UFG

Deutsche

Math. Forschungsinstitut

E 20 JoLYsD

‘MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 2271994
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Unter der Leitung.von L. Danzer (Dortmund) und G.C. Shephard (Norwich) trafen sich 45
Teilnehmer aus 11 Lindern zu fruchtbarer Diskussion. Wegen des hohen MaBes an Inter-

nationalitit — nur ein Drittel der Teilnehmer kam aus Deutschland ~ wurden die 39 Vortrige
ausnahmslos in Englisch gehalten.

-Polytope und ihre Kombinatorik bildeten einen ersten thematischen Schwerpunkt der Tagung.

Eine ganze Rcihé von Vortrdgen war solchen Einzelthemen gewidmet, die zeigten, da8 es auch
in der gewdhnlichen euklidischen Ebene noch viele offene Fragen gibt. In etlichen Vortriigen
wurden Verbindungen zu anderen Gebieten der Mathematik — wie Gruppentheorie,
algebraische Geomertrie, hyperbohsche Geometrie. Graphemheone — hergestellt.

Eine weitere Gruppe von Vortriigen war dem breiten Problemkrcns der Uberdeckungen,
Packungen und Pflasterungen zuzuordnen. wobei vor allem Untersuchungen iiber Dichten
raumfiillender Packungen und Dichten endhcher Packungen (die von M. Henk und J. M. Wills
vorgesteliten Methoden haben kiirzlich zum Beweis der bekannten "Wursxvermumng" von

L. Fejes Téth ab Dimension 45 gefiihr) sowie quasiperiodische Pflasterungen zu nennen sind;
letztere haben fiir die fiir die Festkorperphysik Bcdeuiung Der computergestiitzte Vortrag von
Daniel Huson zum letztgenannten Problemkreis hob sich dabei in der Art der Priisentation von
allen anderen Vortrigen der Tagung ab.

Femner gab es mehrere Beitrige zu kombinatorisch-geometrischen Fragen (u.a. von
H. Harborth. D. Larman. E. Makai. M.Perles, H. Tverberg).
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Ein Hﬁhépuﬁk’t war ohne Zweifel der Meinungsaustausch iiber die Ende tetzten Jahres
erschienene Arbeit von Wu-Yi Hsiang zur Losung des Keplerschen Problems iiber die dichteste
"Packung kongruenter Kugeln in der Dimension drei. Der anwesende Autor stellte sich (neben
dem Vortragsprogramm) am Mittwochabend einer mehrstiindigen, sehr ins Detail gehenden
Diskussion mit den Tagungsteilnehmem, von denen sich einige intensiv mit diesem oder mit
einschligigen Problemen befalt haben. Die mit groBer Offenheit gefiihrte Diskussion konnte
" natiirlich keine letzte Klarheit schaffen, hat aber doch zu der gegenseitigen Einsicht gefiihrt, da8
zwar einerseits die vorliegende Publikation wegen érhéblich_cr Liicken in den Deuails nicht als
vollgiiltiger Beweis angesehen werden kann, daB aber andererseits die Liicken mﬁglichenwei-sé

geschlossen werden kénnen.

Neben dem offiziellen Progmmm der Vonrige von 20 bis 40 Minuten Dauer hielt

-Peter McMullen in einer der Mittagspausen einen lingeren Vortrag "Informal Lecture on
Weighted Polytopes"”, in welchem die von ihm aufgebaute Theorie der Pélytop-Algebra
weiterentwickelt und damit emneut die Fruchtbarkeit dieser Theorie unter Beweis gestellt wurde.
SchlieBlich wurden auf zwei abendlichen Problems:tzunzen am Dlenstag und am Donnerstag

AnstoBe zu weiterer Forschung ausgetauscht

Erneut erwies sich auf dieser Tagung das Aufemandem'effen sehr verschiedener Mcthoden und
Ideen als duBerst anregend, was insbesondere auch wieder der Anwe;enhext einiger Teilnehmer
- zu danken ist, die der Diskreten Geometrie benachbarten Gebieten zuzurechnen sind. -
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Vortragsausziige

A. ALTSHULER:
Polyhedra without diagonals

By a polyhedron without diagonals - or neighborly polyhedron — we mean a 3-dimensional
polyhedron P in which every two vertices are joined by an edge of P . Two such polyhedra
are known: The tetrahedron and the Csdszir torus. In both cases the boundary is a 2-mani-
fold. The number of vertices is 4 and 7 . respectively. The next such polyhedron - if it
exists — would have at least 12 vertices. We show that if we allow the boundar‘y tobea
pseudomanifold. then there exist neighbourly polyhedra with 9 and 10 vertices.
(Essentially, a pseudomanifold is obtained from a 2-manifold by pinching some vertices.)
Furthermore: if we allow the boundary to be a generalized pseudomanifold (obtained from a
2-manifold by pinching edges) then-for every n2 3 there exists a neighborly polyhedron with
2n vertices and with connected interior, whose boundary is a generalized pseudomamfold

A. BEZDEK:
A solution of Conway's fried potato problem

In order to fry it as expeditiously as possible, Conway wishes to slice a given convex potato
into n pieces by n— 1 succesive plane cuts (just one piece being divided by each cut), 5o as to

. minimize the greatest inradius of the pieces. We show that one has to employ equally spaced

parallel cuts, choosing the direction of the cuts parallel to the planes of support which determine
the minimum width of a well defined. rounded potato. We also show some examples and

discuss two variations of the original problem.

G. BLIND:
On packings with incongruent circles

Let % be a packing of circles K; with radius 7;. The homogeneity h of P is usually
defined by 4 := inf _L An often investigated problem is to find good bounds for the packing

" density D of P, dnd the bounds wilt depend on- & .

We define a local homogeneity ! by / := inf ;‘ . where the inf is only over all neighboring
i

circles of &, and we are interested in bounds for D depending on /. We show in particular

I

that 0.797...<! <1 implies D <

<.
=
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K. BOROCZKY:
Circle packings

) lt is well-known that the density of a packing of circles is at most % lf the radii are chosen
2

from the interval {q, 1] where ¢ =0,742990... . On the other hand J. Molnérconsn'uctedan

example with ¢ =0,645707... such that the density is L L Danzer has another example *

viz'

‘where q=0.654316... . The union of two touching and non- ovcrlappmg circles i called a

molecule (the radii of the circles are q and 1). A. Heppes proved that certain circle packings
are solid. Two of them provide the densest packing of molecules for ¢ = V2 -1 and

g =0,637555.... In our result the possibie values of ¢ constitute a whole interval. The main
theorem is the following: : )

Let 3—3— 1 < q <0,189673... Then the density of any packmg of the correspondmg
2
molecules is at most _rd+q) .
NPEA LYY,
(1+q)°

K. BOROCZKY jun.:
Intrinsic volumes of and fat packmgs

‘Let C be aconvex body in E? and Q,, be the convex hull of n nén-over!app'mg translates of

C. Our goal is to minimize the intrinsic i-volume V(Q,) of Q, for i = 1,...,d. Inthe

" case of the volume (f =d) there are various possibilities. For exémplé. the minimal

arrangement can bea "sausage” (if C is a cylinder) or Q,; can have large inradius for large n
(if C is a spacefiller which is not a cylinder). On the other hand, for i < d-1 we proved
that if V,(Q,) .is minimal then

_ 2
no,) @ - R(O)\as3
R(Qn) >1- ,,3(}*'35 where @ = 4000\/_3,(’(0)"" .

J. BOKOWSKI:
Diirer's polyhedron in his engraving MELENCOLIA I - Combinatorial tilings
on the 3-sphere

The open Steinitz problem "characterize, among all combinatorial (d—1)- spheres, the
d-polytopal ones", lead to the investigation of equifacetted simple 3- spheres which cannot be
obtained as boundaries of 4- polytopes (joint work with Peter Schuchert). Apart from the
known cxampleiof the Altshuler classification of neighborly 3-spheres, the search for examples
within the class up to 10 facets lead to precisely one new example, the combinatorial facet-type
of which equals that of Diirer's polyhedron in his famous copperplate engraving.
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U. BREHM:
Triangulation of lens spaces with few simplices
(joint work with J. Swigtkowski)

For the lens space L(p.q) (p >q.p.q relatively prime) a triangulation with 24 Np/p +33
tetrahedra and 3 N(P/q) +9 vertices is constructed. where N(P/g) denotes the sum of the
coefficients of the representation of P/q as a continued fraction. Using Reidemeister's '
topological classification of lens spaces, this implies that there are at least 2" topologically
distinct-riangulated lens spaces with at most 24(n +4) tetrahedra and 3(n+4) vertices.

The core of the proof is the construction of a "reparametrizing complex” for a simplicial torus.
Finally. it is indicated how to use these ideas to miangulate arbitrary 3- manifolds with few
simplices using a Heegard diagram and Dehn twist.

F. BUEKENHOUT: ‘
Unfolding combinatorial polytopes

This is a report on joint work with S. Bouzette, E. Dony and A. Gottcheiner. The literature on
unfoldings of polyhedra seems rather scarce to us. We were developing a theory of unfoldings
of a combinatorial polytope £ in terms of morphisms from prepolytopes to P and other cate-

~ gorical ideas. It leads to a characterization based on the spanning trees of the 1-skeleton for the

dual polytope P*. Metrical polytopes in d-space and their metrical unfoldings in (d—1)-space
are studied likewise. The enumeration of all unfoldings of the convex regular polytopes up to
symmetry indim <4 is close to completion in joint work with M. Parker. It was shown by
Bonzette and Vandamme that the dodecahedron and the icosahedron unfold in 43 380 ways.

R. CONNELLY:
Equilateral, equiangular, planar polygons

The problem of calculating the number of components of the space of points in a Euclidean
space subject to certain distance constraints is considered. [t is possible to use and apply some
of the ideas from the theory of rigid structures. :
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L. DANZER:

SCD, a 3-dimensional "Einstein" .

A prototile SCD (=T("/,,s.h), m.ne N, g.c.d(m‘n) =L m2<n s.h e R, h>0is
presented, which ’

® s a weakly convex polyhedron in E3,

® permits 2% face-to-face tilings of ES,

® none of which is invariant under any nontrivial translation (mirror ifnagcs excluded).

If and only if » is odd, the species S;' of all face-to-face dlings by congruent copies of SCD
(mi:rqr images not permitted) is repetitive.

When SCD is furnished with a finite number of sites for various atoins. évcry tiling of the latter
type yields an (r.R)-set (i.e. a DELONE-set)

®  with only finitely many VORONOI-cells (up to n gid motons)

® and without any BRAGG-peak in its X -ra)} diffraction pattern (i.e. no DIRAC-delta in its
FOURIER-transform), except a 1-lattice on the z- axis.

Only a very few of these patterns possess any global symmetry. There may be a reflection in a

line. If there are more symmetries, there is a screw with an angle incommensurate to T.

If any of these (r.R)-sets are physically realizable, they will obey a strict long-range
orientational order, but not by translations and far away from being quasicrystalline.

H. EDELSBRUNNER:
Yo!ume of union of balls

Let B be a finite set of spherical ballsin RY and \UB their union. By the inclusion-

exclusion principle,

UFG

volUB = X (1)0-lyg g,
ce 28-(@)
Most of the terms in this formula are redundant. We show there is a d-dimensional abstract
simplicial complex K ¢ 28 s0if K is substituted for 23 the formula is still exact. Every
simplex 6 € K is independent; thatis, Mt -\(c-1) = @ forall tc 6. The formula can
be further reduced to u:fms of at most d (rather than d+ 1) balls each, using simplex angles as
weights for the terms vol No. '
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A. FLORIAN:
On the intersection of a pyramid with a ball

Let Q be an n-sided pyramid contained in the unit ball X and having its apex at the centre O
of K. Let U be the radial projection of the base of Q onto the boundary $2 of K. We
denote by Q the corresponding n-sided pyramid, the base of which is a regular n- gon with its
vertices on $2 and which satisfies

al) = a) (a =area). ,
Let K(p) be the ball with the same center O and radius p, where 0 <p < 1.

Theorem: V(QﬁK(P)) s V(0 hK(p)). where V denotes volume.

When p 2 height of Q . then equality holds only for Q 0. Some applications are
discussed.

o

P. GRITZMANN:
Largest simplices in polytopes

(joint work with V. Klee and D. Larman) ) ) .

The talk gives various results on the computational complexity of problems related to the task of
finding a largest j- simplex in an n-dimensional v- or x- polytope Applications to the
Hadamard determinant problem, to the question of boundlng the growth rate of pivots in
Gaussian elimination with complete pivoting and to weighing designs are indicated; but the
main emphasis is placed on the discription of a polynomial-time transformation from the
problem of finding a Hamilton cycle in a directed graph which is based on earlier work of
Papadimitriou & Yannahahis on the recognition of integer polyhedra.

R. J. HANS-GILL:

The view-obstruction problems

The view-obstruction problem for an 2 -dimensional closed convex-bodyl C containing the
origin in its interior was fonnulated by Cusick in 1973." For & >0, the convex body kC is
translated to all points of the set (-.,, ,. ;) +IN", where IN is the set of natural

numbers. When & is large these bodies block all the rays from the origin into the open
positive cone. The central problem is to determine the minimal blocking size. Wills (1968) had
already considered this problem for boxes while studying certain arithmetical functions. For
spheres and boxes centred at 0 for n.=2. 3.4 the problem has been solved by various
authors (Betke and Wills, Chen, Cusick. Pomerance. Dumir, Hans-Gill and Wilker).
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Several new resuits regarding this problem and its generalisations have been obtained by
Dumir, Hans-Gill and Wilker. In particular the constant for sphere centred at 0 in R has
been determined.

H. HARBORTH:
Few distances in small point sets

For n points in the plane the known values for the minimum number f{n) of different distan-
cesare f3)=1.f)=f5)=2.6) =N =3 .f8)=£9 =4 ,f10) =A11) =f(12) =5 .
The known numbers r(#) of different configurations with f{n) different distances are r(3) = {.
r@=6.r8)=1,n6)=9.r(M=2,r@8)=7.19)=3.

For the platonic solid graphs G=T,H,0,D,/ (tetrah., cube, octah., dodecah., icosah.)
straight line drawings D(G) (two edges have at most one point in common) in the plane are
considered. The minimum numbers A of different edge length are determined in the cases of
real (A(G)), of integer (A(G.r)), of plane D(G)'s with real (Ap(G)), and of plane D(G)'s with
integer edge lengths. :

AG) | AGn | 4,6) [4,6Gn
T] 2 3 2 3
HI 1 1 2 2
ol =2 3 3 3
o 1 1 2 2
I 3 3 4 <7

For O ail 26 different D(W5s)'s and 6 classes of D(Ws)'s with one parameter are
constructed for the wheel graph W with four spokes. These can be fitted together to get 9
octahedra drawings with two different edge lengths (see one in the figure). For / there are
274 D(Wg)'s . and no combinations are possible to get a D() with only two different edge
lengths.

M. HENK:
Finite and infinite lattice packings

For a convex body K in the d-dimensional Euclidean space E9 let Py (K) be the
family of ail packing lattices with respectto K. Further for an integer n let
Pr(Kin) = {CcEY]| #C)=n andthereexistsa Ae PrK) with CcA ).
We call ®((K.n) the set of all finite lattice packings of K (of cardinality n ).
With respect to the parameterized densities
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SL(K.n.p) = max{
: V(conv(C) + pK)

: Ce -J-‘L(K.n)}, p >0,

we show
%ﬂ .k =84
lim sup 8 (K.n.p) = 8.(K) for p2p(K) = 3 .K=-K
' ' 2asn). else

where 5.(K) is the density of a densest infinite lattice packing.

W..Y. HSIANG:
The proof of Kepler's conjecture on the sphere packing problem

The sphere packing problem: If one packs a large number of identical spheres i mto a container,
the density of such a packing is defined to be the percentage of the volume of _thc cdmamer

- occupied by spheres. The Lu.b. of such packings will, of course, depend on the shape and the
relative size of the conuainer. If one let the relative size between the container and the spheres
tend to infinity, then the above Lu.b. will tend to a common limit value independent of the
shapes of the containers. This common limit is essentially the obu’mal density of sphere-
packings with the whole space as the container! The sphere packing problem seeks to
determine the exact value of the above optimal density. :

The Kepler conjecture on sphere packing: In a latin booklet of 161 1 entitled: "A new year's
gift — on six cornered snowflake” He discussed the above sphere packing problem, compared
the densities of a few examples which are, nowadays, called the pattice type packing. Among
them, he found the face centered cubic lattice packing is the densest, and then, he" boldly
conjectured that the f.c.c. packing already achieved the optimal density of all possible sphere
packings, namely, in his own words: "The (f.c.c.) packmg will be the ughtest possxble, so that
in no other arrangements could more pelleu be stuffed into the same conta.mer "

The proof nggpjg;r_s g_o_mmm. The sphere packing problem and the Kepler conjecture is, by
definition, a problem of infinitely many spheres. The first step is to introduce suitable local

invariants so as to reduce the above problem to some problems of finite spheres, if such a
reduction is at all possible. The following two local invariants play this crucial role in the proof
of Kepler's conjecture. namely (i) local density and (1) a locally averaged density defined as
follows.

Definitions: (i) To each given sphere in a packing 1#. one associates a surrounding
polyhedron which consists of those points that are as close to its center as to the centers of the
others, and call it the local cell of the sphere in the given packing ». The local density of a
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sphere S; in  is defined to be the ration between the volumes of the sphere and its local cell,
namely

oS, = vol(S;)
i

vol C(S;, )
( ii) Two spheres are defined to be ¢close neighbors if their center distance is at most 2.18 times
the radii (two spheres are defined to be neighbors id their local cells have a common face). The
cluster of spheres consisting of a central sphere S; and all its close neighbors is called the core
packing of S; and denoted by 2(S;). Set

26y = : S,,. 1<j <#2(5) )

w,'j #JA((S) VO]C(S,,

(iii) The locally averaged density of S; in P is defined to be the following weighted average
of the local densities of Sj; in %, namely

2[ @y p(slpg")

p(S,,@) = z Py B

In a paper published in the october issue (1993) of International Journal .of Mathematics, the
author proves the following theorems on the optimal upper bound of the local
invariants,namely

Theorem 1: The optimal local density is equal to
43—" :20(1 - 2cos35’3) g = 0.75469...

and it can be achieved when and only when the local cell is a circumscribing regular
dodecahedron.

Theorem 2: The optimal locally averaged density is equal to 7/\[jg and it can be achieved
when and only when the double layer local packing (consisting of the central sphere, its close

neighbors and all their neighbors) is a sub-cluster of the close packing of Barlow-type.
Since the global density of a packing 7 is the tollowing weighted average density,namely
L @; p(S;,P)
P(P) = limsup J—',:p_—'— }
T Wi
where @; = ‘I): w;; . the Kepler conjecture follows directly from Theorem 2. This proves the
Kepler conjecture that T/\|g is indeed the optimal density of all possible sphere packings in
the whole E3.

Deutsche
Forschungsgemeinschaft

o®




UFG

Deutsche

D. HUSON:

Periodic Delone tilings

Delone complexes (and Voronoi Diagrams) are useful in a large number of fields, from
archeology to zoology. Many different algorithms have been devised to computé them. For
simplicity and to avoid computational difficulties, the input data, a set of points, is assumed to
be in general position and the arising Delone complexes are always triangulations. In the
application of Delone complexes to crystal structures, however, it is important it is important
that the arising cells or tiles.reflect the symmetry of the given points (atomns) and hence special
arrangements should not be neglected. In this talk a simple geometric procedure is discussed
and demonstrated that computes the Delone complex (i.e. tiling) of a penodxc 3D point set,
taking special arrangements into account.

H.-C. IM HOF:

‘Complex volume of orthoschemes

The aim is to define a volume functional for polytopes in projective space P" with respect to a

- quadric Q inducing hyperbolic geometry.

An orthoscheme is a simplex described by a linear Coxeter diagram. The volume of a reducible

on.hoschenie»is inductively defined to be the product of the volumes of its components.

. An irfeducible onhoschem’e induces a configuration of n+3 hyperplanes, which in turn define

asetof 2n+7 polytopes. One of these lies inside Q, it therefore has a positive real volume.
It differs from the given orthoscheme _by an algebraic sum of reducible orthoschemes. This

allows us to assign a complex volume to any orthoscheme in P".

The Schlifli differential form continues to h(V)ld> in our more general context.

A. IVIC WEISS:

Polytopes related to the Picard group

For each positive integer m we show that there is a finite 4-polytope with simplicial facets A
whose vertex-figures are regular abstract polyhedra of type {3.m}. In the construction we
employ cenain quotients of the Picard group.” Distinct polytopes of the same type can then
arise, some of which may be chiral: but in each instance. facets and vertex-figures are regular.
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R. KELLERHALS:

Sphere packings and volumes-of hyperbolic manifolds

We improve estimates from below tor volumes vol,(M") (n23) of compact hypcrbolic space

forms M* = H" /T, T <Iso(H") discrete and torsionfree, by making use of sphere

. packings and density estimates (following ideas of R. Meyerhoff and Martin):

Let r(x.M) :=sup { rl exp, injective on a balliof radius r } and (M) :=sup { r(xM) | xe M}

Then, b); Martin's result, /(M) > ——2—1-[-,,3— The Buser-Karcher estimate says that
2-9 + i -

. ' Q. 1 -
volu M 2 =L (25" Qaoy = Vol (877
By Béroczky's theorem on the upper bound of a sphere packing (here with balls of radius

- r(M)), we derive the lower bound .
vol,(M™) 2 vol,(R(at)) , where -
. o 1. __ cosh2r(M) e
Z(R(a» Pelee e < COSQ®) = T osh QM) A=

' DFG

denotes the characteristic hyperbolic n- orthoscheme associated to the mgﬁla.r simplex Smgkza)
by Sreg(2a) = (n+1)! R(a) . ' '

W. KUPERBERG:

Mutually contiguous translates of a plane region
(joint work with Andrds Bezdek and Krystyna Kuperberg)

Two sets are contiguous if they have disjoint interiors and a common boundary point.
Members in a family of sets are concurrent if all of the sets in the family have a common point.
We consider a family of mutually non-overlapping translates of a piane nf.gion (bounded by a

’ simple closed curve), and we prove that if the translates are concurrent, then the family concists

of at most four members. Generalizing this result. we prove that if a family of mﬁmaﬂy
contiguous translates of a region has at least four members, ther: the translates are concurrent,
and therefore the family consists of exactly four members.  This solves a problem of

J. Mitchell, posed in 1989. Also, we characterize those regions which admit four concurrent, -
mutually non-overlapping translates.
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D. G. LARMAN:

The art gallery problem with 180° guards
(joint work with Ellen Bunting)

An art gallery room with »n sides is a simple plane polygon with n sides. The original art

gallery problem was to place a minimal number of guards in the gallery so that every point of
the gallery can be "seen” by at ,Iezist one guard. An ingenidus argumeht of Chvatal shows that
in general g- guards will suffice and that this is the best possible result. Urrutia asked for the

analogous number when the guards vision is restricted to 1800. Here we show that l_‘% _I
guards will do but perhaps again the correct answer is I_g-J If it could be shown that an art

gallery with eleven sides requires only 3 guards then the result could be improved to %n .

C. LiﬂE: ) 2

Combinatorial volume

Noation: For (ry,....r,) € Z; and indeterminates Xy, ...,x, , Il = rj+...+r,,
ro=rylecorg! o= xy"l o x, and supp ) = {i|r;>0}. Let A be an abstract
simplicial (d-1)-complex with vertex set {1,...,n} having an underlying topological space
which is an orientable manifold. v;,...,v, be generic pointsin R? and M be the

dxn matrix [vy,....v, ]. Then there exists a polynomial V(x) =. "?.'_.db,"f{ satisfying

b, =0 when supp(x) & A and MVb = 0.

Theorem: V(x) is unique up to scalar multiple, and V(1) #0. In the case that
A = dconv{vy,....v, } then V(x) = vol(y | y-vi Sx;,i=1,...,n} when x; =1,
and so V(1) is obviously nonzero. Let 4, = Rixy,....x, /I, be the Stanley-Reisner

ringof A, 6; = i‘f'l vijxj.j=1,...d, and B = Aa/(el',__'ed) = Boé...eBd.
Then dimg B, = dimg By = 1. Asa corollary to the theorem, (x| +...+x,)¢ # 0 in By
and so multiplication by (x;+...+x, )¢ induces a bijection between B, and B,.

(This is joint work with Sue Foege at the University of Kentucky.)

E. MAKAL:
Lower bounds on the numbers of shadow-boundaries and illuminated regions

Let K< R" n22.beaclosed convex sct. with @ = intK . K # R". We denote by
shbp(K) . shshby (K) . illrp(K) the number of ditferent non-empty shadow-boundaries. non-
empty sharp shadow-boundaries. and illuminated regions (in the strict sense) of K , different
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from bd K , w.r.t. arbitrary point light sources outside K. (A shadow boundary is sharp if
each light ray that supports K has at most one common pomt with K .) If we consider
parallel illumination, from directions whose opposne direction does not belong to the charac-
teristic cone of K . we denote the analogous quantities by shbpy(K) , shshbp,(K), illrpae(K) -

Any of these six quantities is finite if and only if K is polyhedral. If K is a both-way infinite

cylinder over an (nél)-dimensional convex set L, then, apart from some simple cases, each of
these quantities has the same-value for K and L. Let therefore K be line-free. Let j denote
the dimension of the characteristic cone of K. Then. if K varies by fixed j, the minimum of
shbp(K) . shshby(K) illrp,(K) (resp. shbpy(K) . shshbp, (K)) is attained if and only if K is
aj-fold one-way infinite cylinder over an (n—)- simplex (resp. (n-j)- parallelotope).

P. MANI-LEVITSKA:
On Nikolai’ Mnévs universality theorem

We, that is Daniel Lehner and I, are presenting a slightly modified and elaborated proof of

N. Mnév's universality theorem (Springer Lecture Notes 1346): Given any semialgebraic set
M, there exists a finite sequence ¢ of points in the real projective plane P;, whose reduced
configuration space [c], is stably homeomorphic to M .- Consider a resolution

6 =(0y,...,0,) of the defining polynomials f},....f, for M. o; isarooted labeled binary
tree, which describes how f; is composed from constants and variables by successive
application of the operations +, —, - , : . There is amap € "forgetting the logical structure”,
‘from the vertex set V(G), the disjoint union of the vertex sets V(c;), into the field QO —xg)
of rational functions over Q. € maps the root of o; into f;. Let reg(c) be the set of those
p € Rk where e(v) is regular, for every ve V(o). Call two points p,q in reg(c)
equivalent, if e(v) —€(w) has the same sign, +, — or 0,at p and at g, forevery v#w in
V(o). Denote by T1(G) the set of equivalence classes.

Proposition 1. For every K € I1(0) there exists a sequence ¢ in P, suchthat K is stably
homeomorphic to [c], .
Proposition 2. For an appropriate choice of & , there is some K e [1(0) , stably

homeomorphic to M.

We have found that, after a few modifications, N. Mnév's proof’s of these statements are
correct.

I have leamed from Giinter Ziegler that Harald Giinzel in Aachen has come to the same
conclusion, so that a clean text should be available in the near future.
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P. MCMULLEN:
"Bare hands" constructions of regular polytopes

Because of the close connexion between regular polytopes (as presently understood) and string
C -groups. the most popular method used these days to construct new regular polytopes is by
means of their automorphism groups. However, when Griinbaum relaunched the subject in
1975. he frequently used direct methods, even in some instances constructing regular polytopes
by fitting together their facets one by one. In this talk, we wish to show that there is still some
milage to be gained from such "bare hands" techniques.

B. NOSTRAND:
Ring extensions and chiral. polytopes

Abstract polytopes are partially ordered structures which generalize the notion of polyhedra in a
combinatorial sense. There are abstract polytopes which correspond to all of the classical
regular polytopes and many other well-known structures. Chiral polytopes are fépe_titive
structures with maximal rotational symmetry which lack reflexive symmetry. While much is
known about regular polytopes, little is yet known about chiral polytopes. The simplést chiral
polytopes are all twisted tessellations of torii. While these chiral torii can be used to construct
locally toroidal chiral polytopes of rank 4 , we can also construct locally spherical polytopes.
We use hyperbolic honeycombs to construct the symmetry groups of abstract polytopes over
finite rings. The corresponding polytopes belong to families with related local symmetry.
Ring extensions allow us to construct additional members of these families and to alter global
structure.

Era

-J. PACH:
"On Conway's thrackle conjecture

A thrackle is a graph G = (V(G), E£(G)) drawn in the plane by simple arcs such that
(i)  any two edges that do not share an endpoint cross exactly once, and
(ii)  no two edges sharing an endpoint have any other point in common.
Conway conjectured that [E(G) < V(G)l for any thrackle G .
Theorem 1. Any bipartite graph that cun be drawn as a thrackle is planar.
Theorem 2. E(G) <2 IV(G) holds for every thrackle G .

Analogous results can be proved when we impose some weaker parity conditions on the
pairwise intersections of the arcs. This is joint work with Mario Szegedy.
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M. PERLES:

ATransversals of polytopes

(joint work with N. Prabhu from Purdue University)

Theorem l Let P be aconvex d-polytope in RY . There is no -flat that meets the relative’
interiors of all j-faces of P, unless & 2 min(d, 2(d-))).

The proof uses the fact, due to B. Griinbaum, that the I_fﬂ - skeleton of a d-polytope P is not
isomorphic to the Lg J - skeleton of a polytope Q of dimension 2d.

Theorem 2: Foreach d>2 and n>d+1 there exist a simple d-polytope P* = P*(d.n) in
R?, having exactly n facets, with 0 € intP*, and a nested sequence (Jz")% of linear
subspaces of RY, with dimJ2 = 2v, such that J?¥ meets the relative interior of every
(d-v)-face of P* (0 <v<(d2)). 7

P* can be chosen as the polar of a wranslate of a standard cyclic d-polytope with n vertices (=

* convex hull of n points on the moment curve (z.72, ...,%), with J2 = span {e(, ey, ....€2,}.

J. RUSH:
On . lattice packing densities

Superbélls are bodies of the form { x:f{x) <1} where f is a superball function. A function

" f:RF— R isa superball function if it satisfies:

) £0) = 0,fx) > 0 if x=0

@ fx) = f-x)

(3) V>0 3 Ae GL(R) st 1fx) = lAx) Vxe Rk

@) £8x +(1-8)y) < 08f¥) +(1-8)fy) ¥V x.ye RE, 050 1.

We conjecture that the maximum lattice-packing density 8; of the superball
SO oo X)) + kg 1s oo X)) + oo # [ py10 -0 Xp) < 1 in R,

where & divides n, is asymptotically ‘
: A (1+o(1)

, J;exp (- f(Ax)) dV .
5 = =% sup -R for large n.
L Ae GL(R) ZZ“ exp (- f(Ax)) -
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P. SCHMITT:
Space filling knots

In this talk two examples of knotted space fillers are described, i.e. two bodies in Euclidean
space which are topologically equivalent to a torus but are embedded like a trefoil knot, and
which tile space by congruent copies. These space fillers can be realized as toroidal polyhedra.

Furthermore, the idea used in the construction can be generalized to obtain arbitrarily knotted
(or linked) space fillers.

Remark: Different constructions were found independently by W. KUPERBERG and by
COLIN DAVIS. An earlier example is due to PETER MCMULLEN (unpublished).

E. SCHULTE:

Toroidal adventures

A central problem in abstract polytope theory is the classification of polytopes by their local or
global topological type. On the group level this amounts to the classification of C-groups in
terms of generators and relations. The classical theory corresponds to the spherical case.
Partial results are discussed for the case when the polytopes are locally spherical or euclidean
space-forms. The situation is best understood in the toroidal case.

G. C. SHEPHARD:
Ceva, Menelaos, and friends

The theorems of Ceva and Menelaos are well known. These are just two of a vast number of
theorems which state identities of the following kind. Let ¥; be a point defined in some
geometrically significant way on each edge or diagonal [V},V;,;] of an n-gon
n )

[V1.Va,....V,]. Then a product H[V,— Yi/YiVisa] = +1or~1. In this lecture, all these

i=
identities were shown to be consequenées of a fundamental theorem (which is too long to state
here) concemning d-dimensional analogues of polygonsin A, namely polyacrons. These are
defined as sets of points in A in addition 10 edges there are 2- faces (triangles), 3-faces
tetrahedra etc. defined by adjacent sets of 3, 4. ... vertices. The analysis of the results was
facilitated by CW-diagrams. These show immediately which products of the above type have
the required property. namely the value +1 or -1 forall #-acrons. Details will be published
shortly. '
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H. TVERBERG: .
Almost-transversals for families of transiates satisfying T(4)

We consider a famiiy of disjoint convex séts in the plane. They are translates of one compact
set K. Assume thatevery 4 sets have a ransversal, i.e. a straight line meeting all of them.
Then it follows from a result of Katchalski and Lewis that there will be a ransversal for the
whole family, with the exception of at most 603 sets. We state this as -

T(4) =T-603. .

Katchalski-and Lewis have a conjecture that 7(3) = T -2, which of céurse implies
T(4) = T —2. We indicated a proof, using a result of Eckhoff, that 7(4) = T-6.
This can probably be strengthened by using another one of Eckhoff's results about T(4) .

We also explained how the fact that 7(5) = T -0 implies that if there is counterexample to
T(4) = T -2, then there is one with a small number of sets (definitely < 49, and most likely
< 15). Note that T(4) = T -2 holds for circles as well as squares, and that even

T(4) = T—1 might be true..

W. WHITELEY:

Constraining plane configurations in CAD

A “constrained diagram" in Computer Aided Design is
(i) acollection of geometric objects (points, lines, circles)
(i) a set of incidences (point on line, line tangent to plane ...)

(iii) a set of numerical constraints: distances, angles ... .

Some basic questions in CAD ask

(a) whena constrained diagram is
(i) unique, up to congruence, translation ... ;
(i) locally unique, up to congruence, translation ... ;
(iii) fixed. at first-order, up to congruence, translation ... ?

(b) when are the constraints
(i) independent? (One can be changed. creating a nearby configuration)
(ii) minimal. for first-order uniqueness?

(iil) possible new constraints which ure independent?

Deutsche

F

orschungsgemeinschaft

- o®




19
Most problems of this type are unsolved. Even points, lines and angles alone are not

characterized.

This talk summarized two known cases.
(c) points with distance constraints (plane ﬁgidity):
(d) points with directions for pairs (parallel drawings);

and presented new results to characterize the combined pattern of
(e) points with both distance and dinéction constraints. -

In this combined problem the 'special position’ di'ugrams are described by interesting Euclidean
. properties. i

J. B. WILKER:

-The Apollonian gasket and periodic isoclinal sequences

One approach to estimating the Hausdortf dimension of the Apollonian gasket led to a sequence
of disks in the plane with radii in geometric progression and any four consecutive disks
mutually tangent. This motivated the definition of an isoclinal sequence of (n~1)-spheres in
inversive n-space with any n+2 consecutive (n-1)- spheres required to have the same-
inclination” ¥ to one another. It turns out that for such a sequence to exist the inclination y

n+2 1
Y < - !“_l.the

1
must satisfy y<—" el Aok When n is odd and —m

Mébius transformation which advances the sequence upon-itself is conjugate to an %"—fold

rotation of the n-sphere. The condition for this tranformation to be periodic can be expressed
in terms of the existence of concurrent chords in a regular N-gon. This yields a complete

‘ enumeration of periodic isoclinal sequences: there are infinitely many such sequences in
dimension n =1 and there is exactly one such sequence in dimension n =3 . The sequence in
dimension # =3 consists of 24 2-spheres and has v = l'Tz\E .
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J. M. WILLS:
A new approach to packing and covering

Let K c E4 be a convex body with volume V(K)>0 and let K; = K+c¢joi=1.....n and
Cp=1{cy....,cy}. Then :

. VK -
BK.Cpp) = n —2E
( mP) = V(convC, +pK)

is called the density function of the arrangement C,, + K, where ' peR lS a parameter. For
p>0 V(convC,+pK) can be estimated via mixed volumes; for p <0 by other convexity
tools. If dim(convC, +pK) <d. we set 8 =o. The idea of the parameter p is to control the

" influence of the boundary region of C,+K. If int(K; nK)—@ for i#j,then C,+K isa

packing, if convC, < C,+K ,then C,+K isacovering. So one can define optimal
densities for finite packings and coverings: :

8(K,n,p) = sup{ 8(K.C,.p) | ¢ 2+K packing} p> 0

3(K,n,p) = inf{ 8(K.Cpp)| C,+K covering} peR.
For suitable p these densities tend to classical packing and covering densities (lattice and
nonlattice). So one gets a joint theory for finite and ‘infinite packing and covering.

G. ZIEGLER:

Combinatorics of 4-dimensional polytopes

1. _?_olmmsamnmmmmmb_

We explained constructions which show that, while shelling a 4- polytope. one can "get’ stuck".

The basic step is the identification of nonshellable 3-balls (after FRANKL and BING) as
subcomplexes of “piles of cubes”, which can be lifted to 4-space convexly

2. Eor 5-polytopes one cannot
prescribe the shape of 3 2-face
We sketched the extremely
simple, direct construction (due
to J. RICHTER-GEBERT) of a
5 -polytope for which the shape
of a hexagonal 2 - face cannot be
arbitrarily prescribed - in every
realization of the S-pol);topc the

hexagon vertices lie on a conic.

Berichterstatter: G. Wegner
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