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Unter der Leitung.von L. Danzer (Dortmund) und G.C. Shephard-(NolWich) trafen sich 45

Teilnehmer aus 11 Ländern zu fruchtbarer Diskussion. Wegen des hohen Maßesan Inter­

nationali~t - nur em Drittel der Teilnehmer kam aus Deutschland - wurden die 39 Vorträge

ausnahmslos in Englisch. gehalten.

.Polytope und ihre Kombinatorik bildeten einen ersten thematischen Schwerpunkt der Tagung.

Eine ganze Reihe von VOJ1!ägen war solchen Einzelthemen gewidme~ die zeigten, daß es auch

in der gewöhnlichen euklidisc~en Ebene noch viele offe~e.Fragen ~bt. In etlichen Vorträgen

wurden Verbindungen zu anderen Gebieten der Mathematik - wie GtiJppentheorie't

algebraische Geometrie, hyperbolisch~Geometrie. Graphentheorie - hergestellt

Eine weitere Gruppe von Vorträgen war dem breiten Problemkreis der Überdeckungen,

Packungen und Pflasterungen zuzuordnen. wobei vor allem ~ntersuchungenübe~ Dichten

raumfüllender Packungen und Dichten endlicher Packungen (die von M~ Henk: und 1. M. Wills

vorgestellten Methoden ha~n kürzlich zum Beweis der bekannten "Wurstvermutung" von

L. Fej~s T6th ab Dimension 45 gefühlt) sowie 4uasi~eriodischePflasterungen zu nennen sind;

letztere haben für die für die Festkörperphysik Bedeutung. Der computergestützte Vortrag von

Daniel Husonzum letztgenannten ProbleInkreis hobsich dabei in der An der Präsentation von

aUen anderen Vomägen der Tagung ab.

Feiner gab es mehrere BeiU'äge zu kombin:..uorisch-geometrischen Fragen (u.a. von

H. Harbonh. D. Larman. E. Makai. M.Perlc:s. H. Tverberg).
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Ein Höhepunkt war ohne Zweifel der Meinungsa~s(ausch über die Ende "letzten Jahres

erschienene Arbeit von Wu- Yi Hsiang zur Lösung des Keplcrs"chen Probkn1s ü~r die dichteste

Packung kongruenter Kugeln in der [?imension drei. Der anwesende Autor stellte sich (neben

dem Vortragsprogramm) am Mittwochabend einer tnehrstündigen, sehr ins Detail gehenden

Diskussion mit den Tagungsteilnehmern, von denen sich einige intensiv mit diesem od~r mit

einschlägigen Problemen befaßt haben. Die mit großer Offenheit g~führte Diskussion konnte

-natürlich keine letzte Klarheit schatTen, "hat aber doch zu der gegenseitigen Einsicht geführt, daß

zwar einerseits. die vorliegende Publikation wegen _erhebli~h~r Lücken in den Details nicht als.

vollgültiger Beweis angesehen werden kan~, daß aber andererseits die ~ücken möglicherweise

geschlossen werden können.

Neben dem offiziellen Programm der Vorträge von 20 bis 40 Minuten Dauer hielt .e
"Peter McMullen in einer der Mittagspausen einen längere"" V.ortrag "Infonnal Lecmre on

Weighted Polytopes", in welchem die_ von ihm aufgebaute Theorie der Polytop-Algebra

weiterentwickelt und damit erneut die Fruchtbarkeit dieser Theorie unter Beweis gestellt wurde.

Schließlich w':lfcien auf zwei abendlichen Problemsitzun~en am Dienstag und am Donnersta~

Anstöße zu weiterer Forschung"ausgetauscht.

Erneut erwies sich auf dieser Tagung das Aufeinandertreffen sehr verschiedener Me~oden und

Ideen als äußerst anregend. was insbesondere auch ~iederder Anwe.senheit ei~ger Teilnehmer

. zu danken ist, die der Diskreten Geometrie benachbarten Gebieten zuzurechnen sind.

e
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Vortragsauszüge

A. ALTSliULER:

Polyhedra without diagonals

By a polyhedro.n without diagonaJs - or neighborly polyhectron - we mean a 3-dimensional

polyhedron P in which every two vertices ure joined by an edge of P. Two such polyhedra

are known: The teuahedron and the Csdszar rorus. In both cases the boundarr is a 2 - mani­

fold. The number of venices is 4 and 7 . respectively. The next such polyhedr~n - if it

exists - would have at least 12 venices. We show that if we allow the boundary to be a

pseudomanifold. then there exist n~ighbourlypolyhedra with .9 and 10 venices.

(Essentially, a pseudoman"ifold is obtained from a 2 - maniföld by pinching same vertices.)

Funhennore: ifwe allow the boundary to be a generalized pseudomanifold (Obtaiiled from a

2- manifold by pinching edges), then:for everY n ~ 3 there exists a neighborly poJyhedron with
. . - ",~:•.ö:'

2n vertices and with connected interiort whose boundary is a generalized pseu4:gmanifold.

A. BEZDEK:

A solution or Conway's fried potato problem

In order to fry it as expeditiously as possible t Conway wishes (0 slice a given coovex porato

ioto n .pieces by n - 1 succesive plane cuts (just one piece being divided by each cut). so as to

minimize the greatest inradius of the pieces. We s~ow that one has to employ equally spaced

parallel cuts: choosing the direction of the cuts parallel to the planes of support which detennine

the minimum width of a weil defmed. rounded potato. We also show some examples and

discuss [wo variations of the original problem.

G. BLIND:

On packings with incongruent circles

Let P be a packing cf circles K; wirh radius r;. The homogeneity h of <JJ is usually

defined by h := inf!J.. An often investigated problem is to find good bounds for the packing
r·. J

density D of (Pt and the bounds will depend on- h .

r·
We define a local homogeneiry I by I := inf f . where the iof is ooly over all neighboring

)

circles of <]J. and we are interested in bounds fcr D depending on ,. We show in particular

7t
that 0.797... S / S 1 implies D S ,-.

'J12
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K. BÖRÖCZKY:

Circle packings

. Itis well-kno~n that the density of a packing of circles is at most _~. if the radii are chosen
- '112

from the intervaJ [q, I) where q =0.742990.... On the other hand, J. "Molnar consuucted an

ex~ple with q =0.645707 ... such thal the densi[y is ~. L. Danzer has another exarnple "

"where q = 0.654316.... Tbe union of two. touching and non-overlapping circles is called a

molecule (tbe radü of the circles are q and 1). A. ~eppes proved thatce~ ci.rcle packings

are' solid. Two of thein provide the .densest packing of molecules for q = {2 -"1 and

q =0,637555.... In our result the possible v~ues of q constitute awhole interval. The main

theorem is the following: •

Let _7::- 1 ~ q S; 0,189673....' Theo the density of any"packing of the corresponding
~3 -

molecules is at most

K. BÖRÖCZKY jun.:

Intrinsic volumes of and rat packings

.Let C bea convex body in Ed. and Qn be the convex huH of n non-over~apping translates or"

C. Dur goal is 10 minimize the intrinsic i-volume Vi(Qn) of Qn' for i = 1, ... ~·d. In the

case of the volume (i =cl) there are variouspossibilities. For example, the minimal

arrangement can be'a "sausage" (if C is a cylinder) or Q,j can hav~ large inradius for large n

(if C" is a spacefiller which is not a cylinder). On the other hand, for i ~ d - 1 we proved

that if Vi(Q,J js minimal then

J. BOKOWSKI:

Dürer's polybedron in his engraving MELENCOLIA I - Combinatorial tilings

on tbe 3-sphere

The open Steinitz problem "characterize.. among all combinatorial (d-l)-spheres, the

d - polytopal anes", lead to the investigation of equifaceued simple 3 - spheres which cannot be

obtained as boundaries of 4- polytopes (joint work with Peter Schuchen). Apan from the

known example of the Altshuler classification of neighbofly 3-spheres, the search for exarnples

within the class up (0 10 facets lead lO precisely one new example. the combinatorial facet-type

of which equals 'lhat of Oürer's.polyhedron in his famous copperplate e~graving.

r(Qn) ro
R(Qn} ~ 1 - --L­

n il{il+3J _

2

where CI) =4OOO.Jd (~2)d+3.
~•
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u. BRElIM:

Triangulation or lens spaces with rew simplices

(joint work with J. Swi~tkowski)

For the lens space L(p.q) (p > q .p.q relatively prime) a ttiangulation with 24N(P/q) + 33

tetrahedra and 3 N(P/q) + 9 venices is constnlcted. where N{P/q) denotes the sum of ~e

coefficients of the representation of P/q as a continued fraction. Using Reidemeister's

topological classification of le~s spaces, this implies that there m:e at least 2n topologically

distinct-triangulated lens spaces withat most 24(n +4) tetrahedra and 3(11 +4) veni~es.

The core of the proof is the construction of a IfreparametriZing complex" for a simplicial torus~

Finally. it is indicated how to use these ideas (0 aiangulate arbitrary 3- manifolds with f~w

simplices using a Heegard diagram and Dehn twist

F. BUEKENHOUT:

Unfolding combinatorial polytopes

This is a repon on joint work with S. Bouzette. E. Dony and A. Goneheiner. The literature on

unfoldings of polyhedra seerns rather scaree to uso We were developing a theory of unfoldings

ora combinatorial polytope P in tenns of morphisms from prepolytopes to P and other cate­

gorical ideas. It leads to a characterization based on th~ spanning tI'ees of the 1-skeleton for the

dual polytope p*. Metrical polytopes in d - space and their metrical unfoldings in (d-l) - space

are sludied likewise. The enumeration of all unfoldings of the convex regular polytopes up to

symmetry in dim S 4 is close to completion in joint work with M. Parker. It was shown by

Bonzette and Vandamme that the dodecahedron and the icosahedron unfold in 43 380 ways.

R. CONNELLY:

Equilateral, equiangular, planar polygons

The problem of calculating the number of components of the space of points in a Euclidean

space subject to cenain distance constraints is considered. It is possible to use and apply some

of the ideas from the theory of rigid struclures.
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. L. DANZER:

SCD, a 3-dimensional "Einstein"

A prototile SCD (= T(mln•s. h). m. n e N , g.c.d(m,n) =1, m, 2 < 11. S, hER, h > 0) is

presented. which

• is aw~yconvex polyhedron in IEJ ,

• pennits Zl.Co faee-to-face tiiings of E 3•

• none ofwhich is invariant under any nontriviaJ tran~slation (~rror images exclud~).

Ifand only if " is odd. the species S; ~f aB face-to-face tHings by ~ongruent copies of SCD

(mirror images not pennitted) is repetitive. •

When SCD is furnished with a f~ite number of sites for various atoms, every tiling of the latter

type yields an (r,R)-set (i.e. a DELONE-set)

• with onJy finitely many VORONOI-cells (up [0 rigidmotions)

• and without any B~GG-peak in its X-ray diffraction pattern ,Ci.e. no DIRAC-delta in its

FOURlER-transfonn), except a I-Iattiee on the z~ axis.. ·_

Only a very few ofthese patterns possess any global symmetry. There may be a reflection in a

Une. If there are more symmetries, there. is a scr~w with an angle inconunensurate to 1t.

If any .of these (r,R)-sets are physically realizable.. they will obey a strict long-range

orientationalorder, but not by ~lations and far away from being quasicrystalline.

H. EDELSBRUNNER:

"Volume 01 union of balls

Let !B be a fmite set of spherical balls in Rd and Uj3 their union. By the inclusion­

exclusion principle,

val U.23 = L (_l)carda-l val (\cr .
(Je 2B -(0)

Most of the tenns in this fonnula are redundant. We show there is a d·dimensional abstract

simplicial complex K ~ 2~ so if K is substituted for 2~ the formula is still exact. Every

simplex Cl E K is independen~ that is, (lt - U(cr- t) ;e 0 for all t ~ 0'. The fonnula can

be funher reduced to tenns of at most d (rather than d+ I) balls each. using' simplex angles as

weights for the tenns val (\0' .

."7'•
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A. FL()RIAN:

On the intersection ur a pyramid with a ball

•

Let Q be an ,,·sided pyramid contained in the unit baU K and having its apex ar the centre 0

of K. Let U be the radiaJ projection of the base of Q onto the boundary 52 of K. We

denote by Q the corresponding ,,·sided pyramid~ the base of which is a regular n· gon with its

vertices on 52 and which satisfies

a(l!) = a(U) (a = area).
Let K(p) ~ the ball with the same center 0 and radius p~ where 0< p S l.

Theorem: V(Q()K(p»:5 V(Q _flK(p». where V denotes vo~ume.

~en p ~ height of Ci _.~ then equality holds on~y for Q = Q. Same applic~tions are

discussed.

P. GRITZMANN:

Largest s.implices in polytopes

(joint ~ork with V. Klee and D. Larman)

The talk gives various results on the computational complexity of problems related to the task of

finding a largestj·sirriplex In an n-dimensional v· cr x·polytope_.· Applications-to the

Hadam~ ~etenninant problem, to the question of bou~dinithe growth rate of pivots in

Gaussian elimination with complete pivoting and to weighing designs are indicated; but the

main emphasis .is placed on the discription of a polynomial-time transfonnation from the

problem of fmding a Hamilton cycle in a directed graph which is based on earlierwork of

Papadimitriou & Yannahahis on the recognition of integer polyhedra.

R. J. HAN~-GILL:

• The view-obstruction problems

The view-obs01lction_prob~emfor an Il·dimensional closed convex-body' C containing the

origin in its interior was fonnulated by Cusick in-1973.- For k > O. the convex body kC is

uanslat~ (0 all points of the set (-t, -t, .... -!) + INn • where IN is the set of natural

numbers. When k .is large these bodies block all the mys fro~ the origin iota the open

positive cone. The centraJ problem is to determine the minimaJ blocking size. WilJs (1968) had

already considered this problem for boxc:s while studying cenain arithmetical funcrions. For

spheres and boxes cenrred at 0 for 11,= 2 . 3 . 4 the problem has been solved by various

authors (Betke and Wills. ehen. Cusick. PomerJllce. Dumir. Hans·Gill and Wilker).
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Several new results regarding this problem and i(s g~neralisations have ~en obtained by

Dumir. Hans-GiIl and Wilker. In particular the l:Ol1stant for ~phere centred at () in R5 has

been detennined.

H. 'HARBORTH:

Few distances in small point sets

For " points in the plane the known vaJues for me minimum number f(~,) of different distan­

ces are fl..3) =1 ,[(4) =f(5} =2 ,fl..6) =[(7) =3 ,J(8) =J(9) = 4 ,ltlO) =Jtll) =J{12) =5 .

The known numbers r(n) of different configurations with J{Il) different distances are r(3) =1.

r(4) =6 , r(5) = 1 , r(6) =9 , r(7) = 2 , r(8) =? . rl9) =3 .

For the ptatonic solid graphs G =T. H , 0, D ,/ (tetrah., cube. octah.• dodecah., icosah.)

straight line drawings D(G) (two edges have at most one point in common) in the plane are

considered. The minimum numbers A of different edge length are aetennined in the cases of

. real (A(G»~ of integer (A(G~r», of plane D(G)'s with real (Ap(G)). and of plane D(G)'s with

integer edge lengths.

••
A(G) A(G,r) Ap(G) Ap(G,r)

T 2 3 2 3

H 1 1 2 2

0 2 3 3. 3

D 1 1 ,2 2

I 3 3 4 5:7

For 0 an 2~ different D(W5)'S and 6 classes of D(W5)'s with one parameter are

constructed for the wheel graph Ws with four spokes. These can be fitted together to get 9

octahedra drawings with (Wo different edge lengths (see one in the figure). For I ~ere are

274 D(W~"S , and 00 combinations are possible to get a D(f) with only [WO different edge

lengths.

M. HENK:

Finite and infinite lattice packings

For a convex body K in the d-dimensional Euclidean space Ed let IjJL(K) be the

family of alt packing lattiees with respect (0 K. Funher far an integer 11 let

']JL(K,n) = ( Ce Ed I #(c) =" and there cxists a A E 'PL(K) with C c 1\ J.
We call IJ.'L(K,n) the set of all finite lattice packings of K (af cardinaJity n).

With respect to the parameterized densities

......•

i

I

~-----------------------------------------
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max {
" V(K)

V(conv(C) +pK)
C E !i-' L(K .n) }. p > O.

W.-Y. HSIANG:"

The proof of ~eplerls conjectureon the sphere packing p~oblem

ÖL(J() for p ~ p(K) =

we show

t..J21. K = Bd

3 . K =-K

32<d+ 1) • eise

where ÖL(K> is the density of a densesl infinite lattice packing.

•

•

~~~~: If oße packs a large number of identical spheres ln~o a container,

the density of such a packing is defined to be Ehe percentage afthe volume o(th;;'~on~ner

occupied by spheres. The l.u.b. of such packings will, of course, d:epend on the shape and the

relative size of the container. If oße let the relative size between the container and the spheres

tend to infinity,.then the above l.u.b.will (end to a~.lim.4~ independent afthe

shapes of the containers. This corrunon limit is essentially the optimal densiry of sphere·

packings with the~~ as the container! The sphere packing problem seeks to

detennine the exact vciIue of the above optimal _densiry.

~KQ2kr cQnjecture 2Il~~: In a latin booklet of 1611 entitled: tlA new yearls

gift....;;... on six comered snowflake" He discussed the above sphere packin~ 'problem, compared

the densities of a fe~ examples whieh are, nowadays, ealled the pattice type pac~ng. Among

them, he found the face centered cubic lattice packing is the denses~ and then, he""ooldly

conjectured that the f.c.c. packing already achieved the optimal density of all possible sphere

pae~ngs, namely, in his own words: "The (f.e.c.) packing will be the -tightest possible, so that
. .

in 00 other arrangements could more pellets be stuffed into the same contaiiler."

:Im: 12IQQfQf~ conjecrure: ~he sphere packing problem and the Kepler ~onjecture is, by

definition. a problem of in(mitely many spheres. The fIrSt step is to introduce suitable local

invariants so as to reduce the a~ve problem [0 some problems of finite spheres, if such a

reduction is at all possible. The following two loeal invariants play this crucial role in the proof

of Kepler's conjecture~ namely (i) loeal density ~d (i) a Jocally averaged density defined as

folIows.

pefinitions: (i) To eueh given sphere in a packing 0>. one associates a surrounding

polyhedron whieh consislS of those points that ure as dose to its center as to the centers of the

others. and caIl it the~~ of the sphere in (he given paeking 'lJ. The local density of a
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sphere Si in '.P is defined to be the ration betwc::c::n the volumes of the sphere and its loeal cell~

namely
vol(S;)

voIC(S;~~)

(ii) Two spheres are defined to be~nei~bbQrs if their center distance is at mo~t 2.18 times

the radii (two spheres are delined to be neighbors id [heir local cells have a cammon face). The

cluster of spheres· consisting of a cenual sph.ere Si and aJI its close neighbors is called the~

~ of S; and den~ted by 1(S;). Set

p(Sj) = ( Sij' 1 ~j s #P(Si) }

13
Oljj = #.Jl.(Sj) oYOIC(Sij'P) •

(iii) The locally averaged density of Si in ".P is defined (0 ~ the following weighted average

of the local densities of Sij in .<.p~ namely

_ '1 C!'ij P(S;j~fP)
p(S;,p) = 1:

j .co ij

In a paper published in the aetober issue (1993) of International Journal.of Mathematics~ the

author proves the following theorems on the optimal upper bound of the local

invariants,namely

Theorem 1: The optima11ocal density is equal [0

4x 21C ~T: 20(1 - 2cos5 ) tans = 0,75469 ...

and it can be achieved when and only when the Iocal cell is a circumscribing regular

dodecahedron.

Theorem Z: The optimallocally averaged density is equal to 1Clm and it can be achieved

w.hen and only when the double layer loeal packing (consisting of the central sphere~ its close

neighbors and all their neighbors) is a sub-cluster of the elose packing of Barlow-t~.

Sinee the global density of a packing <.P is the following weighted average density~namely

{
1; 00; p(Sj,!P) }

p(QJ) = limsup , L -.
j 00,

where 00; = L CJl;j • the Kepler conjecture follows directly from Theorem 2. This proves the
J

Kepler conjecture that 1t/...[i8 is indeed the optimal density of all possible sphere packings in

the whole E3.

0"•
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D. HUS()N:

Periodic Delone tilings

Delone complexes (and Voronoi Diab'T"JIllS) are useful in a large number of fields. from"

archeology to zoology. Many different algorithms have been devised (0 compute them. For

simplicilY and [0 avoid ~omputational difficulties. lhe input data. a set of points. is assumed to

be i~ genera! position and the arisingDelone ~omplexes are always triangulations. In the

appliculion of Delone complexes [0 crysta!sa-uctures. however. it is importanl it is important

that the ansing cel1s or tiles.reflect the sYtnlneiry of the given points (atoms) and hence special

arrangements should not be neglected. In (his talk a simple geometrie procedure is discussed

and demonstrated that computes the Delone complex (Le. tiling) of a pericxlie 3D point set.

• taking special arrangements fnto account

" ....c. IM HOF:
Complex volume of orthoschemes

The aim is to defin~a volume functionaJ far polytopes in projective space pn with respect 10 a

qu~c Q inducing hyperbolic geometry.

An orthostheme is asimplex described by a linear .Coxeter diagram. ~e volume of a reducible

orthoscheme" is inductively d~fined to be the product of the volurnes of its components.

. . Anirteduci.ble 0rtll0scheme induces a"contiguration of n+3 hyperplanes.which in turn define

a set of 2n + 7 polytopes. One of these lies inside Q, it therefore has apositive real volume.

It differs from the given onhoscheme by analgebraic sum of reducible orthoschemes. This

allows us to 3:Ssigna complex volume. to anyortho~heme in pn.

•
The Schläfli differential fonn continues to hold in our more general contexL

A. l\flt WEISS:

"Polytopes related lo the Picard group "

For each positive integer "m we show that there is a finite 4- polytope with simplicial facets

whose venex-figures are regular abstract. polyhedra of type {3. m J. In the constnlction we

employ cenain quotients of the. Picard group.. Distinct polyropes of the same type can then

anse. some"of which may be chirnl; but in ~ach instance. facets and venex-figures are regular.
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R. KELLERHALS:

Spl1ere packings and volumes -ofhyperbolic manifolds

We improveestimates from below for volum~s volll(Mn) (11 ~ 3) of compact hyperbolic space

forms -Mn = Hn / r, r< Iso(Hn) discrete and torsionfree. by making use of sphere

- packings an~ density estimates (following ideas of R. Meyerhoff and~anin)~

Let r(x.,M) := sup { r I expx injective on a balf of radius rl and r(M) := sup t r(x.M) Ixe?" }.

Then, b~ Manin's resul~ r(M) >- . 1 11 .' The Buser-Karcher estimate says that
2.92+~2]

- ~ 1 n "I
voln(MR) ~. n- . (-) • 0n-l = volll_1(sn- ) .

. n 411+3 . .e
By Böröc~'s theorem on lhe upper bound of a sphere packing (here w~th qalls of radius

r(M), we derive the lower bound.

voln(Mn) .~ voln(R(a» , where

1:(R(a» : .J!..-.,. . ....- , ! < cos (2a)
n-

denores the characteristic hyperbolic. n-onhoscheme associated to the regUlar simplex Sreg(2a)

by Sreg(2a) = (n+l)! R(a) . .

w..K~PE~BERG:
Mutually contiguous translates of a plane region

(j~int work wirb Andrcis Bezdek and Krystyna K~perberg)

Two sets are contiguous if they have disjoint interiors and a common boundary point'

Members in a family of sets are concuirent if all of the sets in the family have a common point

We conslder a family of muwally non-overlapping translates of a plane region (bounded by a

. simple closed cwve). and we prove that if the translates are concurrent. ehen the family concists •

of ~t most four members. Generalizing this result. we prove that if a family 'of .mütuallY

contiguous translates of a region has a~ least four members. ther: the aanslates are cQncurrent.

and therefore the family consists of exactly four members. This solves a problem of

J. Mitehell, posed in 1989. Also, we ch~cterize those regions which admit fourconcurrent. .

mutually non~verlapping traßslates.

                                   
                                                                                                       ©



•

•

13

D. Ci. LARMAN:

The art gallery problem with 1800 guards

(joint work with Ellen Bunting)

An art gallery room with " sides is a silnple plane polygon with " sides. The original an

gallery problem was to place a m~nimal number of guards ~n lhe gallery so that every point of

the gaJlery can be "seen" by at .Ieast one guard. An ingenious argument of Chvatal shows that

in general ~ guards will suffice and [hat this is the best possible result. UmJtia asked for the

analogous number when the guards vision is resnicted to 1800. Here we show that L4n; 1J
guards ~il1 do but perhaps again the COiTect answer is L~J. If it could be shown that an an

gallery with eleven si~es requires only 3 guards then the result could be improved (0 ~ 11 •

.c. LEE:
Combinat~rial volume

Notation: For (TI, ....• 'n) E 'll.: and indetenninates xI, ... ,xn ,1,1 :. 'I+ ...+'n'

rI = 'I! 0 •••• rn ! •xr "= x1rl. ... oxnrn, and supp (r) =. { i I Tj > 0 }. Let ß be an abstract

simplicial (d-l)-complex with vertex set {I, ... , Il} having an underJying topological space

whichjs an orientable manifold. vI, ... , VII be generic points in Rd, andM be the

d x n mattix [v I ..... VII]· Then there exists a polynomial V(x) =.,)ld b,~ sati~fying

br = 0 when supp Cl') E ß and MV b = O.

Theorem: V(x) is unique up (0 scalar multiple, and V(l) *O. In the case tha~

6 == oconv {vI, .... vn } then V(x} = val { y I y. Vi S Xi ' i =1•... , n } when Xi == 1 ,

and so V(l) is obviously nonz·ero. Let A6 = IR{Xl,· .. ,xn lI/
d

be the Stanley-Reisner
n .

ring of ß, 9j = i~l l'ijx}.j = 1, .... d. and B = AM(9 1, ••• , 9d) = BoEB ... EB Bd •

Then dimIR Bo = dimIR Bd = 1. As a corollary to the theorem, (~l + .. 0 +xn)d * 0 in Bd
and so multiplication by (xl +... +XII)d induces a bijection between Bo and Bd .

(This is joint w~rk with Sue Foege at the University of Kentucky.) .

E. MAKAI:

Lower bounds on the numbers ur shadow·boundaries and illuminated regions

Let KeRn, 11 ~ 2. be a closed convex sc=l. with 0;c. intK . K ~ Rn. We denote by

shbpt(K) • shshbpt(K) • iHrpt(KY the nuItlbcr uf different non-empty shadow-boundaries. non­

empty sharp shadow-boundaries. and illulninaled regions (in the strict sense) of K ,different

                                   
                                                                                                       ©



14

frombd K , w:r.t. arbitrilTy point light sources outside K. (A shadow houndary is sharp if

each light my that suppons K has at most onec~lnmon poi~t with K.) If we consider

parallel illumination, from directions whose opposite direction does not belong to the charac­

teristic cone of K . we denote the analogous4uantities by shbparlK) ,shshbpar<K), illrpar(K) .

Any of these six quantities is finite if and only if K is polyhedrnl. If K is a both-way infin~te .

cylinder over an (n-l)-~imensionalconvex set i. then, apart from some simple cases, each of

these quantities has the same-value for K and L. Let therefore K be line-free.. Let j denote

the dimension of the characteristic cone of K. Then. if K varies by fixed j, the minimum of

shbpt(K) , shshbpt(K) t illrpt(K) (resp. s~bpar(K), shs~bpar(K) is attained if and ooly if K is

aj-fold one-way infinite cylinder over an (Il-j)-simplex (resp. (n-j)-parallelotope).

•
P. MANI·LEVITSKA:

On Nikolai' Mnevs universality theorem

We, that is Daniel Lehner and I, are presenting a slightly modified and elaborated proof of

N. Mnev's universality theorem (Springer Lecture Notes 1346): G.iven any semialgebraic set

M., there existsa finite sequen~e C of points in the real projectiveplane P2' whose reduced

configuration space [c]o is stably homeomorphic to M.· Consider aresolution

cr = (al, ... t G,) ofthe defining polynomials 11 t··· ,fr for M. 0; is a rooted label~ binary

tree, which describes how/; is composed ~om constants and variables by successive

application of the operatiöns + , -, • , : . There is a map E "forgetting the logical stIUcture",

"from the vertex set V(a) , !he disjoint union of the venex sets V(cr;) t into the field Q(Xt-xk}

of rational functions over Q. E maps the root of 0; ioto /; ~ Let reg(a) be the set of those

P E Rk where E(V) is regul~, for every v E V(a). Call twopoints p, q in reg(a)

equivalent, if E(V) - E(W) has the same sign, + , ~ or 0 t at p and at q , for every v ~ W in

V(a). Denote by n(a) the set of equivalence classes.

Proposition 1. For every -K E f1(cr) there exists a sequeoce c in P2 such that K is stably •

homeomorphic to [c]o'

Proposition 2. For an appropriate choice of (J , there is some K E n(cr) , stably

homeomorphic to M .

We have fouod that~ after a few modifications, N. Mnev's proofs of these statements are

correct.

I have leamed from Günter Ziegler that Harnld Günzel in Aachen has corne (0 the same

conclusion, so that a clean text should be available in the near future.
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P. MCMULLEN:

"Bare hands" constructions or regular polytopes

Because of the close connexion be~ween regular polytopes (as presenlly understood) and string

C -·groups. the most popular method used these days to construct new regular polytopes is by

means of their automarphism groups. However. when Grünbaum relaunched the subject in

1975. he frequently used direct methods. even in same instances construeting regular polytopes

by fitting together their facets one by one. In this talk. we wish to show thal there is still some

milage (0 be gained from such "bare.hands" techniques.

• B. NOSTRAND:

Ring extensions and chiral. polytopes

Abstract polytopes ure partially ordered SQ"UCtures which generaliZe the notion ~,~polyhedra in a

combinatorial sense. There are abstract polytopes which correspond to all of the c1assical

regular polytopes and many other well-known structures. Chirnl polytopes are repetitive

structures with maxiinal rotational symmetry which lack reflexive symmetty. While ~uch is

known about regular paiytopes, little is yet known about chiral polytopes. The simplest chiral

polytopes are all twisted tessellations of tOlii. While these chiral torii can be used to construct

locally toroidal chiral polytopes of rank 4 . we can also construct locally spherical polytopes.

We use hyperbolic honeycombs to conSlruct ehe symmetry groups of abstract polytopes aver

finite"rings.The corresponding polytopes belong to families with related local symmetry.

Ring extensions allow us to consUllct additional members cf. these families and 10 alter global

structure.

.J. PACH:

. On Conway's thrackle conjecture

• A thrackle is a graph G = (V(G) , Eee» drawn in the plane by simple arcs such that

(i) any two edges that do not share an endpoint cross exaetly once. and

(ii) no two edges sharing an endpoilu have any other point in common.

Conway conjecrured that IE(G)l ~ IveG)J for any thrackle G .

Theorem 1. Any bipanite graph that can be draw"n as a thrackle is planar.

Theorem 2. lEeG)1 ~ 2IV(G)1 holds for t:v~ry thr~H;kle G .

Analogous results can be proved when wc: ilnpose same weaker parity conditions on the

pairwise interseetions of the ares. This is joint work with Mario Szegedy.
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~. PERLES:
Transversals of polytopes

(joint work with. N. Prabhu from Purdue University)

Theorem 1: Let P be a convex d - polytope in R d. There is no k - tlat that" meets the relative­

interiors of allj-faces ofP. unless k ~ min (d, 2(d -J).

The p~of uses the fact. due to B. Grünbau~. that the L~J -skeleton ofa d - polytope P is n~t

isomorphie 10 the ~J: skeleton of a polytope Q of dimension # d . .

Theorem2: Foreach d.~2 and n"2:d+ Ithereexistasimpled-polytope p* = P*(d.n) in

JRd , having exactly n facetS. with 0 Eint P*, and a nested sequence (J2\)~~ of linear

subspaces of Rd, with dimJ2v = ~v, such that J2v meers the relative interior of every •

(d-v)-face of p. (0 Sv S [d/2]).

p. can be chosen asthe Polar of a translate of a standard cyclic d- polytope with n vertices (=

convex hull of n points on the moment curye (t. 12, ...• zd), with J2v =span {e 1. e2' ... ,e2~}·

J. RUSH:

On . lattice packing densities

Superballs are bodies of the fonn (x :f(x) < 1 } where f is a superball funetion. A funetion

f: R k -:--+ R is a- superball funetion ~ it saUsfies:

(1) f(O) = O,j{x) > 0 if x;t:O

(2) f(x) = f(-x)

(3) 'V t> 0 3 A e GLt(R) S.l. tf(x): = ftAt) 'V x E Rk

(4) f(ex + (l-9)y) ~ 9ft,X) + (1-9)f(y) 'V x.y E IRk ,0 S·aS 1.

We conjecture that the maximum lattice-packing density ÖL of the superbaU

where k divides n. is asymptotically

. ]n (l + o( 1»

[

exp(-f(Ax)dV-

ÖL 1 sup Bk ror large n.
2 A e OLt(R) L exp (- f(Ax»

zk. .

•
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P. SCHMITT:

Space fi~ling knols

In this talk two t:xamples of knotted space fillers are described. i.e. two bodies in Euclidean

space which are topologically equivaJent to a torus but are embedded like a trefoil knot. and

which tile space by congroent copies. These space fillers can be realized as toroidaJ polyhedra.

Funhennore. the idea used in the cons~ction can be generalized to obtain arbitrnrily knotted

(or linked) space fillers.

Remark: Different constnlctions were found independently by W. KUPERBERG and by

COLIN DAVIS. An earlier example is due to PETER MCMULLEN (unpublished).

E. SCHULTE:

Toroidal advenlures

A central problem in abstract polytope theory is the classification of polytopes by their local or

global topological type. On the group level this amounts to the classification of C-groups in

tenns of generators and relations. The classical theory corresponds to the spherical case.

Partial results are discussed for the case when the polytopes are locally spherical or euclidean

space-fonns. The situation is best understood in°the toroidal case.

G. C. SHEPHARD:

Ceva, Menelaos, and friends

The theorems of Ceva and Menelaos are weIl known. These are °just two of a vast number of

theorems which state identities of the following kind. Let Yj be a point defined in same

geometrically significant way 00n each edge or diagonal [Vi'Vi+tl of an n- gon
J1

[VI' V2, ...• VnJ· Then a product TIrVi Yi/Yj V;+d = +1 or -1. In this lectur~, all these
. ;=1

identities were shown to be consequences of a fundamental theorem (which is too long to stare
here) conceming d-dimensional anaJogues uf polygons in Ad, namely polyacrons. These are

defined as sets of points in Ad: in addition (0 edges lhere are 2-faces (triangles). 3-faces

tetrahedra etc. detined by adjacent sets of 3 . -+ •... venices. The analysis of the results was

facilitated by CW-diagrams. These show inlm~djatelywhich products of the above type have

(he requiredpropeny. namely the valu~ + I ur -I for all 11- acrons. Details will be published

shonly.
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H. TVERBER(i:

Almost-transversals for families of translaies satisrying T(~)

We considera family of disjoint convex sets in the plane. Theyare trnJlSlales of one compact

set K. Assume that every 4 sets have a transversal, i.e.. a straight Line meetin'g all of them.

Then it folIows' from aresult of Katehalski and Lewis thill there will be a transyersal for the

whole family, with the exception of at most 603 sets. We stale this as .

T(4) =T-603 ~ .

Katchalski ·and Lewis have a conjecture thal T(3) ::::) T - 2 . which of course ~mpljes

T(4) ~ T - 2. We indicated a proof, using a result of Ec~off, t~al T(4) =>T - 6 .

This can probably be strengthened by using anolher one of Eckhoffs results abQut T(4) .

We also explai~edhow lhe f~ct that T(5) :::) T - 0 implies that if there ~s counterexample to

T(4} := T - 2 , then mere .is one with a smaJI number of sets (definitely ~ ~9, and most likely

S 15). Note that T(4) ~ T - 2 holds for circles as weil as squares, and that even

T(4) ~ T - 1 might be tnle.,

w. WHITELEY:

Constraining plane configurations in CAD

A n~nstrained ~agramU in Computer Aided Design is

(i) a collection cf geometrie objects (points.lines, circles) ­

(ü) a"set of incidences (point on line, line tangent to plane ... )

(üi) a set of numerieal consttaints: distaßces; angles ... ~

Some basic questions in CAD ask

(a) when a constrained diagram isO

(i) unique, up (0 eongruenee, translation ... ;

(ö) locally unique, up 10 congruence, translation ... ;

(ili) fixed, at fIrSt-order, up to congruenee, translation ... ?

(h) when are lIte consttaints

(i) independent? (One can be c~ange(t crealing a nearby configuration)

(ii) minimal. for fllSt-order uniqueness'!

(iii) possible new cOßStmints which are independent?

..
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Most problems of this type ure unsolved. Even points. lines and angles alone are not

chamcterized.

This talk summarized two known cases.

(c) points with distance constraints (plane rigidity):

(d) points with directions far pairs (parallel drawings);

and presented new results 10 characterize the combined pattern of

(e)points with both dislaßce and direction constraints.

In .this combined problem the 'special position' diagrarns are described by interesting Euclidean

propenies.

J. B. WILKE~:

- The Apollonian gasket and periodic isoclinal sequences

One approach to estimating the Hausdol1I dimension of the Apollonian gasket led to a sequence

of disks in the plane with radii in geometrie progression andany four-consecutive disks

mutually tangent This motivated the detinition cf an isoclinal sequence of (1l-1)-spheres in

inversive n-space with äny n + 2 consecutive (1l-1)-spheres required 10 have the same.

inclination- y to one another. It tuins out that for such a sequence 10 existtheinclination y
. f 1 1 Wh . dd d n + 2 1 - thmust sans y y< - -+1 ' Y* - -: . eo 11 lS 0 an - 2· 3 < '1 < - -+.l' e

'~. 1I M n + n + 1 - '-'

Möbius transfonnation which advances the sequenee upon.itself is c~njugate to an n; I ·-fold

rotation of the fl- sphere. The eondition for this tranfonnation- to be periodie can be expressed

in tenns of the existence of concurrent chords in a regular N-gon. This yields a campiere

enumeration of periodie isoclinaJ sequences: there are infinitely many such.sequences in

dimension 11 =1 and there is exactly one such sequence in dimension IZ =3 '. The sequence in

dimension 11 =3 consists of 24 2-spheres and has 1 = l-i~ .
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J. M. WILLS:

A new approach to packing and covering

Let K c Ed be a convex body with volume V(K) > 0 and let K; = K + ci •. i = 1•...• J1 and

Cn = tcl .... ,cn}. Then
-__V~(K). _._

.9(K,Cn,p) = 11
V(convCn + pK)

is called the density function of the arrangement eil + K, where pER is a parameter. For

p > 0 V(convCn + pK) can be estimated via mixed volumes; for p < 0 by other convexity

tools. If dim(convCn + pK} <. d. we set 9 =00, The idea of the parameter p is to conrrol the

influence of the boundary.region of Cn + K. If in(K j nKj ) = 0 for i ~ j ,then e" + K is a

packing. if conv Cn C Cn + K ,then Cn + K is a covering. So one can detine optimal

densities for finitepackings and coverings:

ö(K,n,p) '= sup ( 9(K,Cn,p) I Cn.+K packing} p > 0

ö(K,n,p) = inf ( 8(K,Cn,p) I Cn +K covering } pER.

For suitable p these densities tend to classical packing and covering densities (l~ttice and

nonlattice). So ODe gers a joint theory for finite and 'infinite packing and covering.

G. ZIEGLER:

Combinatorics of 4-dimensional polytopes

1. 4 - Polytopes~mu eXtendably~

We explained constnlctions which show that, while shelling a 4-polytope, ODe ean "gefstuck".

The basic step is the identification of nonshellable 3- balls (after FRANKL and HING) as

subcomplexes of "piles of eubes", which can be lifted to 4- space convexly.

2. Ew: 5-pQlytopes~ kilDD.21

prescribe 1G~.2f i~

We sketehed the exttemely

simple. direct constnlction (due

to J. RICHTER-GEBERT) of a

5 - polytope for which the shape

of a hexagonal 2 - face cannat be

arbitrarily prescribed - i.n every

realization of the 5 - polytope the

hexagon venices He on a eonic.

•

Berichterstatter: G. Wegner
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