ie the (11 - I )-chaill d(!t.er·lnirh~(1

by elcrncnts .t,!J with tl(x, y) = n -1 depends continuously on .i and y. 'rhis is c<luivalcnt Ln

the fact that thc flag space Fe l' x L is closed. If in addition the (covering).climcnsion o['P
and [, is finite anti positive, then the following.is true (K. '94):

•

• P and f, or ANRs anti generalized manifolds (over every PID).
• Every point row L C P anti cvery penCil of lines .c'P c [, is a homotopy sphcrc (of dimension

m and m', say).
• prl: F ~ P alld pr2 : F ~ .c are locally tri vial bundles.
• The double mapping cylinder D:F over pr}, pr2 is a homotopy (dirn:F + 1)-sphere. The

embeddillg F t-+ 0 F is the lopological Veronese ·ernbedding of the n-gon.

Theorem (Knarr '90, 1<. '94). Under the above hypothesis, we haue n E {3, 4, 6}, and there
are restrietions on the numbers m, m'.

This leads to the following classification result:

Theorem (Grundhöfer, Knarr, K. '94). Let E denote the group of aJl contin,uous automor­
phis1ns of the n-gol1 P. If ~ is transitive on the set P 01 points, and if n # 4~~p·r if m = m'.
lhen P is one 01 the jollowing Moufang n-gons:

(n=3): the projective plane P2IF, -where Ir = IR; <C. JH[, 0
(n=4): the symplectic quadrangle over IR, <C
(n=6): the hexagon associated to G2(2b cf .

There' are examples of quadrangles P with m =I m', where E is transitive on P, but where
P is not Moufang (Ferus - Kareher ~ Münzer '81; Thorbergsson '92). If oDe puts additional
structure on P ODe gets stranger results, e:g.:

Theorem. !f'P is smooth, the Auttop(P) is a smoo"th Lie transformationtion group (Bödi, !(
~94). 11 n = 3, then m determines P l:lP to homeomorphism (l{. '94)"· lf P is holomorphic,
then P is Moufang (!{. '94)·

•.J;.: :

.Homogeneous spaces and buildings atinfinity

Jens Heber, Augsburg

• Let fJn denote a cOlnplete, l-connected Riernannian m.anifold of sectional curva.tures !( ~ o.
The set of equivalence clas.ses of asymptotic geodesics, H( 60) (" points at infinity"), carries a
natural (n - 1)-sphere topology. In the c~e of asymmetrie spllce of noncompact type a.nd

·rank k ~ 2, any k-tiat F (= totally geodesie copy of JRA:) in H is bounded by a (k - 1)~sphere
1/(00) ~ H( 00). The family of all F( 00) has the il;tcrsection pattern of apartments in (the
geornetric realization oC) the spherical Tits huilding oe G.

For any Iwasawa decomposition G = K,. A· JV, K. = Gp for sorne p E 1/. A := A· p is a k-flat:
t.he Tits huilding can he c:olIstructed froln the apa.rtments n· A( 00).11 E .:V. alone. i.c. [rom the
s(,lva.ble group S = A tl< "V. It is natural to ask for arieher dass or :;olmn(lnifolds (S~ <. > ) (with
<. > Ic~ft invariant) wilh a natural (lotion of infillity aou a c.ornpara.hlc <.:ornbinatorial stru<.:turc.

7
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"t, 1~

. Itl the s(~<tHd, Id. 1/ d,c·not.e CL hO'TUlf}'·7lt:ou,.; ,"'J(1~r. 0/ /\' -::~ O. I·>;.·ry stich 11 is kllo~t1

tu he isolTu·t.ri<: 1.0 Cl SOIVlllil.uifold (S = A ~ ~·V. <. ». ,iV -= I."", .~l lt. ('tUI h.. shoWIl t.ha...

II( CX?) c:arri<~:i a (lcL1.ural Jlo/ylu:tLrrl.l strllctllrc~ whose polytu=dril an' iSUItlt"I.ric 1.0 polyhcdra in

(Sk-I. ca.n ). k = dilllA•.wlwn t~<Il~ipped with (,:rolllov\ Tif.;; mdnc. Thiss1.rll('t.ure is wwd in

iLllc=sS(~nlia.1 wä-y 1.0 proVt~ t.he following rcsults:

.Theorem A. 1/ JJ i,o; irrcrlucib/e. then ,~ither rk(ll) = I (3 fI,·m[t:8it:.-i. !lol. ("outaiut'fl in fLl1!)

'!.-jla.t) or 11 is .-;yrn1Tl.Ctric 0/ TYlnk at least 2. '

'Theorem B. The georlesicsymmetrie.9 0/ H arevolurne-pn~$f"l'i1l.fJ, IjJ

(i) din1 A 2: 2 fllU[ !I is ,"ymmetric 0/ rank ~ ~.

or (ii) dirn A = Land 11 i~' (J. /larmonie ,"pace.

- rrheorem A has been proved by Ballmann, .Burns-Spatzier für 11 which COVt'r Cl. finite VOl1l1l1C •

quotient. 'rhe p~oofs 00 not carry over to the homogeneol1s ca.'-'e wh~~f(' finite volurTle quotient.s
exist iff the space is symrnetric.

, Many classes of homogeneous spaces with volume-preserving geodesie symmetries are known
(e.g. distance spheres in fHn,JFpn, all naturally reductive spaccs. sOlne Il:ilmanifolds), so a.c­
cording to Theorem ß. the situation is much rnore rigid in nonpositive curvature.

Ari thmetic. quotients oe Tits buildings

Enrico Leuzinger, Zürich

Let .~ be a Riemannian symmetrie space of non-compact type ana rank ~ 2 and let r be
an irreducible non-uniform lattice in Is(X)u. By the arithmeticity theorem of Margulis r is
arithmetic. This roughly means that r is commensurable with the group G(Z) of intege~ points
of a semi-simple linear algebraic group G defined over Q.We are interested in the geometrie
shape of the endsof the locally symmetrie quotient \' = f\,X'. Now redllction theory for
arithmetic groups provides fundamental sets for f; and we use such a set n c .\ together' with
a. quotient lTrl of a geometrie realization of the Titsbuilding of G(Q) modulo r to describe the
geodesie rays in V. Let V( (0) denote the set of equivalence classes of asymptotic geodesic rays,

Theorem A. The points in ITrl correspond bijectively to the equi'valence dllsses 0/ asymptotic
geooesic mys in V!' i,e. V(oo) ~ ITrl.

That such rays exist· was shown by the author and that there are no others by .li and ~1a.c

Pherson. '

We also determine the asymptotic cone of V. Thc latlcr is defined as the pointed Hausdorff­
lilnit Cone'X) V := 11 - limt_~ (V, v, tg) w~ere 1J E V and 9 ist" the Riemannian rnetric on V.
To describe this limitwe paste together a.ppropriate Q- Weyl chamhers anti get ~ ~onc CITrl
wilh distinguished vertex 0 and with a. polyhedral rnetrif: d which equals I.he t~udidcaH lll(-~tri(

Oll the chamhcrs.

Theorem· B. For f:ve1'y point 11 E \-' Ih,- tL."'Y1nlJlotir nJ1lt~ ("Olle: ~ V I." 'flLf1Si··L.'HJlltI'tnc 11)

(C·,Tr \, ,[).

•
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To pological spherical buildings

Regina Kühne, Braunschweig

A spherical building is called a topological spherical building, if each set of vertict."S oe tYPt~

i carries a non-trivial lIausdorff topology and the following three axioms hold:

(<,:') t.p: ~:oP -+ 6.iu: (C, C) t-+ Cham(C, C) is continuous.
(Vop) The set of pairs of opposite vertices is open in the set of pairs of verticcs.

(il) The c.anonica,l projection n, :6. 1 -+ Vi : C t-+ Xi is open for all i E I.

Axiom (t.p) requires a continuous action of the Weylgroup W on the set 6':°1' of pairs of opposite

chambers.
In the case oe buildings of type An this definition is equivalent to the usual one of a to-

pological n-dimensional· projective space. To'pological buildings of type C2 are topological
quadrangles, and topological buildings of type I~m) are topological rn-gons in the sense of Theo
GrundhöCer and Hendrik van Maldeghem..

[n the case of topological buildings of type 'en, thc .above definition implies tha.t shortest
chains between almost opposite verti<;;es depend continuously on these vertices. (A pair of
vertices is called almost opposite if it is embeddable in a pair of opposite chambers.) This
property suggests adefinition of a topological polar space which generalizes the definition of a
topological quadrangle. [n general, this definition of a topological building leads-to interesting
questions concerning almost opposite flags, shortest chains and projections. The axioms (t.p)
and (Vop) carry over to residues of topological buildings. Residues of type An-l of. topological
buildings of type Cn are topological (n - 1}-dimensional projective spaces.

Higher rank subspaces in manifolds of non-positive curvature

Christoph Huinmel, Zürich .

Let 1\1 be a compact Riemannian manifold of non-positive curvature. If lvI is real analytic
and dirn M ~ 4, then all maximal higher rank subspaces of i'vf are closed and there are at most
finitely many of them by a result due to Schroeder. We outlined partial results~to gerteralize
this for dirn M = 5 by considering flats at infinity.

Pasting in 2-dimensional Laguerre planes and 3-dimensional generalized quadrang­
les

Günter F. Steinke, Christchurch

Semiclassical 2-dimensional Laguerre planes are t~pologjcal Laguerre planes that a.re COffi­

posc<.l oC two halves of the c1assical real Laguerre plane~ This call be done in two ways by pasting
c1.long two parallel classes or along a. circlc jn the point space. In a. joint paper with ß. Polster a
different kind of pasting process for 2-dimensional c.ircle planes is investigated. lIere one glues
l.oKethcr t.wo 2:..dimensional circle planes or the sallle type along a 2-dimensional separating
set. in the 'circle spacc. In t.he c.ase of La~tlt'rre plan(~s we i:alJlc IIp with three different rne­

t.hods. 'fhe talk prescnts these cOllstructions ilud looks at their i.nterprctatiön in thc associatcd

!)
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:~·"·dill](~lIsional ~(~neralijf,e(1 qllf\A:lrangles, i.t'. "tw Lic- ~(~0f11,·tric~s of "twsc' ~ dinwl1;.;iolliLl LcL~H"r"'t"

pliult~s.

Compact antiregular quadrangles

Andreas E. Schroth, Braunschweig

A generalized qu~rangle is called antiregular. if for any thn'e pairwise nOllcollinear points
x, y and z the nurnber or points collinear with x, y and =is either two or zero. In t.he corllpact "ta."ie

this geometrie property is closely linked to topological propertics. More precisely. if a. COlllpcU:t
'1uadranglc with parameters (s,t), wherc 0 < .".t~l < 00. is antiregular. t.heu.' = t. E {L~}.
Conversely, up to duality, every compact quadrangle with paranwtcrs (s.s), wit,h .'Ö E {~l. 2}. is
antiregular. This irnplics that, up· to duality, every conlpact quadrangle w1th pa.ral11t't.ers (s~s"

where .~ E {1, 2} is the Lie geoluetry of a 2s-dimensional Laguerrcplalle. •
The results also imply a complete solution to the problem of Apollonills in topological cirde

planes. This problem asks for the number of circles touching three given nbjectls. each of which

might be a circle or a point.

Injectivity radius estimates and sphere the~rems

Uwe Abresch, Münster

11

3e- > 0

.The injectivity radius estimat·es for manifolds of positive sectional curvature that have beell
established by W. Klingenberg around 1960 playafundamental role in the proof of the dassical
topological sphere theorem and in the proof or the Berger Rigidity Theorem. As a first appli­
cation of the Gromov Compactness Theorem, M. Berger extended his rigidity theorem in 198:3
to a Pinching Below ~ Theorem. This result, however, is only valid for even-dimensional ma­

nifolds. The problem is that Klingenberg needed to assume weak quarter pinching and simply'
connectedness in order to obtain a lower bound for the injeetivity radius of odd-dimensional
manifolds of positive curvature. This pinching candition has recently been relaxed in some joint
work with W. T. Meyer.

Theorem 1. (-, Meyer)

V(Ar,g) complete: ~(I +<:)-2 ~ I\M ~ I, ll",(M
n

) = 0

~ inj(Mn
) = conj(A1n

) 2: 7T:.

In fact, the constant e- ist not only independent of the dimension n bUl also explicit. The
current proof shows that c = 10-6 works. Since the other arguments in the proof of Berger's
Pinching ßelow ~ Theorem can be appl~ed in the odd-dirnensional case a.s weil (cL Dururnerit:

;'"V 1986), there is the followingimmediate applicatjon of Theorc~rll 1:

Theorem 2. (-, Meyer)

•
'fiT! .= 1(2) : 3~n >~): \/(Aln.y) complc~t(~:

10
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The constant ~" in this TluX>f(!ln comes (roln a. compactlless argument «LUU is ther(~r()n~

iucxplicit. l'hc proof of 'fht..'Orcm I on lhe other hand is by direct comparison ..~stirllat(~. whid.
involve a ncw type o( Jacobi field t..~limates and a new lifting construetion.-

Retlned Jacobi Held estimates are also a key ingredient to the next rcsult.

Theorem 3. (-, Mcyer)

(
1(1 +e)-2 < K < 1 7r (lvln) = 0 )

3e>O:Vn=1(2):V(Mn,g)complete: 4 ;-(n~- ,1sn . .
=> 1'" --homeo

Again e is independent of the dimension and explicit. The geometrie arguments are not
limited to the odd-dimensional case. They show that either (i) diam(Mn) ~ 11"( 1 + e) and
thus Mn ~ sn by the Diameter Sphere Theorem due to Grove and Shiohama or (ii) that there
exists a continuous rnap f : lR..lF" ~ 1\1" of degree 1. Tbe mere existence of such a map into
a simply connected, odd-dimensional manifold l\1n implies that i\1n is a homology sphere~ and
therefore we can refer Lo Smale's solution of the Poincare Conjecture in dimension n ~ 5. The
3-dimensional case requires a special argument based on R. Hamilton 's result on the Ri.cci ßow.

Twin trees: generalized co-gons

Mark A. Ronan

This talk concerned joint work with J. Tits. Twin trees are a special case of twin buildings,
and these are a generalization of spherical buildings which first arose in the study of Kac-Moody
groups. In the I-dimensional case a twin building is either a generalized rn-gon, or a twin tree
(the case when m = (0).

A twin tree is a pair of trees, together with a codistance between any pair of v~rtiees not in
the same tree. This codistance is a natural number 0, 1,2, ... and satisfies the property that if
two vertices are adjacent in one tree, then their codistance from any vertex in the other tree
differs by 1. Moreover given two vertices at codistance at least 1, then among the neighbours
of one of these vertices there is a unique one for which the codistance increases. This property
of codistances in a twin tree is very similar to that of distances in a single tree, where if two
vertices are at distance at least 1, then each one has a unique neighbour for which the distance
Lo the other vertex decreases. One thinks of codistanee 0 as meaning that the two vertices art;>
~ rar a.part as possible; increasing the codistance is like decreasing the distance.

• A ?rst example aris:s. (roIn the group GL2(k[t, t- i
)) in which a suitable pair .of. vertic:s

at codlstanee 0 are stabllIzed by the subgroups GL1 (k[t]) and GL2 (k[t- 1]) respectlvely. ThlS
i~ an example of a Kac-Moody group, for the generalized Cartan matrix (:2 ~2). Other
gcneralized Cartan matriees provide other examples, but there are further examples admitting
large automorphism groups (Moufang exarnples) which do not arise from Kac-Moody data.

In the talk we adumbrated several basic properties of twin trees. For example any two
verticcs at codistance 0 must have the sante \'alency, from which one shows that when all
v(~rtices have valency at least :1. both trces lnust he biregular (vcrli<:es of the same type have
I.he salne valency), andisomorphic. \Ve also show~d how a. twinuillJ?; of two trees yields a special
S(~t t)f t~nds. Certain pairs or these ends spa.n what wpo c:all twill apartIn~nts. and the set oC twin

1I
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i~r>artnients, thollgh not. tht~ St~t of eruls alorw,llniqlldy d(:t(~rlHilwS the t,winnin~. 1\11 t.lH~~(~

results a.re cont.ilillt'd in tllt: reCt~nt vap(~r, Twin Trt~~s l. (Ilvr.lltiollC~S 116 ( 199·l).

We also discusst·d a. c'ollstruction or all twill trL"t~s, sl(t.rlill~ with ~L sillglt· trCt! a.ud Ilsin,g
horoballs ccntrc<j at the evr.ntual ends of the t.winning. This COIl~tflU:t.ioll will a.ppt:a.r in ;L

fort.hcoming pa.pt~r.

Some geometrie, analytie, and algebraie properties of euelidean Tits buildings

Jürgen Jast, Bochum

The arithnleticity and rigidity theorellls of rvlargulis put strong restnctlons on hornonlor­
phisms p from some lattice r acting on an irreduci blc symrnetric space G/ I{ uf non-c..:ompact
type and rank ~ 2 into linear algebraic grollps over R, C, or Qp. The harmonie map approach
to these questions associates to any such p a harmonie map [rorn r;/ 1\" ooto some spacc Oll •

which the image group acts! asymmetrie space in case of IR or C. and (\. Tils huilding in (a."'i~

of Qp. One then proceeds by dcriving restrictions on the harnlonic Inap that imply the JesireJ
restrictions on p. :\ proof of the Margulis theorems along these lines has e.g. been obtained by
Jost- Yan using an existence result by Gromov-Schoen for the harmonie map. In faet, Euclidean
Tits buildings are in several respects quite analogous to symmetrie spaces of non-cornpact type
as is explored in ongoing joint work with K. Zuo.

In other joint work with K. Zuo, this approach is used to obtain restrietions on the possible
representations of fundamental groups of projective or quasiprojective manifolds into linear
algebraic groups (" nonahelian Hodge theory"). For that purpose, one needs rather general
existence results for. harmonie maps taking their values in possibly no"nlocally compact Tits
buildings. Such an existence theory has been developed by J. Jost and in similar, although
somewhat more special form hy Korevaas-Schoen. In fact, one may show the existence of
generalized harmonie maps between metric spaces in ease the image has nOllpositive curvature
in the sense of Alexandrov. This uses among other things mean value constructions in such
spaces of nonpositive curvature and the theory of variational or r·convergence in the sense of
de Giorgi.

In the quasiprojective case, ODe needs additional construetions, beeause of the possibility
of infinite energy. These constructions, again due to joint work with K. Zuo, need to use the
algebraic structure of the domain in a stronger manner.

Harmonie maps into Tits buildings and rigidity theorems

K. Zuo, Kaiserslautern •

This is a joint work with J . .Jost. Let ~\' be an algebraic variety and p : tri (.~) -+ G be a.
representation of the fundamental group of .\ into a simple alp;eoraic group G ovp.r !{, where
K is a p-adic number field or completcd function fiel<!. lJsing equivarianl pluriharmoni~ rnaps
intoTits huilding of G, we proved

Theorem 1. Suppnse that p is lari.,;ki llen~p. und unbouTldtd. Then fJ factoT'''' ihrough lLTl
1l1yebrflic ,uap f : .~ - },. .'i.i. dirn}1' ~ rk h" (;. i.t:. tlu:.rr t:xi,'sts iln T : ird }") - r; :;.t.
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Remark. dirn}t' = rk h· G is sharp in general. For exarnple. we take 'a p-aJic ball quotient
.\ = On/re Thcre is a natural rcpresentation p: 1T't(x) ~ r -+ PSLn+I((t,), which does not
factor through any f : X' ~ }.~ with dirn Y < n = rkQp PSLn+dQp).

Corollary (p-adic rigidity). Suppose that pisas abolJe in Theorem /. Let N be the
symmetrie space 0/ G(C), lJ.nd U X --. lV lhe equivariant pluriharmoniclnap 01 p with
rkIR 'U > 2 rkK G. Then p is bOllnded.

• Interpolation and· topologieal" incidence geometry

Burkard Polster, Cristchurch

•

Many of the objects investigated· by topological incidence geometers can be interpreted as
special kinds of unisolvent sets that are ofinterest to people dealing with interQ9lation theory.
An n-unisolvent set over an interval I ~ R is a set F of continuous funetions I ~ IR such
that for any choice of n points (Xi, .y;) E 1 x 1R , i = 1,2, ... , n, Xt < X2 <J... < X n there
exists exactly one f E F such tha:t f(x.) = Yi. A (half- )periodic n-unisolvent ~;t f· is a set of
(half- )periodic continuous funetions [0, 21rJ ~ R: such that the set" of all restrictions~'of functions
in F to [0, 21r') is n-unisolvent. Hence the set of non-verticallines in a 2-dirriensionaiaffine plane ·1
gives rise to a 2-unisolvent set over 1R and the circle set oE a 2-dimensional Lague~re plane gives
rise to a periodic 3-unisolvent set. Furthermore the set of cirdes of the projective completion
of a 2-dimensional dually affine plane corresponds to a half-pe~iodic 2-unisolve~.t set.

We identify :Z~dimesional affine planes and Laguerre planes as the seeond aJld third steps
of an infinite "sequenee of cirele geometries. Step n .geometries correspond to a 'special (half-)
periodic n-unisolvent sets if n is (even) odd. The point sets of the corresponding geOmetries
are homeomorphie to the (Möbius strip) eylinder..Furthermore, deri ving in any. point of such
a step n geometry yields a step (n - 1) geometry. ~'.

We also describe how affine parts of step n geometries can be integrated to fo(~ step (n + 1)

geometries. In partieular, 2-dimensional affine planes can be integrated to form 2-dimensional
Laguerre planes and foliations of ll{2 can beintegrated to form affine· planes.

3D-Reconstruction

Thomas Buchanan, Darmstadt

This talk was motivatcd by problems in computer vision or more specifieally in photogram­
rnctry. Camera projections are considered as <:entral projectiollS 1T' : P:J --+ 1P2 • In an attempt
to understand 1r heLter, W(~ just look aL central projeetioll in lower dirnensiolls 1P2 - 1F t _ The
prohlem of :JD-reeonstruction (Hauptaufgabe der Photogranunetrie) was stated. This t.alk
appliesideas rrorn thc book :\. COHLE: .. :\Igebraj(; Geolllctry it,lId Theta Functi~_Hls" 1.0 :U)·
recollstruction problems.
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A "sc:c~IH~" ."'~ = (1'1,' .. • /~d c()l1sistin~ of an ()rderc~d .set uf six point.s is a..":-;lIl1led. Alg..hi·iLi,·
_ invaricl.ut.s or S ilnd tr(S) ...n~ descrihed bri.~HY. Trall:in~JHt(·nt.;d in\':Lria.nl.~ ".n~ illust.ral...d in t1w

spec:icl.1 ca...,es whcf(~ in thc P:J .,--t 1F2 ca..se iT(S) lies on a con~c lor in I.lw P'l -f> PI ca..'i(~ wht'rc
S lies on a conie). W(~ <:onsid(~r the Wt~cldl(= surface 'Ul ~ IP:J rUHI iLIli\.I~ebraic curve 11 <; p'':
"illt(~rpolating" th(~ scene PI, ... , Pt> and· the center or l)rojcc:tio,~.

Theorem. SClIOTTh·Y!.') parametrization of ~v ll.Sin.l} lhe jfll:obiall .I( 11) ,.d(llt~.,;·'ht: (,'elllt:""~

01 projection fOT the ca.c;es P'l ~ PI and lP'3 ~ P'l'

Rigidity of quasi-isometries and a generalization·of Mostrow rigidity

Bruce. Kle"iner, Berkeley

Ir .\ and }" are metric spaces and 'l' : .~ -+ Y is.a rnap~ t.heu .p is a. ljuasi--i.wJ1llelry if for

some pair (C~ t),

i) \:j x), X2 E .X' : C-ld(xl, X2) - t ::; d(c.p(x.), c.p(X2)) ::; C7d(Xh J:2) + I

ii) Vy E }' : d(y, tp(.\')) < t.

,,~ is quasi-isometn'c to Y if there is a quasi-isometry frolll .Y Lu }'": it. follows ea.':iily fronl ' .

i) and ii) above that quasi-isometry is an equi~alenee relation.
Quasi-_isometries oecur naturally in several geometrie -eontexts, but they playa particu-

lady important role in geometrie .gröuptheory, where one studies finilely generated groups via
-the geometry of their word rnetrics. One application of the theorems. below is. a characteriza­
tion of the finitely generated groups which are quasi-isometrie to' certain symmetrie spaees of
noncompact type (see theorem .5).

Theorem 1 (joint with M. Kapovieh and B. Leeb). For I ::; i ~ rn. l~· j ::; n, let !~li, ~I\fj be
·Hadamard manifolds with sectional curvature :::; -1, and let 1ViJ. lVii t be two simply connected
nilpotent . Lie groups with left invariant Riem.annian metries. Let :\1 = ..Vii x n~ 1 At/i, iV
Nil' x 07=1 "'Vj be the Riemannian products. lf<.p: lvI -+ jV is a qttusi-iso111elry, then

i) m = n
ii)· After reordering the factors, .there are quasi-ison-letries ''Pl : A1i -+ fV i $uch that the following

diagram is commulative up to bounded erro·r (i ..e. sUPrEM d((rr/o~)(x),((7rydo7r)(x)) < OG.):

lIere ii. tri a.re the projeclions coming from thc produ(~t strllc:ture. In particular~ the tih~rs or
:r eLre carried by <.p lo sets within finite lIallsdortf distance ur tilH~rs of ;r'. so ~i) is quasi-isorn(~tri('

tu Nil'. .

Theorem 2 (joint with B. Leeh). Tltt: t"o'U:lW;ltJ1! of T"-t~()"',," I ,List} holds if .';tunt:. of tJu
.\-1... ~V) (11Y' irrt'ducible .~.rJ1n;ndric .... parr."i of 1l(HU;01IljJtlr.l typt· (of ,lilllt'TLslO1l, > 1).

1·1
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•

Theorem 3 (with B. Lech). Let M he (In irredueible .symmetrie space of llollcon~pact type
with rank( A't) ~ 2. 1I N is a ."Iymmelrie spaee 01 noneompact type, lUllt <.p : Nt --+ N i:t (I.

quasi-i.fiometnjt then tl(c.p, <,10) < 00 fOT sorne hOfnot~ely f{)o : "NI -+ "IV. .
Theorem :1 confirms a conjecture of ~1argulis. Theorem:l and :.1 -togethcr with results of

wlostow imply:

Corollary 4. 1/ ,\1 and N are quasi-isometrie sYfnmetrie spaees, ihen LW and N are affinely
equivalent. Equivalently, after renormalizing the metnes on the irreducible faetors 0/ N, M is
isometrie to N.

We also obtain the following charaterizationof finitely generated groups which a.re quasi­
isometrie to certain symm~tric spaces:

Theorem 5. Let LW be asymmetrie space 01 noneofnpact type which c071lain:; -no Euclidean.
hyperbolic plane, or Complex hyperbolic factors in -its i~ducible decomposilion . . Then ßny

finitely generated grotlp r which is quasi-isometrie Lo LW (wit/" respect to SOfne word lnetric on

r) is a finite extension of a uniform lattiee in the isometi-y group 01 .M.

Differentiab~e projective planes

Joachim Otte, Kiel

An affine or projective plane is called smooth if both the point space and th~ 'line space are
smooth manifolds such that the geometrical ope~ations are smooth. Smooth planes only occur
in the dimensions 2,4,8,16. Examples are the planes over R~ C~ IHI, G.. Every plane isomorphie
to one of these examples is called classical.

Theorem 1. ln each possible dimension, there exist nonclassical smooth affine tmnslation
planes.

Theorem 2.. Every smooth projective translation plane is classica/.

Theorem 3. In each possible .dimension, there exisl nonclassical smooth "pTOjective planes.

The nonclassical examples proving Theorem 1 and Theorem 3 are constructed by distorting
the multiplication of the classica:l algebras. _

In the situation of Theorem 2, the projeetivity group of a point row consist; -~f diffeolnor­
phis·ms of the classical sphere and hence is comparatively small. This property characterizes
the classical planes.

·o~ the geometry of twin buildings
Peter. Abramenko, Frankfurt

Let 9 be a simple (and sirnply connecied) algebraic group, defined and isotropie over a
field k. Oenote by 6 e (c E {+, -}) the Bruhat-Tits huiIding of g( k((t- e ))) and set r :=

9(k[l]) , G := g(k[t, t-I]). An explicit geometrie descriptiun ur the quotients f\6+ anJ
G\~+ x 6_ is derived by usillg the following

Facts: I) G possesses II Iwin IJN-pair (C', JJ+,I1_. :V. S).

:.1) ·''lu: (:olTtponenLs b.+ llll.1J b._ of ihr. twilL builtli1t!J ~(G', B+, ß_ • .V, S) w;:;ociuled 10 the {wiu
IJiV pu;,. coincide wilh Ihr. JJ"llhfll- Til,'i "ui/(lillY.~ illlrolluccd lI.bo1Jt°

l!i .
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a.s "weil as the roll()will~

Proposition: {Jct ~ = (~+, 6_~ Jj.) br. lIu: imin builtiil1Y of-a / lt'UI. Il,V /UHr ((;. IJ+. IJ _. /V. :<L
~ =. (~+, ~-) t1. iwin (J.partnlt~nt '01 6_ :;labili=,:d by :V. c_ (1 ~'hUlllbt~" 01 ~_ (Hui ..,d F :=
{( (1+, <1_ )I11+ E E+ , ;1_ ~ c_}. Then itho[t[s:

i) (;·F=(~+,6_)._

ii) A'ssume a = (a+,a_), 11' = (a~,a~) E F, 9 E Cllnclg· a, = ft'. Tlu.'ll (1_ ~ (1'_._ find /hen:
exi,~ls an n E N n Ga _! such that n . a+ = a~.

The description of r\6+ follows frorn thc proposition by interpretillg 9(k(tJ) a.s the stabilizc:~r
in 9(k[t, i-I]) of a vertex of 6_. In this way one obtains a new proof for and cl. gcueralization
of a theorem of Soule. .

Further geometrie concept~ associated with -twiri' huildings. nartldy coprojectiolls and 1."0-

convex hulls, are introduced brießy. e
Projective planes andisoparametric hypersurfaces

Norbert Knarr, Braunschweig

A compact hypersurface in the sphere is called isop~'ramelric if it has constant principal
curvatures. It was proved by E. Cartan in 1939 that there are precisely 4 examples if thc
-number of different principal curvcitures is equal Lo 3: A new proof for this result wa.:; giveu
by associ~tinga compact connected Moufang plane with each such isoparanletric hypersurface.
The hypersurface can be canonically identified with. the_ Rag space of this Moufang plane, and
this eventually proves Cartan's result. The proof is in the spirit of Thorbergson~s classification
of isopararnetric submanifolds of euclidean space whose codimension is at least :3-

This is joint work with Lintis Kramer.

Compact groups on topological project~ve plane~

Barbara Priwitzer, Tübingen

LetP ~ {P, (,) be a topological projectiye plane with locally compact, connected point
space. If dirn P < <x>, then dirn P E {2, 4, 8,16}, (Löwen 1983).

Classical examples: P2IR, P2C, P2H, P20 .

Let <t> be a compact, connected subgroup· of the group Aut(P). e
Theorem (Stroppel 1994; Salz~nalln,-Löwen). Then one- of ihe foilowing i.., lrue:

a) ep == [ = elliptic motion group 0/ the classicaL plane, fLlld P ~ p:.!r~ 1F E {IR~ C~ IHr. (}}
11) dim<l>~dimE-dimP

Frorn now on: dim<l> = dimE - dimP.

Tlien can (~a.sily he shown: ~ == ~ = point slabilizcr in the dlipl.ic grullp.

Therc (~xist 2-- and ·1-dimensionaL Ilon -d;L')sical plaues which adrnit <t> == ::,~, a..s a. ~rollp qf
i1.utornorphisms, Salzmann 196:1~ Sdlt.~lIhanHI1(~r.Sperner I!J90.

Ih
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Theorem. lA:t

{

(he
4> ~ Eo =. U'lK x 11 dHl

Sping ~

act on a topological projective plane P with dimension f ~ . Then:116

i) The action 0/ <I> on the point space P is equivalenl 10 the llstl.al aclion of <1> on lhe point

space P~IF.lF E {C, IHI, Ol, 0/ the classical plane.
ii) The lines· through the origin are the classicai lines.

iii) For dirn P E {S.16} the plane P is uniquely determined by a 2-dimensional .subplane E.
which admi~s Ihe torus 'r as a group 0/ auto.morphisms.

Periodic ftats in Al X Al complexes

Sergei Buyalo, St. Petersburg (joint work with V. Kobelskii)

Let ".Y'-be a compact metric space of nonpositive curvature, whose ~niversal cover X contains
a Rat (i.e. a totally geodesie subspaee which is isometrie ~o 1R2

). The main questiori is: is it
true that ...~ contains also a periodic flat (what is equivalent, 1T"1(.lt) contains Z ttJ Z).

We are focused on the case when X ·is a 2-dimensional ehamber complex whose chambers
are standard unit sq:uares. Dur result shows that, roughly speaking, the set of all such X
for which the answer is "yes" is "open and everywhere dense" on the one hand, and if tbe
counterexamples do exist, they have to constitute a sufficiently ample set. -

- Moreover,we ~how that periodic flat problem for Al x A1-coulplexes can be reduced to the
sa-me questions about irreducible lattices in the product of twö trees.

Bounded geodesiesin rank-l locaJly symmetrie spaees

C. S. Aravinda, Bombay

Let NI be a rank-l locally symmetrie space of non-compaet type with finite Riernannian
volume. The geodesie flow on the unit-tangent bundle SJW of 1\1 is known to be ergodie.

• Con::;equently, for almost all (p, v) E Slv/, where.p E M and v is a unit tangent-vector at p,

the geodesie through p in the direction of v is dense in M. The set C1' of unit-tangent vectors
positioned a.t some point p E M, lying on any non-constant CI curve in the unit tangent
sphere S1' and deter~ining hounded geodesics from p (narrlely thüse with compact dos·ure in
Al) is shown to be of Hausdorff dimension J. This has the implication on the dyriamics 0[. the
~eodesic ftow that the set C of (p, v) E SA4 for which the corrcs-ponJing geodesie is bounded
has llausdorff dimension cqual Lo 2n - 1.

'fhe proof involves showing that the set C1' is a.n "o-winning seC' uf a ccrtajn.~(':...r,#)-game~

illtro.)uced by W. M. Schmidt which is knowli 1.0 have fullllausdorff di.lJcnsion. This is achieved
with thc use of trigor~ometric rormula.c für rank'"l synunetric SpiKes.

I;
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Loops, groups and foliations

Karl Strambach, Erlangen

'fhc airn oe .. he t.a.lk was to show thatnicc pr()perti(.~s or sh~lrply tr;\lISILIV(~ st~c:t.ious 17 :.

GIIJ -+ (J "of a. grollp C a.s weil as regularity couditions of S(,ts or. projt'ct.ivitics in :J-webs
definc natliral dasscs o( loops. In particular, lo<>ps L for whidl t.he set l>f Icft translations

"..\(1 =Tz ~ a . .t] : L -+ L is invariant under the inner automorphisrns of thc grollp Cf generate<!
by all '\a has been studied. lf such L· is diffcrentiable thcn (} "'is (l Lie' grOtlp and cOlltains a
normal subgroup N which operates sharply transitivcly on I,,; the t.angent spilce ofN in I
coincides with the tange-nt space of the Inanifold {.A a ; a E L} in 1. Also thc probl(~nl for which
other classes of differentiable loops the group generated by all left, tra:~sl~tions is a Lie grollp

has been discussed. We conjecture that a differentiable con;Hw'cted loop for" which the grollp
generat~d by allieft and right translations is a Lie group satisfies the ~1011fang id(~lltities. •Recent Results in the theory of generalized polygons

Hendrik van Maldeghem, Gent

I mention 5 recent results.

1. The classical embeddings of the finite Mqufang hexagons are characterized by some natural
axioms (joint work with J. A. Thas).

2. If a fiilite generalized n-gon admits a group acting transitivelyon a1l ordered (n + 1)-gons~
then itmust be a Moufang polygon (but not conversely!). F~~ n = -L this is joint work with
J. A. Thas.

"3. "Recently, J. Tits wrote down a proof of the -fact that every Moufang polygon satisfies the
.commutation relations imposed by the appropriate root syste"m. .

4. A generalized polygon is called regular if for every point p the set 57 of elem~nt~ at distance
d from p lying on geodesics through any opposite point q only depends on p, d and any two
elements of Sq. "

-Theorem: Regular generalized n~gons exist only for 11, E {3, 4, 6} fInd for n = 6, there is
a complete classification by work 0/·1\1. A. Ronan.

5. An imaginary line in a polygon is the set of points not OPPoslte all poi"nts not opposite two
opposite points. It is called long ·if its projection' onto any eI~ment at codistance 1 [rom a1l

its elements is either constaitt or bijective (it is always injective).

Theorem:·' AU "imaginary fines are long only in the sympleclic f/uadrangles a.nd in the .splil •
Cayley hexagons Quer a field with characterisiic" 2. (Joint work with J. nun Bon tlnd H.

Cuypers).

Extensions of local isomorphisms of twin buildings

Bernhard Mühlherr, Tübingen

Tlais is a joint work with M. Ronan.

l~
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•

•

Twin huiltlilll(s have beeil int.roJuced in order Lo st.udy groups of Kac··-Moouy-type [roln CL

geonletrical point of vicw. 'rhey turn out to be natural generalizations of sphcrical buildings.
It is conjccturc<l Lhat the fanlolls extension theorem for spherical buildings (Theorem 4.1.2. in
Tits' Lecture Nolcs) holds also for twin buildings of locally finite type (n1ij :f:. (0).

A first st.ep lowaro a. praof of this conjccture has oeen done by M. Ronan and J. Tits. Their
result says that local isomorphisms cxtend to a "half oC the twin".

We have the following result.

Theorem. Local isomorphisms extend to the whole twin if the chambers opposite Lo a given
chamber are c071nected.

Using a result of A. Brouwer one can prove that the assumption made in the theorem above.

is almost always satisfied .

4-dimensional projective planes with solvable isomorphism groups

Hauke Klein, Kiel

Let E be the group of all continuous collineations of a compact projective plane of topologicaJ
dimension 4. Then E is a Lie-Group and all planes with dirn E ~ 7 are explicitly-known. Hence
we consider the case dirn E·= 6. In this case EI ~ lR.2 >4 GLt(IR) or E is solvabl~. In the latter
case E fixes a flag v E W, i.e. an incident point-line pair. The further classification is based on
the orbit structure of E acting on W\ {v} and Lv \ {W}. In the remaining cases w~have: E fixes
neither a point in W\{v} oor a line in .cv\{W} and acts transitivelyon W\{v} ..:or .cv\{W}.
Further we consider the structure of the maximal connected nilpotent invariant subgroup N of
E. The planes with dirn N ~ 5 or N ~ lR

4
are already classified. First we _eX(cI~detth~r20ll)Sibility

dirn N :s; 3 and only two cases rernain for N. N ~ Nil x ]R or N ~ ]R3 )cl 1 2~ . The

second case for lV leads to an unique Lie-Group E ~ IV6 ,28 and by a detailed analysis of
the subgroup-structure of ~ we arrive at a contradiction. Hence the only possible case is:
!V ~ lVii x IR.

Actions of Large Groups on Stable Planes

Markus Stroppei, Darmstadt

A linear space is an incidence structure A = (A, A) with point set A and line 'set A such
that any two points are contained in a unique Jäne. We assume in a.ddition that there are locally
corll'pact topologies on A and on A such that the geometrie operationes V (joining points) and 1\

(intersecting lines) are continuous; and that the domain of definition of 1\ is open. Ir, moreover.
tlw l,oJ>ological dimension uf A is positive alld finite~ we call A a stable plane. See also the
cOlltributions ·by R. Löwen. H. Löwe, and R. Bödi.

We introduce the not ions of actions : : (: ~ Aut A of a. r.opological group (J Oll A. and -uf
1l1orphisms (esp. embcddinKs) of such actiOIlS.

Tlw S:\LZ~IANN prograol for sta.hle planes rnay he forolulaLed cL'i folIows: For "inlcrestin~"

dcL'iS(~S c.} ()f groups. find a. set 21c,; of cU.:tioIlS. aud IltJlllbt~rs b~ such t.hat the following lJolJs.

I ~)
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If 7 : (,' ~ Aut A is .LIl Inj('c:tiV(~ action of iL ~r()lIp (,"E cd on Cl. stil,hlt· pla..\(' A of dinlt~nsion

(I, t.hen dirn (; > b~ illlplit~S I.lIa.t "Y E '21~ (ur, t.hat ""( c~rl1l)('ds int.o all ,·(t·IlWUt. nf (J~).

Apart frolll the diL'\S LCp of loca.lly cOfnpiu:t groups. t.lw f<.>llowllIg; st1bdi\.."is(~S \)1" LCp ~Ln'

inlportant: Cp (cornpacl. groups), Ab (abeli~n), Solv (solvahlt·). :\lInS (nonahdiäl.11 iLlld 1\0

closed connected -non·lrivicllnorruaJ sllbgroupsL St~llliS (no c!\)st,d ('Ollllt'c{,"d nOI1 t.rivi.d ...bdiiLIl
normal subgroups). 'rh(~ lahle bdow indicates result.s that ha.ve ht~t~n ohl.aillcd so ra.r.

9 ep Ab Solv AlrnS SerniS AlmS LCp
b2 1 2 :} 0 Q 5
b~ 4 4 10 :J 0 11
b" 13 8 18 16 18 268

bf6 36 16 ·10 56 38 61
21Y Ell 0 0 S ~ Class

Here Class denotes the uSlIaI action of AUtP2f on the projectiv<: plane P2 f uver fEe
{IR, C, lHl, Ol, EIl the'restrictions or these a.ctions to maximal cOlnpact ~ubgroups (elliptic 010-

tion groups), and S is Class plus singular exceptional actions of PSL'.dR. SL-zIR. SL2 IR. and. SL2C.

Berichterstatter:
Nils Rosehr, Kiel

•
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