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The conference was organized by Rainer Lowen (Braunschweig), Helmut Salzmann (Tibingen)
and Viktor Schroeder (Ziirich). The intention of the meeting was to bring together people
working in different fields and having a common interest in the theory of buildings. The
participants were mathematicians working in differential geometry or in topological geometry,
or in the abstract theory of buildings. Numerous stimulating talks showed the role of
buildings and, in particular, topological buildings, in different geometric contexts. There was
ample opportunity for discussions in smaller groups and for further exchange of ideas between
the various groups of persons. As a result, everyone could form a clearer picture of some
interrelations of those geometric theories, and some projects for joint papers emerged.

Vortragsausziige

Rank and holonomy of Riemannian manifolds
Jost—Hinrich Eschenburg, Augsburg

A complete Riemannian manifold M has rank & il any geodesic lies in a k-flat and & is
maximal with this property. A k-flat in M is an isometric totally geodesic immersion of R*

into M.
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~ holonomy group has principal orbits of codimension. > 2
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‘Lowen). The dimension d = dim £ is considered as a measure of homogeneity of the plane. For

Theorem (€ ()Imm ).

Let M be compact of rank k and suppose that the isometrie gyroup 1{Al) acts lransidive ly on the
set of k-flats. Then M is locally - symmelric. If in addition all k-flats wre cmbedded flat tori,
then M is globally symmetric.

The proof relies on local versions of the following theorems:

Theorem A. Let M be analytic and irreducible with mnk k > 2. Suppose that all k-flals wre
wsomelric tori and thal there is a geodesic with not more than k Imuulu independent /mmllt[
Jacobi fields. Then M is locally symmetric. ’

Theorem B. Let M be complete with rank [ such that all geodesics are congruc nt. Then W
is symmetric of rank /. :

The local version of Theorem A does not use analyticity. The proof of Theorem A uses
the Theorem of Berger and Simons saying that an irreducible space is locally symmetric if its

In the proof of Theorem B one shows that M is two-point homogeneous.

Topological planes: an introduction
Rainer Léwen, Braunschweig

We consider stable n-spaces, that.is, atomar, semimodular lattices of dimension n satisfyi.ng
certain continuity and stability conditions as displayed by the subspace lattices of real projective
or hyperbolic spaces. The topology is assumed to be locally compact and locally connected.
If the geometric dimension n is at least 3, then Groh has shown that an embedding into some .
“classical” projective space P,F over F € {R,C,H. O} exists. Hence we concentrate on thg .
planar case n = 2, where countless nonclassical examples exist. We describe the introduction ol
coordinates from a ternary field. Using them, one can show that lines are homology manifolds. of
dimension ! € {1,2,4,8}. From the point of view of algebraic topology, each plane behaves like
sorrie (open subplane of ) P,F. This fact (referred to as "classical domination”) emerged from the
work of Salzmann, Freudenthal, Breitsprecher, Dugundji, and Lowen. Algebraic laws satisfied
by a coordinatizing ternary field imply the existence of special ("axial”) automorphisms. Among
other things, this leads to the theory of translation planes, which is to some extent a "linear”
theory (i.e., uses vector space structures) and allows strong classification results (Betten, Hahl).

The automorphism group ¥ of a plane is a locally compact group (Lowen). If it is transitive
on the point set or on two line pencils, then the plane is a classical projective or affine or
hyperbolic plane or a simple modification of the real hyperbolic plane (work of Salzmann and

a given number [, there is a critical value d; such that only the classical projective plane has
d > dy, and all 2l-dimensional projective planes with d > «; — 1 are known: this is mainly d\{e
to Salzmann, Hahl, and Betten. Stable planes carrying a comnpatible structure of a symmetric
space (non-Riemannian in general) may be treated via "infinitesimal models”. like Lie groups.
There are strong classification resuits. due to Lowen, Seidel. and Lowe.

<
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. by translations. Let Q =

Classification of compact, connected translation planes
Hermann Hahl, Kiel

I1. Salzmann’s classification program for compact, connected topological projective planes
consists in determining all such plancs whose automorphism group ¥ has comparatively large
dimension (cf. the talk by R. Lowen; ¥ is a locally compact group of finite topological dimen-
sion). In this talk, the réle of translation planes in the cl:«msnficatxon is outlined, and pertaining
results for translation planes are given. .

Compact, connccted translation planes can be described as projective completions of affine
planes with point set R¥, [ € {1,2,4,8}, whose lines are the elements of a spread Lo of -
dimensional lincar subspaces of R* and their cosets; Lo is closed in the GraBmann manifold
G(R¥. Such affine planes are coordinatized by locally compact, connected quasifields. For
I =1, only the classical plane over R results. For { > 2, however, there is a plethora of such
planes. Classification programs for these planes have been carried out for { = 2 by Betten and
for | € {4,8} by myself.

In the talk, a specimen of such a classification result'is given in the case { = 8. All 16-
dimensional compact, connected translation planes satisfying dimEX > 38 are listed. Among
them is the classical octonian plane P,@, with dimE = Ey(—~26) of dimension 78 Tlie other
planes in the list satisfy dim £ € {38,39,40}. For compact, connected 16:dimensional projective
planes in general, it is conjectured that dim £ > 38 forces the plane to be a translation plane;
then the classification result will cover the general case. For dim £ > 40, this has been proved
by Hubig and in a different way by M. Lineburg, on the basis of results by Salzmann.

Similar and even more complete classification results have been obtained for / =2 by Betten
and Salzmann and for { = 4 by Salzmann and myself. -

Actions of Cartan subgroups, affine bpildings and symbolic dynamies . -

Shahar Mozes, Jerusalem

Let G be a semisimple Chevalley group defined over @,, # < G a maximal split Cartan
subgroup, ' < G a torsion free uniform lattice and x4 the G-invariant Borel probability measure
on I'\G. We are interested in studying the dynamical system ([\G, 4, H) where 'H acts via
translations T : F\G — ['\G, Tiw([y) = [,h.

Using the affine Bruhat-Tits Building A associated with G we construct a subshift of finite
type (. v, H) which is a factor of (I'\G, u, H). Let A C A be the apartment on which H acts
{w: A — IN\A| wis locally an isometry }, note that ['\A is a finite
complex. Let M < H be the maximal compact subgroup of H. M is the stabilizer of A in
(5. The group H acts on Q via its action on A4, thus the action factors through the action of
H\M = Z¢ where d = rankG. Let v : [\G — 0 be defined by »([g) = = °g| 4 where = is

natural covering map from A to M'\A. The map ¢ gives a surjective factor map commuting
with the H action. Let v = p.u be the induced measure on Q. The fibers of  are M orbits
and ¢ induces a homeomorphism between I'\G/M and 0.

The subshift of finite type (., v. H) may be used to study various dynamical properties of
(P\G.p. ).

A particular question is the structure of closures of H-orbits. It is conjectured (see Margulis
1C:M 90 lecture) that when rank G > 2 and | satislies some further conditions (every semisimple

3
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y € I"is regular) then cach closure of an orbit U x IT is_itsell an orbit of a, possibly, larger
subgroup. We have the following result:

Theorem.
Let G = PGL ,(Q,) x PGLAQ), < (G an trﬂ'dmzble lattice and

w={((3 ) (i 1))}ee

- If the closure T,H conlains a closed H-orbit then I'yH is either dense or closcd.

UFG

Let Q be the subshilt of finite type constructed for ([\(7, . If) as in this theorem then we
can reformulate the thecorem by:

Theorem’.
Every point w € Q such that the closure of its orbit contains a periodic arbzt is etther dense or
periodic.

Let p,{ = | (mod4) be distinct primes. Let

= {zz'zo-l;rli«llzzj+:3k 7 €Z, z =1 (mod2). [af” = pl", ,}.

Zo,T1,Z2, T3 relatively prime

From I one obtains an irreducible lattice I' in G = PGL,(Q,) x PG Lz(Ql) As a corollary of
the theorem and its proof we obl.am the following:

Corollary._ :
Let o, B € T be such that |a|> = p~, |B|% = I then either

I‘) af=+pa . or

2) Vzel, 3n>0s.t a"B" = uzv for some u,v € r.

Minkowskian subspaces of nan-positively curved metric spaces
Brian H. Bowditch, Southampton

Let (X,d) be a metric space. A geodesic in X is a path a : [0,1] — X such that
d(a(t), a(u)) = k|t = u for all t,u € [0,1], and for some constant k¥ > 0. We say that X
is « Busemann space if every pair of points are joined by a {unique) geodesic, and if, for any
pair of geodesics a,3 : [0,1] — X, the map [t — d(a(t), 3())] is convex. Examples in-
clude Minkowskian n-spaces (R™ with metric d given by d(z.y) = $(z — y) for some norm
¢ : R"® — (0,00)) and CAT(0) spaces, including Hadamard manifolds. We show:

Theorem. Suppose (X, d) is Busemann, and admils a discrete cocompucl isometric action by
@ group . Then either X is hyperbolic in the sense of (Fromow (so that I' is word hyperbolic),
or else it contains an embedded totally geodesic Minkowskian plane.

The special case where (X, d) is CAT(0) was stated by Gromov, and detailed proofs have
been given independently by several people including lHeber and Bridson. In this case a Min-
kowskian plane is necessarily Fuclidean.
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An important outstanding question is whether the existence of such a plane (in either the
CAT(0) or Busemann cases) implies the existence of a rank 2 free abelian subgroup of 1.

Symmetric planes
Harald Lowe, Braunschweig

The aiin of my talk is the presentation of some old and some new results in the theory of
symmetric planes. For definitions and the "elder” results we refer to the articles of R. Lowen
(1979).
Theorem. Every split symmetric plane P is a shear plane. The partial spread P defining P
is a symmetric space in a very natural way. Conversely, any shear plane associated with such
- a "symmeltric” partial spread is a split symmetric plane.

Local theory. Every connected split symmetric plane is uniquely determined by its tangent
translation plane.

Classification. Let P be the split symmetric plane defined by the "symmetric” partial spread
P. If P is not semisimple (regarded as a symmetric space), then P is said to have a huge
| radical. All split symmetric planes with huge radical are classified. Every such plane is an open
subset of some topological dual translation plane. ’

|

Remark. There exist split "locally” symmetric planes (i.e. planes looking like an open subplane
of some symmetric plane) with no global extension (i.e. no open subplane of these planes
is isomorphic to an open subplane of any symmetric plane as a stable plane and a locally
symmetric space). Moreover, some of these planes are not 1somorph1c to an open subplane of
any topological projective plane.

Application. Le" @ be a locally compact connected planar quasifield. Assume that ((az)a)y =
a(z(ay)) holds for any a,z,y € Q. Let Ly be the line pencil in-0 of the affine translation plane
A2Q. Consider the subset P of Lo consisting of all lines y = sz with s € @\ {0}. Then P isa
"symmetric” partial spread. Moreover, P is not a semisimple symmetric space. Therefore, the
corresponding split symmetric plane is known. It turns out that @ is either an alternative real
division algebra or one of the Kalscheuer nearfields. '

‘Richard Bédi, Tubingen
A swnooth stable plane S = (P, L) is a linear space (P, L) containing a quadrangle, where P
and £ are smooth (=.C™) manifolds in such a way that the join map vV : P x P\ diagp — L
and the intersection map A : O — P are smooth, and @ is an open subset of £ x £. A smooth
} stable plane S is called a smooth projective plane, if (P, L) is a projective plane (as an incidence
‘ structure). Identifying a line with the set of those points that are incident to it, it can be
shown that every line is a closed smooth submanifold of the point space P. and dually, every
line pencil £, is a closed smooth submanifold of the line set £. Moreover, the flag space F
= set of all incident point/line pairs) is a closed smooth submanifold of the product manifold

P x L.

|
Smooth stable planes and their automorphism groups
|

ot
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A collincation v of a smooth stable plane S is a pair (yp.7¢) of contintons bijections
I I i -
i P — P and ye 0 £ — £ such that Y(F) = F. A collineation v is called smooth. it the
mappings yp and y¢ are smooth. -

Theorem. Ivery collincation of a smooth stable plane is smooth. 1o particular, every stable

plane admits at most one smooth structure on P and £ such that it becomes a smooth stable”

plane.

As an immediate consequence, we have that the group I of all ((om,muom) collineations of
S is a Lie transformation group on both the point set 2 and the line set £ with respect to the
compact-open topology. In-order to investigate the structure of I, we consider for every point
p€ P theset S, = { T,L | L€ L,} of all tangent subspaces of lines through p:

Theorem. The set S, is a compact spread (with respect to the Grassmannian topology) in
the tangent space T, P and thus defines a compact projective translation plane P,.

Moreover, every collineation y € T, (= stabilizer of some point p) induces a collineation
D,y (= derivative of ¥ at p) of P, whlch fixes the origin o and the translation line Ln of .
The main tool for studying the stablhzers T, is the derivation mapping D, : [, — GL(T, P)

-which can be shown to be continuous. Its kernel consists of all central (:ollineatmns with center
p (i.e. collineations that fix every line through p) whose axes, if they exist. are incident to p.

In case of a smooth projective plane this means that ker D, = [, (= group of elations with
center p). Using the structure of the stabilizer of a suitable triangle in the tangent translation
plane P, (which is a result of H. Hahl) it is possible to prove the following result.

Th_eor-emb. Let S be a smooth stable plane of dimension 2l with ' as’its group of automor-
phisms. Then the following statements hold:

a) Thé elation group T,y is a simply connected solvable Lie group for every point p.
b) Every stabilizer of a triangle or of an antiflag is a linear Lie group.
c) A Levi subgroup of the stabilizer of some flag is compact.

d) If1 <2 then the stabilizer of a flag is solvable.
If | > 4 then every Levi subgroup of the stabilizer of some flag is :somorphxc to sorme

subgroup of the Levi subgroup found in the classical planes of the respective dimension.
e) Every stabilizer of some point or of some line has a linear Levi subgroup.

Compact polygons
Linus Kramer, Tiibingen

A. generalized n-gon is an incidence structure (P, L, .7-' CPx L), subject to the following

three axioms:

(n-gonl) Every element £ € P UL is incident with at least three other c'lcm(.m.s

{n-gon2) Any two elements r.y € P UL can “be joined by a chain of length < n. The distance
d(£.y) is the length of a minimal chain j ]munu., = and y.

(n-gon3) If d(£.y) = k < n. then there is precisely one k-chain | wmm;., £ and y.
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The generalized Lriangles are precisely the projective plancs, e.g. a generalized n-gon P is called
a compact n-gon, if P and £ are compact Hausdorlf spaces, and if the (n ~ I)-chain determined
by elements £,y with d(z,y) = n =1 depends continuously on £ and y. This is cquivalent to

- the fact that the llag space F C P x L is closed. If in addition the (covering).dimension of P
and L is finite and positive, then tlie following is true (K. '94):

e P and £ or ANRs and generalized manifolds (over every PID).

e Every point row L C P and every pencil of lines £, C £ is a homotopy sphere (of dimension
m and m’, say).

e pr: F — P and prp : F — L are locally trivial bundles.

o The double mapping cylindér DF over pry,pr; is a homotopy (dimF + l) sphere. The
embedding F — D F is the topological Veronese ‘embedding of the n- gon.

. Theorem (Knarr '90, K. '94). Under the above hypothesis, we have n € {3,4,6}, and there
are restrictions on the numbers m,m'.

This leads to the following classification result:

Theorem (Grundhéfer, Knarr, K. '94). Let £ denote the group of all continuous automor- 3
phisms of the n-gon P. If ¥ is transitive on the set P of points, and if n # 4 orifm=m' 4:
then P is one of the following Moufang n-gons: ; :
(n=3): the projective plane P,F, where F = R;C.H,Q ‘:
(n=4): the symplectic quadrangle over R,C 3
(n=6): the hezagon associated to Gg(z), G;C . ;

There are examples of quadrangles P with m # m’, where ¥ is transitive on P, but where
P is not Moufang (Ferus - Karcher - Munzer 81, Thorbergsson ’92). If one puts additional
‘structure on P one gets stronger results, e.g.: .

Theorem. If P is smooth, the Auttop(P) is a smooth Lie transformationtion group (Bodi, K.
94). If n = 3, then m determines P up to homeomorphism (K. '94). If P is holomorphic,
then P is Moufang (K. '94). :

Bard

Homogeneous spaces and buildings at infinity
Jens Heber, Augsburg

- . Let H™ denote a complete, 1-connected Riemannian manifold of sectional curvatures &' < 0.
The set of equivalence classes of asymptotic geodesics, H(oo) ("points at infinity”), carries a
natural (n — 1)-sphere topology. I[n the case of a symmetric space of noncompact type and
rank k > 2, any k-flat F (= totally geodesic copy of R¥) in H is bounded by a (k — 1)-sphere
I'(00) C H(oo). The family of all F(oc) has the intersection pattern of apartments in (the
geometric realization of) the spherical Tits building of G.

lFor any Iwasawa decomposition G = K- A- N K = G, forsomep e H. A:= A-pis a k-flat;
the Tits building can be constructed from the apartments n- A(oo0). n € V. alone. i.e. [rom the
solvable group S = Ax V. 1t is natural wo ask for a richer class of solvmanifolds (S, <. >) (with
<. > left invariant) with a natural notion of infinity and a comparable combinatorial structure.
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In the sequel, let /1 denote a homogencons space of K = 0. Lvery such H is known
to be isometric to a solvmanifold (§ = A x V. <. >). & = {55]. 1t can be shown that
H(o0) carries a natural polyhedral structure whose polyhedra are isometric Lo polyhedra in
(%=1 can), k = dim A, when equipped with Gromov's Tits metrie. This structure is used in
an essential way to prove the following resufts: ’

‘Theorem A. If H is irreducible, then cither tk(Il) = 1 (3 geodesics. nol contained in any
2-flat) or I is symmetric of rank at least 2. .

- Theorem B. The geodesic symmetries 'of H are volume-prescrmng, iff

(i) dimA > 2 and H is symmetric of rank 2 2,
or (ii) dim A = | and Il is a harmonic space.

Theorem A has been proved by Ballmann, Burns-Spatzier for /{ which cover a finite volume
quotient. The proofls do not carry over to the homogeneous case where finite volume quotients
exist iff the space is symmetric. - i

Many classes of homogeneous spaces with volume-preserving geodesic symmetries are known
(e.g. distance spheres in FH™,FP", all naturally reductive spaces. some nilmanifolds), so ac-
cording to Theorem B, the situation is much more rigid in nonpositive curvature.

Arithmetic quotients of Tits buildings
Enrico Leuzinger, Ziirich

Let X be a Riemannian symmetric space of non-compact type and rank > 2 and let [ be
an irreducible non-uniform lattice in Is(X)°. By the arithmeticity theorem of Margulis " is
arithmetic. This roughly means that I' is commensurable with the group G(Z) of integer points
of a semi-simple linear algebraic group G defined over Q. We are interested in the geometric
shape of the ends of the locally symmetric quotient V = ['\X. Now reduction theory for
arithmetic groups provides fundamental sets for ['; and we use such a set Q) C X together with
a quotient |Tr| of a geometric realization of the Titsbuilding of G(Q) modulo [ to describe the
geodesic rays in V. Let V(oo) denote the set of equivalence classes of asymptotic geodesic rays.

Theorem A. The points in |Tr| correspond bijectively to the equivalence classes of asymptotic
geodesic rays in V; i.e. V(oo) = |Tr|. '
That such rays exist- was shown by the author and that there are no others by Ji and Mac

Pherson. :

We also determine the asymptotic cone of V. The latter is defined as the pointed Hausdorff-
limit Coney V := H — limi—n (V, v, %g) where v € V and ¢ ist the Riemannian metric on V.
“To describe this limit we paste together appropriate Q-Weyl chambers and get a cone CiTv]
with distinguished vertex 0 and with a polyhedral metric d which equals the euclidean metric

on the chambers.
Theorem B. For cvery point v € V' the asyinptolic cone cone ¢ Vs quasi-isometrie 1o

(C1T]L o).
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Topological spherical buildings
Regina Kiihne, Braunschweig

A spherical building is called a topological spherical building, if each set of vertices of type
i carries a non-trivial Ilausdorff topology and the following three axioms hold:

(¢) @:A¥ = AY:(C,C) = Cham(C,C) is continuous.
(Vop) The set of pairs of opposite vertices is open in the set of pairs of vertices.
(I1) The canonical projection II; : &; — V; : ¢ z; is open for all : € /.

Axiom (i) requires a continuous action of the Weylgroup W on the set AP of pairs of opposite
chambers.

In the case of buildings of type A, this definition is (.quwa.lent to the usual one of a to-
pological n-dimensional- projective space. Topologlcal buildings of type C. are topological
quadrangles, and topological buildings of type l2 ) are topological m-gons in the sense of Theo
Grundhéfer and Hendrik van Maldeghem.

- In the case of topological buildings of type ‘Cn, the above definition impliés that shortest
chains between almost opposite vertices depend continuously on these vertices. (A pair of
vertices is called almost opposite if it is embeddable in a pair of opposite chafribers.) This
property suggests a definition of a topological polar space which generalizes the definition of a
topological quadrangle. In general, this definition of a topological building leads to interesting
questions concerning almost opposite flags, shortest chains and projections. Thé axioms (i)
and (Vop) carry over to residues of topological buildings. Residues of type A.-: of topological
buildings of type Cn are topological (n — 1)-dimensional projective spaces.

Higher rank subspaces in manifolds of non-positive curvature

Christoph Hu;nmel', Zirich

Let M be a compact Riemannian manifold of non-positive curvature. If M is real analytic
and dim M < 4, then all maximal higher rank subspaces of M are closed and there are at most
finitely many of them by a result due to Schroeder. We outlined partial results to generalize
this for dim M = 5 by considering flats at infinity.

Pasting in 2—-dimensional Laguerre planes and 3—dimensional generalized quadrang-

Giinter F. Steinke, Christchurch

Semiclassical 2-dimensional Laguerre planes are topological Laguerre planes that are com-
posed of two halves of the classical real Laguerre plane: This can be done in two ways by pasting
along two parallel classes or along a circle in the point space. In a joint paper with B. Polster a
different kind of pasting process for 2-dimensional circle planes is investigal,ed Here one glues
together two 2-dimensional circle planes of the same type along a 2-dimensional separating
set in the circle space. In the case of Laguerre planes we came up with three different me-
thods. The talk presents these constructions and looks at their interpretation in the associated
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3-dimensional generalized quadrangles, i.c. the Lie geometries of these 2 dimensional Laguerre
planes.

Compact antiregular quadrangles
Andreas E. Schroth, Braunschweig

A generalized quadrangle is called antiregular, if for any three pairwise nonc ollinear p()mts
z,y and z the number of points collinear with z, y and z is either two or zero. In the compact case
this geometric property is closely linked to topological properties. More precisely. if a compact
quadrangle with parameters (s,t), where 0 < s.f < oo. is antiregular. then = = t € {1 ‘}
Conversely, up to duality, every compact quadrangle with parameters (s. s), with s € {12}
antiregular. This implies that, up. to duality, every compact quadrangle with parameters (s, *)
where s € {1,2} is the Lie geometry of a 2s-dimensional Laguerreplane.

The results also imply a complete solution to the problem of Apollonius in topological circle
planes. This problem asks for the number of circles touching three given objects. each of which
might be a circle or a point.

Injectivity radius estimates and sphere theorems
Uwe Abresch, Miinster

"The injectivity radius estimates for manifolds of positive sectional curvature that have been
established by W. Klingenberg around 1960 play a fundamental role in the proof of the classical
topological sphere theorem and in the proof of the Berger Rigidity Theorem. As a first appli-
cation of the Gromov Compactness Theorem, M. Berger extended his rigidity theorem in 1983
to a Pinching Below ! 3 Theorem. This result, however, is only valid for even-dimensional ma-
nifolds. The problem is that Klingenberg needed to assume weak quarter pinching and simply
connectedness in order to obtain a lower bound for the injectivity radius of odd-dimensional
manifolds of positive curvature. This pinching condition has recently been relaxed in some joint

work with W. T. Meyer.
Theorem 1. (—, Meyer)

1
de>0 : V(M" g) complete: I(l +&) < Ky <1, ;M) =0
= inj(M") = conj(M") > 7.
In fact, the constant ¢ ist not only independent of the dimension n but also explicit. The
current proof shows that ¢ = 107 works. Since the other arguments in the proof of Berger’s

Pinching Below :— Theorem can be applied in the odd-dimensional case as well (c.{. Durumeric
~ 1986), there is the following immediate application of Theorem I

Theorem 2. (—, Meyer)
1 2 - < Pre ‘ ny = U
Vn=1(2): 3z, >0: Y (M", y) complete : ( L "L \n < Ko 2 Lzl W7) )

Fhomeo S
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The constant <, in this Theorein comes fromn a compactuess argument and is therefore
inexplicit. The proof of Theorem | on the other hand is by direct comparison estimates, which
involve a new type of Jacobi field estimates and a new lifting construction. -

Refined Jacobi ficld estimates are also a key ingredient to the next result.

Theorem 3. (—, Mecyer)

{1+ < Ky S Lm(M?) =0 ) ’

Je>0:VYn=1(2):V(M", g) complete: ( = M™ =pomeo "

Again ¢ is independent of the dimension and explicit. The geometric arguments are not
limited to the odd—dimensional case. They show that either (i) diam(M™) > =(1 + ¢) and
thus M™ = S™ by the Diameter Sphere Theorem due to Grove and Shiohama or (ii) that there
exists a continuous map f : RP* — M" of degree 1. The mere existence of such a map into
a simply connected, odd-dimensional manifold M™ implies that M™ is a homology sphere. and
therefore we can refer to Smale’s solution of the Poincaré Conjecture in dimension n > 5. The
3-dimensional case requires a special argument based on R. Hamilton's result on the Ricci flow.

Twin trees: generalized co—gons
Mark A. Ronan

This talk concerned joint work with J. Tits. Twin trees are a special case of twin buildings,
and these are a generalization of spherical buildings which first arose in the study of Kac-Moody
groups. In the 1-dimensional case a twin building is either a generalized m-gon, or a twin tree
(the case when m = o).

A twin tree is a pair of trees, together with a codistance between any pair of vertices not in
the same tree. This codistance is a natural number 0,1,2,... and satisfies the property that if
two vertices are adjacent in one tree, then their codistance from any vertex in the other tree
differs by 1. Moreover given two vertices at codistance at least 1, then among the neighbours
of one of these vertices there is a unique one for which the codistance increases. This property
of codistances in a twin tree is very similar to that of distances in a single tree, where if two
vertices are at distance at least 1, then each one has a unique neighbour for which the distance
Lo the other vertex decreases. One thinks of codistance 0 as meaning that the two vertices are
as far apart as possible; increasing the codistance is like decreasing the distance.

A first example arises from the group GL(k[t,t™"]) in which a suitable pair of vertices
at codistance 0 are stabilized by the subgroups GL,(k[t]) and GL,(k[t™"]) respectively. This
is an example of a Kac-Moody group, for the generalized Cartan matrix (_22 '22) Other
generalized Cartan matrices provide other examples, but there are further examples admitting
large automorphism groups (Moufang examples) which do not arise from Kac-Moody data.

In the talk we adumbrated several basic properties of twin trees. For example any two
vertices at codistance 0 must have the same valency, from which one shows that when all
vertices have valency at least 3, both trees inust he biregular (vertices of the same type have
the same valency), and isomorphic. We also showed how a twinning of two trees yields a special
set of ends. Certain pairs of these ends span what we call twin apartinents. and the set of twin

11
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apartients, though not the set of ends alone, uniquely determines the twinning. All these
results are contained in the recent paper, Twin Trees [ lnventiones 116 (1994).

We also discussed a construction of all twin trees, starting with a single tree and using
horoballs centred at the eventual ends of the twinning. This construction will appear in a
forthcoming paper.

Some geometric, analytic, and algebraic properties of euclidean Tits buildings

Jirgen Jost, Bochum

The arithmeticity and rigidity theorems of Margulis put strong restrictions on hormomor-
phisms p from some lattice I' acting on an irreducible symmetric space G/R of non-compact
type and rank > 2 into linear algebraic groups over R, C, or Q,. The harmonic map approach
to these questions associates to any such p a harmonic map from /K onto some space on
which the image group acts, a symmetric space in case of R or C. and a Tits building in case
of Q,. One then proceeds by deriving restrictions on the harmonic map that imply the desired
restrictions on p. A proof of the Margulis theorems along these lines has e.g. been obtained by
Jost-Yan using an existence result by Gromov-Schoen for the harmonic map. In fact. Euclidean
Tits buildings are in several respects quite analogous to symmetric spaces of non-compact type
as is explored in ongoing joint work with K. Zuo.

In other joint work with K. Zuo, this approach is used to obtain restrictions on the possible
representations of fundamental groups of projective or quasiprojective manifolds into linear
algebraic groups ("nonabelian Hodge theory”). For that purpose, one needs rather general
existence results for harmonic maps taking their values in possibly nonlocally compact Tits
buildings. Such an existence theory has been developed by J. Jost and in similar, although
somewhat more special form by Korevaas-Schoen. In fact, one may show the existence of
generalized harmonic maps between metric spaces in case the image has nonpositive curvature
in the sense of Alexandrov. This uses among other things mean value constructions in such
spaces of nonpositive curvature and the theory of variational or I'-convergence in the sense of
de Giorgi. .

In the quasiprojective case, one needs additional constructions, because of the possibility
of infinite energy. These constructions, again due to joint work with K. Zuo, need to use the
algebraic structure of the domain in a stronger manner.

Harmonic maps into Tits buildings and rigidity theorems

K. Zuo, Kaiserslautern

This is a joint work with J. Jost. Let .X be an algebraic variety and p : m(X) — G be a
representation of the fundamental group of X into a simple algebraic group (G over K, where
K is a p-adic number field or completed function field. Using equivariant pluriharmonic inaps
into Tits building of G, we proved

Theorem 1.  Suppose that p is Zariski dense and unbounded. Then p faclors through an
algebraic map f: X — Y st dimY <tk (G0 de. there ezists an 7 ¢ oY) =/ 5.t
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Remark dimY = rkx G is sharp in general. For example we take a p-adic ball quotient
= Q"/r. There is a natural representation p : 71(z) —= [ — PSL.,.1(Q,), whlch does not
factor through any f: X — Y with dimY < n = rkg, PSLn+1(Q,).

Corollary (p—adic rlgldlty) Suppose that p is as above in Theorem 1. Let N be the
symmetric space of G(C), and U : X — N the equivariant plurtharmonic map of p with
rkru > 2rky G. Then p is bounded.

Interpolation and topological incidence geometry
Burkard Polster, Cristchurch '

Many of the objects investigated by topological incidence geometers can be interpreted as
special kinds of unisolvent sets that are of interest to people dealing with interpolation theory.
An n-unisolvent set over an interval / C R is a set F of continuous functions / — R such
that for any choice of n points (zivys) €T xR, i =1,2,. .30, Ty € Tz < ... < In there
exists exactly one f € F such that f(zi) = yi. : (half-)periodic n-unisolvent set F-is a set of
(half-)periodic continuous functions [0, 2] — R such thati the set of all restrictions of functions
in F to [0,2r) is n-unisolvent. Hence the set of non-vertical lines in a 2-dimensional affine plane
gives rise to a 2-unisolvent set over R and the circle set of a 2-dimensional Laguerre plane gives
rise to a periodic 3-unisolvent set. Furthermore the set of circles of the projective completion
of a 2-dimensional dually affine plane corresponds to a half-periodic 2-unisolvent set .

We identify 2-dimesional affine planes and Laguerre planes as the second and third steps
of an infinite sequence of circle geometries. Step n.geometries correspond to a ‘special (half-)
periodic n-unisolvent sets if n is (even) odd. The point Sets of the corresponding geometries
are homeomorphic to the (Mébius strip) cylinder. Furthermore, denvmg in any. pomt of such
a step n geometry yields a step (n -~ 1) geometry.

We also describe how affine parts of step n geometries can be integrated to form step (n+1)
geometries. In particular, 2-dimensional affine planes can be integrated to form 2-dimensional
Laguerre planes and foliations of R? can be integrated to form affine planes.

3D-Reconstruction
Thomas Buchanan, Darmstadt

This talk was motivated by problems in computer vision or more specifically in photogram-
metry. Camera projections are considered as central projectious 7 : P; — P,. In an attempt
to understand 7 better, we just look at central projection in lower dimensions P; — P,. The
problem of 3D-reconstruction {Hauptaufgabe der Photogrammetrie) was stated. ‘This talk
applies ideas from the book A. COBLE: "Algebraic Geometry and Theta Functions™ to 3D-

reconstruction problems.
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A Tséene” 8 = (14, Fs) consisting of an ordered set of six points is assumed. Algebraie

_invariants of § and 7(5) are described brielly. Transcendental inviriants are iltustrated in the

special cases where in the Py — Py case 7(5) lies on a conic (or in the P, — P, case where
S lies on a conic). We consider the Weddle surface W C Py and an algebraic curve 11 G Py
"interpolating” the scene Py, -+, Ps and the center of projection. :

Theorem. SCHOTTKY's parametrization of W using the jacobian J(I1) relates the cenlirs

of projection for the cases P, — P, and P; — P,.

Rigidity of quasi—isometries and a generalizatioﬁ'of Mostrow rigidity
Bruce Kleiner, Berkeley :

If X and ¥ are metric spaces and @ : X — Y is a map, then 2 is a quasi-isometry if for
some pair (C,t), ) : :

) Vi, € X 1 C7'd(z1,32) =t S d(o(z1), 9(22) S Cdlz1a) +L
i) Vy e Y d(y,p(X)) < t. )

X is quasi-isometric to Y if there is a quasi-isometry {rom V' to Y it follows easily from .-

i) and ii) above that quasi-isometry is an equivalence relation.
Quasi-isometries occur naturally in several geometric contexts, but they play a particu-
larly important role in geometric group theory, where one studies linitely generated groups via

the geometry of their word metrics. One application of the theorems below is a characteriza-

tion of the finitely generated groups which are quasi-isometric to certain symmetric spaces of

noncompact type (see theorem 5). ) )

Theorem 1 (joint with M. Kapovich and B. Leeb). For 1 <i<m.1<j<n,let Mi,N; be

Hadamard manifolds with sectional curvature < —1, and let Nil. Nil" be two simply connected

nilpotent- Lie groups with left invariant Riemannian metrics. Let M = Nilx [T, M, N =

Nil’x [1}=, N; be the Riemannian products. If p: M — N is a quasi-isomelry, then

i) m=n .

ii) After reordering the factors, there are quasi-isometries p, : M; — N; such that the followinyg
diagram is commulative up to bounded error (i.e. sup,¢y d((T'0p)(z), ((r@iJom}z)) < o)

M b

|

ﬁ .-'W.- —— ﬁ IVJ'
=l n‘?i 1=1

Here 7. 7’ are the projections coming from the product structure. In particular, the libers of
7 are carried by o to sets within finite Hausdorff distance of fibers of 7', 50 Nil is quasi-isometric
to Nil'. ’ .

Theorem 2 (joint with B. Leeb). The conclusion of Theorem | also holds if some of the

M. N, are irreducible symmetric spaces of noncompact type (of dimension > 1).
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Theorem 3 (with B. Leeb). Let M be an irreducible symmeltric space of noncompacl type
with rank(M) 2 2. If N is a symmelric space of noncompact type, and ¢ : M — N is a
quasi-isometry, then d(p, o) < 00 for some homothety po : M — N

Theorem 3 confirms a conjecture of Margulis. Theorem 2 and 3 together with results of

Mostow imply:
Corollary 4. If M and N are quasi-isometric symmetric spaces, then M and N are affinely
equivalent. Equivalently, after renormalx:xng the metrics on the irreducible factors of N. M is

isometric to N.
We also obtain the following charaterization of finitely generated groups which are quasi-

isometric to certain symmetric spaces:

Theorem 5. Let M be a symmetric space of noncompact type which countains no Euclidean,
hyperbolic plane, or Complez hyperbolic factors in its irreducible decomposition.  Then any
finitely generated group [ which is quasi-isometric to M (with respect lo some word melric on
T') is a finite eztension of a uniform lattice in the isometry group of M.

Differentiable projective planes L
Joachim Otte, Kiel ' 5

An affine or projective plane is called smooth if both the point space and the line space are
smooth manifolds such that the geometrical operations are smooth. Smooth planes only occur
in the dimensions 2, 4,8, 16. Examples are the planes over R,C, H, ©®. Every plane isomorphic
to one of these examples is called classical.
Theorem 1. In each possible dimension, there ezist nonclassical smooth aﬂine translatzon
planes.
Theorem 2. FEvery smooth projective translation plane is classical.
Theorem 3. [In each possible dimension, there ezist nonclassical smooth projective planes.

The nonclassical examples proving Theorem 1 and Theorem 3 are constructed by distorting
the multiplication of the classical algebras. :

In the situation of Theorem 2, the projectivity group of a pomt row consists of diffeomor-
phisms of the classical sphere a.nd hence is comparatively small. This property characterizes

the classical planes.

On the geometry of twin buildings
Peter Abramenko, Frankfurt

Let G be a simple (and simply connected) algebraic group, defined and isotropic over a
field k. Denote by &, (¢ € {+,—}) the Bruhat-Tits building of G( k((¢t~¢))) and set [ :
Gikft]) . G(k[t,t7']). An explicit geometric description of the quotients [AVAWS and
G\D, x A_ is denved by using the following
Facts: 1) G possesses a twin BN-pair ((G.B,.13_. N 5).

2) The components &y and A_ of the twin building NG, By, B, V. 5) associated lo the twin
BN pair coincide with the Bruhat-Tils buildings introduced above

15 -
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as well as the following

Proposition: et A = (AL, A_.8°) be the twin building a] @ tuen BN parr ((. By BN, “)
U =(,%)« lwin apartment of A stabilized by N. c_ a chamber of ¥_ and set I
{(ar,a)lay € Sy, as C e }. Then it holds: .

i) G- F=(000).

it) Assume a = (a+,a ), @' =(a},a’) € F, g € C and g-a =a'. Then a =d’_. mu{ there

ezists ann € NNG,_, such thatn-a, = al,. }

The description of ['\ A, follows from the proposition by interpreting G(k[t]) as the stabilizer
in G(A[¢,t7"]) of a vertex of A_. In this way one obtains a new proof for and a generalization
of a theorem of Soulé. '

Further geometric concepts associated with twin- bmldmg; n(umlv LoprOJectmns and co-

convex hulls, are introduced briefly.

Projective planes and isoparametric hypersurfaces
Norbert Knarr, Braunschweig

A compact hypersurface in the sphere is called isoparamelric if it has constant principal
curvatures. It was proved by E. Cartan in 1939 that there are precisely 4 examples if the
number of different principal curvatures is equal to 3. A new proof for this result was giveu
by associating a compact connected Moufang plane with each such isoparametric hypersurface.
The hypersurface can be canonically identified with. the flag space of this Moufang plane, and
this eventually proves Cartan’s result. The proof is in the spirit of Thorbergson’s classification

_ of isoparametric submanifolds of euclidean space whose codimension is at least 3.

UFG

This is joint work with Linus Kramer.

Compact groups on topological projective planes
Barbara Priwitzer, Tiibingen

Let P = (P,L) be a topological projective plane with locally compact, connected point
space. If dim P < oo, then dimP € {2,4,8, 16}, (Lowen 1983).
Classical exampl&sv: P:R, P,C, P, H, P,Q.

Let & be a comipact, connected subgroup- of the group Aut(P).

Theorem (Stroppel 1994; Salzmaun, Lowen). Then one of the following is true:

@) ® =& = elliptic motion group of the classical plane, and P = P,F.F € {R,C, IHI O}
b) dim® < dim€ — dimP

Irom now on: dim® = dim€ - dim P.
Then can easily be shown: & = & = point stabilizer in the elliptic group.
There exist 2- and ‘-dimensional. non -classical planes which admit ® = &, as a group of

automorphisms, Salzmann 1963, Schellhammer, Sperner 1990,
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Theorem. Lt

U,c . -
dxEH=( UHx UH
Sping R
4
act on a topological projective plane P with dimension 8 . Then:
16

i) The action of ® on the point space P is equivalent to the usual aclion of ® on the point
space P,F.F € {C,H, 0}, of the classical plane.

ii) The lines through the origin are the classical lines.
For dim P € {8,16} the plane P is uniquely determined by a 2-dimensional aubplane g,

111)
. which admits the torus T as a group of automorphisms.

UFG

Periodic flats in A, X A, cor-nplexes
Sergei Buyalo, St. Petersburg (joint work with V. Kobelskii) .

Let X be a compact metric space of nonpositive curvature, whose universal cover X contains
a flat (i.e. a totally geodesic subspace which is isometric to R?). The main question is: is it
true that X contains also a periodic flat (what is equivalent, m,(X) contains Z & Z).

We are focused on the case when X is a 2-dimensional chamber complex whose chambers

- are standard unit squares. Qur result shows that, roughly speaking, the set of all such X

for which the answer is "yes” is "open and everywhere dense” on the one hand, a.nd if the
counterexamples 510 exist, they have to constitute a sufficiently ample set.

" Moreover, we show that periodic flat problem for A, x A;—complexes can be reduced to the
same questions about irreducible lattices in the product of two trees.

Bounded geodesics in rank—1 locally symmetric spaces
C. S. Aravinda, Bombay

Let M be a rank-1 locally symmetric space of non-compact type with finite Riemannian
volume. The geodesic flow on the unit-tangent bundle SM of M is known to be ergodic.
Consequently, for almost all (p,v) € SM, where p € M and v is a unit tangent-vector at p,
the geodesic through p in the direction of v is dense in M. The set C, of unit-tangent vectors
positioned at some Roint. p € M, lying on any non-constant C' curve in the unit tangent
sphere S, and determining bounded geodesics from p (namely those with compact closure in
M) is shown to be of Hausdorff dimension 1. This has the implication on the dynamics of the
geodesic flow that the set C of (p,v) € SM for Wthh the corrr-spondmg geodesic is bounded
has Hausdorff dimension equal to 2n — 1.

The proof involves showing that the set C, is an "a-winning set” of a certain "(a, 3)-game™
introduced by W. M. Schmidt which is known to have full Hausdorfl dimension. This is achieved
with the use of trigonometric formulae for rank -1 symmetric spaces.
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Loops, groups and foliations
Karl Strambach, Erlangen

The aim of the talk was to show that nice propertics of shirply transitive sections 7 @
G/ — G-of a group G as well as regularity conditions of sets of, projectivitios i 3-webs
delinc natural classes of loops. In particular, loops L for which the set of left translations
Aa =z a-z]: L — Lis invariant under the inner automorplnsms of the group ¢ generated
by all A\, has been studied. If such L is diffcrentiable then (7 s a Lie group and contains a
normal subgroup N which operates sharply transitively on L; the tangent space of N in |
coincides with the tangent space of the manifold {A,; a € L} in 1. Also the problem for which
other classes of differentiable loops the group generated by all lcft translations is a Lie group
has been discussed. We conjecture that a differentiable connected loop for which the group
generated by all left and right translations is a Lie group satisfies the Moufang identities. .

Recent Results in the theory of generalized polygons .,
Hendrik van Maldeghem, Gent

I mention 5 recent results.

1. The classical embeddings of the finite Moufang hexagons are characterlzed by some natural
axioms (joint work with J. A. Thas).
2. If a finite generalized n~gon admits a group acting transitively on all ordered (n + 1)-gons.
then it must be a Moufang polygon (but not conversely!). For n = 4. this is joint worI\ with
J. A. Thas.
3. Recently, J. Tits wrote down a ptoof of the fact thal‘. every Moufang polygon satisfies the
commutation relations imposed by the appropriate root system.
4. A generalized polygon is called regular if for every point p the set S, of elements at distance
" d from p lying on geodesics through any opposn.e point ¢ only depends on p,d and any two
elements of S,.

‘Theorem: Regular geneml:zed n-gons ezist only for n € {3,4,6} and far n = 6, there is
a complete classification by work of M. A. Ronan.

3. An imaginary line in a polygon is the set of points not opposite all points not opposite two
opposite points. It is called long if its projection onto any element at codistance 1 from all
its elements is either constant or bijective (it is always injective).

Theorem:- " All imaginary lines are long only in the symplectic quadrangles and in the split
Cayley hezagons over a field unlh characterzshc 2. (Joint work with J. van Bon and H.

Cuypers).

Extensions of local isomorphisms of twin buildings
Bernhard Miihtherr, Tubingen

This is a joint work with M. Ronan.
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‘Twin buildings have been introduced in order to study groups of Kac-Moody-type from a
geometrical point of view. ‘They turn out to be natural generalizations of spherical buildings.
It is conjectured that the famous extension theorem for spherical buildings (Theorem 4.1.2. in
Tits’ Lecture Notes) holds also for twin buildings of locally finite type (m;; # oo).

A first step toward a proof of this conjecture has been done by M. Ronan and J. Tits. Their
result says that local isomorphisms extend to a "half of the twin”.

We have the following result. :

Theorem. Local isomorphisms extend to the whole twin if the chambers opposite to a given
chamber are connected.

Using a result of A. Brouwer one can prove that the assumption made in the theorem above
is almost always satisfied.

4—dimensional projective planes with solvable isomorphism groups
Hauke Klein, Kiel

Let £ be the group of all continuous collineations of a compact projective plane of topological
dimension 4. Then T is a Lie-Group and all planes with dim & > 7 are explicitly known. Hence
we consider the case dim Z.= 6. In this case &' 2 R? » GL§(R) or I is solvable. [n the latter
case T fixes a flag v € W, i.e. an incident point-line pair. The further classification is based on
the orbit structure of ¥ acting on W\{v} and £,\{W}. In the remaining cases we have: L fixes
neither a point in W\{v} nor a line in £,\{W} and acts transitively on W\{v}.or L\{W}.
Further we consider the structure of the maximal connected nilpotent invariant subgroup N of
E. The planes with dim NV > 5 or N =~ R* are already classified. First we exclude the possibility

1t 3
dim N < 3 and only two cases remain for N. ¥ ~ Nil x Ror N ~ R® x 1t . The
B!

second case for V leads to an unique Lie-Group £ =~ Ng2s and by a detailed analysis of
the subgroup-structure of ¥ we arrive at a contradiction. Hence the only possible case is:

N =~ Nil x R. : .

=&

Actions of Large Groups on Stable Planes
Markus Stroppel, Darmstadt

. . A linear space is an incidence structure A = (A, A) with point set -1 and line set A such

that any two points are contained in a unique line. We assume in addition that there are locally
compact topologies on A and on A such that the geometric operationes V (joining points) and A
(intersecting lines) are continuous: and that the domain of definition of A is open. If, moreover,
the topological dimension of A is positive and finite, we call A a stable plane. See also the
contributions by R. Lowen. H. Lowe, and R. Bodi.

We introduce the notions of actions v : (G — Aut A of a topological group (' on A, and of
morphisms (esp. embeddings) of such actions.

The SALZMANN program for stable planes may be formulated as follows: For "interesting”™
classes § of groups, find a set Y¥ of actions. and numbers ¢ such that the following holds.
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If y: G = Aut A is an injective action of a group ('€ G on a stable plane A of dimension
a, then dim (0 > 0¥ fmplics that ¥ € LY (or, that v embeds into an clement of AY).

Apart [rom the class LCp of locally compact groups, the following subelasses of LCp are
important: Cp (compact groups), Ab (abelian), Solv (solvable), AlnS (non abelian and no
closed connected nou-trivial normal subgroups), Semi$ (no closed connected non trivial abelian
normal subgroups). The table below indicates results that have been obtained so far.

| G | Cp Ab Solv AlmS SemiS AlmS LCp
| 11 -2 5 0 0 5
| ‘ 14 4 10 3 0 11
| 13 8 18 16 18 26
;|36 16 10 56 38 61
A5 ED 0 0 S ] Class

Here Class denotes the usual action of AutP,F on the projective plane P2F over F €
{R,C, H, 0O}, Ell the restrictions of these actions to maximal compact subgrouﬁfelli;)tic mo-
tion groups), and S is Class plus singular exceptional actions of PSL,R. SL,R.SL;R and.5L,C.

Berichterstatter:
Nils Rosehr, Kiel
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