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Methods of asymptotic analysis are basic in many areas of mathematics and its applica­
tions: e.g. in mathematical modelling, redudng complex systems to simpler ones, analy­
sing systems with respect to characteristic parameters, studying systems with different
scales, charaeterising behaviour of solutions, in numerical methods. Theory of singular
perturbation covers problems depending on parameters not in a regu1ar way and leading
for aitical parameters to significant changes e.g. in the character of the relevant equations
and tI\eir SölutWns. Up tö now there does not exist a unified ·theory of singular perturba­
tion. Recent developments in the theory of dynamica1 systems, of bifurcation, of limiting
and homogenization were the main impulses for this Oberwolfach meeting. 1t was the se­
CQnd of its kind organized by the Mathematische Forschungsinstitut. 28lectures covered
mainly two areas: singular perturbation in dynamical systems (mainly nonlinear ordinary
and partial düferential equations) and homogenization of partial differential equations
and of problems of calculus of variation.

To bring together specialists from these different directions and 10 combine their expertise
was an important aim of this conference. The exchange of results and methods, the ongo­
ing discussions have proven to be very important for the partidpants· who usually are
spUt up in different groups. The following topics are examples for what was discussed in
detail:

Systems reduction in case of singular perturbed partial differential equations, systems
showing metastable behaviOUl, developing layers in the interior and at the boundary,
with interfaces, problems with rapidly osdllatory geometry cr other datas, systems with
multiple scales. The underlying functional analytic ooncepts and the proper tools for the
different special problems were discussed. The relation of asymptotic methods and nume­
rical algorithms attracted strong interest. The perspectives of applying theoretical results
of asymptotic analysis to design more effective numerical algorithms were discussed.
They ar!! very promising.

The impuJses stirred by the interaetion of different mathematical areas were the m.ain re­
sUlt of the conference. An aetive oooperation in research developed during the meeting.
The very special conditions and the unique atmosphere of the Forschungsinstitut were es­
sential for the success obtained. All partidpants were very gratefu1 to the institute and its
staff who he1ped to Blake the stay not only pleseant but also sdentificly most successful.
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Peter W. Hates:
Asymptotic dynamics of the Cahn-Hilliard equation are the Mullins-
Sekerka flow'
Writing the Cahn-Hilliard equation as a sytem:

uf = -!J.vE

vE =rouE _1. f(uE) in Q eRN,
E

auE = avE = cl on ao,
an an
uE(x, 0) =u~(x), e

we show that there exists a family 'of inititial functions (.ub)o < E S I such that the zero

level set of the solution uE converges as E~ 0 to the solution to the Mullins-Sekerka (or

Hele-Shaw) problem r t:

roe n a given closed (N - 1)-dimensional submanifold .

'~v =0 in n\rh t > 0

v=:<JK on r h K =mean curvature, <J a constant

av=O ondQ
an
.r t env~lves with nonna! velocity = tGump in ~: across r t).

'~

Giovanni Bellettini

Approximation by r-convergence and discretizatiön of -some geometrie
problems -in caleulus of variations
We have considered the variational approximation of the functionals

J(E) = Pu(E) + cos e H" 0 '(aE n an) - f. kdx E {;; n k RO,

J(u) =LIVul2dx + HO o·I(So) +f lu - gl2dx u E SBV(n).

By means of sequences of more.regular energies defined on finite dimensional spaces,

we have discussed how the relaxation and the discretization parameters must be related in
order (0 have the convergence result.

Finally we discuss semicontinuity problems for the funtional

1[1 + V(K)]dHl + f. gdx, E ~ R2, E E c2,

~ E

where K is the cuivature of aE and 'V is a convex function.

e
\.
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Pavol Brunovsky
Tracking invariant manifolds without differential. forms
An alternative of a result of Jones, Kaper and KoppeIl conceming the inclination of
invariant manifolds of singularly perturbed differential equations at exit points from
neighbourho<>4s of " slow manifolds" is given. Unlike the original proof, it does not
make use of differential fonns.

G. A. Chechkin
Homogenization problems with r~ndom alternating bo.undary conditions

Let (n, B, Il) be a probability space , r~ :n -+ Q is a mapping 'semigroup with respecl

to ~ which leaves the measure invariant.

Definition. A random set r c Rn - 1 is called nondegenerate if 3 a positive function h on

Q: h(T~ro)

such thal for almost all <0 E Q , \;/ cp E C; (Rn \ (r X (~ =O}»

f...lh(TE,CJ)'P2(~, O)d~ ~f 1.... IV'P(~, ~)12d~d~; (1)

in addition (h·- I ) ==i dll~CJ)) < 00. (2)

Let r q be Tandom nondegenerate closed sets in Rn - I, q == 1, ... , N. The domain DeRn

has a smooth boundary ao. The boundary ao consists of finite number of maps (Vq},

q = 1, ... , N, with local coordinates Xq =(x~, ... , xl/-I). Let ao = rEU 'YE, in each map
x

Vq r(= {xql Xq E Vq, ~ =(~h ... , ~n -1) E r q }.
E

We consider the problem L\u[ = 0 in 0, ue1r = 0, E ~UE LI. = g(x). (3)
e an ,2

We will look for asymptotics of the'generalized solution UE(X) in the form of

UE(X) .... uo(x)W(~), where .6uo =0 in 0, Uo laD =\'N} g. (4)
E .

The function W(~, C) =W(T~ro, ~) satisfy the following problem
.. --- a2w . -.. aw ' . '

AIJaiajW+--=O,~<O;WI~~=o=o,-1 n_r =1, (5)
a~2 ," a~ Q\uo." = 0

-- a -.. I.where 00 = (<0: To(Jl E r q ), OiW: = -W(T~w, ~) ~ ,1= 1, ..., n - 1.
" . ()~i = 0

Theorem. The sequence UE converges to Uo as E ~ 0 strongly in LI + x(D), weakly in

LI +x(dD), 0< x « 1.
These results are the joint work with A. Ju. Belyaev.
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lack Carr
Metastability in singular problems
Metastable systems have solutionsthat spend a long time in astate' which changes

extremely slowly, but are far from equilibrium. Such systems can be described as

nightmares (0 analyse since the equations describing them usually give no clear warning

of the pathological behaviour of their solutions and nurneneal experiemtation can

produce confusing results leading to the wrong conclusions.' The Becker-Döring

equations are an infinite set of ordinary differential equations describing congulation aod

fragmentation·ofparticles. Two applications. of the Becker-Döring equation are given:

(a) to the kinetics of phase transfonnations in binary alloys,
(b) to micelle fonnation.

Theoretical aod numerical results on metastability for these cases are given.

Francine Diener

Complex rivers as sums of diverging series
We study the asymptotic behaviour of the so1ution5 of the ODE

dy =Q(x, y) . =F(x y)
dx P(x, y) . ,

for (x, y) E C2 and P, Q polynomials. We shall indieate how to find a11 possible
asymptotic expansions (in rational powers of I/x), aod how to prove the existence of

solutions having these series as asymptotie expansions on sectors ~t infinity. We use' a

macroscope technique to reduce the problem to a singular perturbation problem. These
solutions are called rivers aod their ~xpansions are usually diverging.Most "special

. functions lt of physics, as the Airy funetion or the Weber function, are examples of

rivers.

Mare Diener

Invariant manifolds a~ infinity for 3-dimensional polynomial vector-fields
We shall consider, on a typical example, a problem of invariant manifolds for a 3- _

dimensional polynomial differential equation (or equivalently, a solution of •

(y + 3v) ovliJx + dv/oy = -(v1 + x).) The considered manifold exists above a curved-
shaped seetor at infinity, and is polynomial growth. We shall give a macroscope

technique that pennits to show the existence of such an invariant manifold. We shall

iodieate how the expansion in powers of the small parameter E :> 0 introdu~ed by the

macroscope gives a two-variables asymptotic expansion of the manifold.
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Paul C. Fife

Phase-field models ror diffusion induced grain boundary motion
(joint work with J. W. Lahn and D. Penrose)

Grains are crystals of the same phase differing only in the orientation of their crystalline

axes. The migration of boundaries between grains is an important pheneomenon in materials

science. Without additional complications the motion is thought to obey a motion - by
curvature law. Diffusion induced grain boundary motion (DIGM) involves the enhancement

of the motion by the addition of atoms of a solute species; that material diffuses to (on from)

the grains from the outside via the boundary (interface). The mechanism for this

enhancement is unknown. Phase-field models are employed to mooel the phenomenon, with
a view to discovering possible physical mechanisms. Th~s involves the asymptotic study of

traveling waves for a system of panial differential equations - the gradient system for a

variety of model Itfree energy" functionals for another parameter and solute concentrdtion.

Several possible mechanisms are indeed found and elucidated.

Martin Flucher

Asymptotics for eigenvalue problems on singularly perturbed domains
We study the influence of a small hole Ar to the solutions of the eigenvalue problem for

the vibrating membrane

-l\ep = Aep
<I> =0

L14112dx = 1

A necessary and sufficient condition for the convergence of the eigenvalues

A~ : = ~(Q\Af) ~ Ak
is that the 2-capacity of the holes tends to O. We obtain the following convergence rates:

A~ =Ak + O(cap(Af),

11' - </)kIlL2(Q) =o (Ycap(Af »),

"' - 4>kIlHUQ) = 0 (Y cap(A
r»).

.For the case of concentration at a single point Ar c B~ the precise asymptotics are:
r 2

Ak =Ak +4»k(X) cap(Ar) + o(cap(Af),-

~ =~ -<I>(x) Ur + O(cap(Ar»

in aspace depending on the dirnen"sion, where uT denotes the capacity potential of Ar. A

multiple eigenval~e Ak = , ..., = Al splits according to the above formula with

2 2 1 2
<Pk(X) , ... , <1>] (x) replaced by 0, ... , 0, L epj (x) .

j=k

The proof is of variational nature. The projections of the. unpenurbed eigenfunctions

onto the space of the penurbed ones serve as comparison functions for the Rayleigh
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quotient. A continuous variant of the inverse power method is used for the estimation of
the eigenfun"ctions. Details "are given in [1] and [2]. For t~e planar case the accuracy of
the eigenvalue approximation formula is confirmed numericaUy [3]. For this purpose a

finite element approximation in conformal coordinates is used. The resulting discrete

eigenvalue problem issolved by the inverse vector iteration scheme accelerated to third
order by adapted_ spectral shifts. For the initial spectral shift we use the above eigenvalue

approximation fonnula. This trick also pennits to comptue higher eigenv~l1uesby simple

vector iteration although in this case the conjugate gradient method has to deal with a

.non-positive stiffness mauix.

References: e
[1] "FLUCHER, M. Apporximation of Dirichlet eigenvalues on domains with small

holes, to appear 1. Math. Anal. Appl.

[2] FLUCHER, M. Eigenfunction estimation methods for singularly perturbed domains,
in preparation

[3] FLUCHER, M., KOOP, A. Numerical solution of a singularly perturbed eigenvalue

problem, Preprint series SFB 256 No. 309 (1993), Universität Bann

Giorgio Fusco
Same aspects of slow dynamics for the Cahn-Hilliard equation
We discuss the following theorem concerning' the dynmacics of the Cahn-Hilliard

Equation for E« 1.

Theorem: There exist V, E> 0 such th.at given v E (0, v), ~o E an, for each E E (0, e)
th~re is a solution UE: [0, 00) ~ H3 of

J
EVUl = Ö(-E2ÖU + F'(u». X.E!l

(eH)

\ au=a~ =0 xeaQ
"iN av '

such that

l~i:O ut(x. t) =1, X E 0\( ~(t»).

\~i:O ut(~(t).t) =-1. x =~(t),
where ~(.) : [0, 00) 4 an is the solution of the o.d.e.

{~ = Xgrad K(~),

~(O) = ~o.

Here K(~) is the mean curvature of an at ; E an and X is a positive constant.
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Rustem R. Gadyl'shin
Asymptotics of eigenvalues and scattering frequencies forLaplacian in
singularly perturbed domains

We present some results obtained by using the method of matching asymptotic

expansions.

First result° Let 0 c R 3 be a bounded simply connected domain with a smooth boundary

r0, Ao be a simple eigenvalue of the Neumann boundary value problem for Laplacian in

Q and <Po be the corresponding eigenfunction nonnalized in. L2(Q). Assume that n
coincides with' the half-space X3 > 0 at some neighborhood of the origin and

rot ={x : XE-} E ro}, where 0) is a bounded domain in the plane X3 =0, 0 < E « 1. Then

the eigenvalue ~ ofthe boundary value problem

-L\cP[ =Ät:CPE, X E 0,
d<Pt -av =0, x E r E =ro \ 00t, <Pt = 0, XE Ol[,

converging to Ao, has the following asymptotic expansion:

~ . 2A.t = L EJAj, A} = 21t<po(0)cro,
j=o

where Cro > 0 is the capacity of the plate 0).

Seqond result· The asymptotic expansion of the scattering frequency ~ of Helmholtz

resonator OE =R3 \ rt , converging to ko =~~ 0, has fonn

t E = ko + L Ejtj, t} =1tcp5(O)ccJ(2ko),
j = 1

Ime2 =-a(1t<po(0)cro)2/2,

(J =lim i I(jex(x, 0, ko)12ds,
. R~ 00 btl:R

where Gex(x, y, k) is the Green function of the exterior limit problem outside Q.

'Third result· Let 0' be bounded simply connected domain, n c n', n' coincide with

half-space X3 > -h at some neighborhood of Xo = (0, 0, -h), h > 0, nex
= R3 \ 0'. Then

asymptotic expansion of the scattering frequency t[ ---+ ko *TOf the acoustic resonator

OE =0 u nex u (rot x [-h, 0]) has form

t[ = ko + L Ei'tj, '

i = 2
t2 = ~tn (koh)cpÖ(O)lrol, Imt3 =0, Im't4 =-!<<po(O)lrolsin-1(koh»2(J',

(J' =lim 1lGex(x, xo, ko)12ds.
R~ 00

bd .. R

If k. =1t:;, m ~ 0, and k; is not the eigenvalue of the limit interior problem in 0, then
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'tE = k. + L ELch
i:::l

'tl = 2qrok.h-1, Im't2 = _~h-llrolo'/2, where the negative constant is an analog of C(J)-

Fourth result: If (lex is a bounded domain, then the second eigenvalue of the boundary

value problem
E d<PE t

-Ö<PE =AE<PE' X E (2, av =0, x E an
has the asymptotic expansion

A~2) = E2h-1Irol(lnl-1 + Inexl-1) + O(E3).

Steffen Heinze
Homogenization of Flame Fronts

It is proven, that travelling waves in periodically diffusive and convective media with

combustion nonlinearity can be homogenized. An equation for the homogenized limit is

derived. A crucial step is the derivation of unifonn lower and upper bounds for the wave

velocity from which uniform gradient bounds for the wave profile follow. These

~stimatesallow to pass to the homogenized limit

Ulrich Hornung
Weighted Two-Scale Convergence

Let Q eRn be a bounded domain and Z = [0, I]n eRn the unit cube. Aceording to

Nguetseng (1989) and Allaire (1992) a family of funetions uE E L2(Q) is said to two­

scale converge to a funetion u E L2(Q; L2(Z» iff

LUE(X)ep(x,~) dx ---+Li u(x, y)ep(x, y) dy dx

holds for any test-function <P E c;(Q; C;<Z», where # denotes Z-periodieity. This
notion has shown to be very useful in proving eonvergence of homogenization processes _

for diffusion and flow in media with periodie struetures ineluding problems in perforated .,

domains. The topieof this talk is to generalize this notion to diffusion problems taking

place ,on surfa~es aod/or curves. Applications to adsorption, fractured media, and

macropore problems are diseussed.

Xiao-Biao Lin
Singularly perturbed system of reaction-difrusion equations

I shall construct matched asymptotic expansions for formal solutions to any desired

order in E for a singularly perturbed system of n reaction-diffusion equations, assuming

that the Oth order solutions in regular and singular regions are a11 stable. The fonnal
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solution shows that there is an invariant manifold of wave-fronr·like solutions that

attracts other nearby solutions. With an additional assumptions on the sign of the wave
speed, the wave-front-Iike solutions converge slowly to stable stationary solutions on
that manifold. If time permits, I shall.indicate how to prove the existence of an exact
solution near the fonna! solution.

Stefan Luckhaus
Homogenization for two phase now
The subject is to derive the so-called double porosity model for oil water flow through
porous rocks by homogenization starting trom the two phase Darcy flow with strongly
varying permeability. The equations:

8 alS = div ([X(EX) + [2(1 - X(EX»] k(s)V(pc(s) + (P2 - PI)Z) + k(s)v)
div v =0,

v =(X(EX) + E2(1 - X(EX» [K(s)V(p(s) + K(s)Vz]
with a periodic [0, 1] function X and their fonnallimit

8 a;s =diy (A k(S)V(pc<S> + (P2 - Pt) z) + k(S)v) + f,
div v =0,

v =A(K(S)Vp + KVz),

f= 'Q\,i dt(J,

Q = (O S Xi ~ 1), Y ={x Ix,(x} =O} (1 Q where a satisfies aL(J - div(k(a)Vpc(a» = 0
in Y, 0 = s(x) in ay were derived by Arbogast, Douglas, Hornung. Here we [A.
Bourgeat, A. Mikelic, S. Luckhaus] show this result rigorously. Using methods of C.
Vogt and an extension for the doubly degenerating s-equation.

Andro Mikelic
On the boundary conditions at contact interface between a porous medium
and a free ßuid
We consider a slow viscous fluid flow in 2D domain consisting of a porous medium and
a free fluid domain. At the boundaries of the solid pan of porous medium we suppose
the no-slip boundary condition supposing aperiodie porous medium with period
proportional to the characteristic pore size and a fixed porosity and using the
homogenization, we find conditions on the interface linking pressures and veloeities.
Furthermore, we estimate the L2-norm of the difference between the solution for same

pore size E and the eombination of solutions of the limit problems and show the

convergnce as E ~ O. We distinguish two important cases:
a) The balanced flow in free fluid domain and in porous medium. We obtain

continuity of the nonnal velocities at the interface. Finally, the value of Darcy's
pressure at the inteIface is zero.

b) The small flow in porous medium caused by the flow in free domain. At the
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interface the Darcy pressure is equal to the pressue of the free fluid minus a
constant coming from an auxiliary problem multiplied by the value of tangential

. computation of nonnal stress at the interface.

Stefan Müller
Singular perturbations or nonconvex. minimization problems
Consider the problem

IE(u) =LW(Du) + e2lDul2~ min

subject to u = Uo on an, where u : n c Rn~ Rm. In view of applications to solid-solid e
phase transitions we are interested in the case where W is not convex (and not even

strongly elliptic). Then, for E = 0 the infimum may not be attained and minimizers of IE
form particular minimizing sequences. As not much is known in the general case three

model problems are studied.

1. fe2u~x + (Ut - 1)2 + u2 ~ min.

Thm. 3 Eo > 0, such that for E < Eo minimizers are pericxlic with period LoEI13 + O(e2/3).
Goint work with R. V. Kohn)

2. u: (0, L) x (0, 1) ~ R, u = 0 at x = 0

lE(u) =ff u~ + (u9 - 1)2 + e2u9Y

A standard boundary layer construction suggests that min IE=:: CEInLIn. but

Thm. For E sufficient small one has cE2/3LII3 S min IE(u) S CE2I3Lll3.

For the upper bound one uses a test function that has (almost) self-similar refinement

near x = O.
Goint work with G. Dolzmann and V. Sverak)

3. u: nc R2 4 R2, ubx) = Fx, Fe M2x2, W: M2x2 4 R, W 2: 0,

W-I(O) =K =SO(2)A u SO(2)B, det A, det B > O.

I(u) =i W(Du) + elD2uldx.

T h m, If F e Kqc (the quasi convex hull), then 3 a > 0 such that min IE~ eeQ
•

Furthennore lim 1 min IE=00 •

E--+OE

Nikolai N. Nefedov

·e
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PDE's with Interior and Boundary Layers and Differential Inequalities

Method
We consider boundary value problems

e2l\u = f(u, x, e), x E D C R2,

u = g(x), x E dD,
where e is a small parameter, C, g and the boundary aD of the domain D are sufficiently

smooth. We assume that the nonlineari ty f satisfies the following conditions

(A 1) f(ii, x, 0) =0 has three solutions ii =<PI (x), U=<Po(x), ii =lp2(x),

where fu(q>i(x), x, 0) > 0 for i = f, 2, and fu(<Po(x), x, 0) < 0, X E 0.
o lcp2(X)

(A2) I(x) = f(u, x, 0) du = 0 if x belongs to some smooth elosed curve.

<Pl(X)

(A02) I(x) == 0, X E O.
For both cases we construct asymptotic expansion of any order. The proof of

correctness is based on differential inequalities. Similar results are given for singularly

perturbed parabolic. problems.

Dlga Dleinik
Homogenization problems for elliptic equations in partially perforated
domains
Goint work with W. Jäger and A. S. Shamaev)
We consider homogenization problems in partially perforated domains for the Dirichlet,
Neumann and mixed type boundary conditions on holes and also corresponding
eigenval.ueproble.ms. We find homogenized boundary value problems and get estimates
for the difference between solutions in a perforated domain and a solution o~ the limit
equation. In the ease of the Dirichlet problem and the mixed type boundary value
problem we construct the second tenn of the asymptotic expansions for solutions and

eigenvalues. The proofs are based on the two-scale asypmtotic method and theorems on

the existence of solutions of boundary layer type. For eigenvalue problems we use the
Theorem from the book: "Mathematical problems of elasticity and homogenization

tl

,

North-Hplland, 1992.

R. E. Q'Malley
Using Exponential Asymptotics to Describe the Motions of Shocks and
Transition Layers
(joint work with J. Laforgues)
We consider special initial-boundary value problems for singularly perturbed advection­
diffusion and reaction-diffusion equations and the approach of their solutions to steady­
states over an exponentially long time-scale. Equations include Burgers', Cahn-Allen

and their generalizations, in m-space variable. The shock typically takes plaee over an
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O(€) 'space interval. Using a profile <P(11) appropriate to the steady-state limit, the
evolution follows the Ansatz

U(11, t, €) = <P(11) + e-NEu(11, 't, €) + . .. for a = te-N~, A > O.
Detennining u, provides A and the shock Iayer Ioeation XE as a solution of an equation
Iike

eN8 = k e(~o - ~)A-IE) - k e(~ - ßo}A./E}
dt - + ,

where Js:, ~ are known constants and ßo is the ultimate shock Iocation.

Jeannine Saint lean Paulin
Reticulated structures with several small parameters

We consider periodic structures (period €) made of very thin bars as layers - the

thiekness of the material is EO« E, because 0 is also a small parameter. The thickness e
of the tall structure or of the network is a third small parameter. We study thennal
problems on elasticity problems in such structures when the three small parameters tend
to zero (in different orders). In all the cases considered, the limit coefficients are explicit
functions of the constant of the material. For instance we find, for the lall structure, the

limit problem

a21 a 12 i)2v •-(a22 - -->=---::- = 2f(qz2) in (0, L)
a11 az~

v*(O) =0,

~L)=OaZ2
and for the deflection in the network

1:. 3A + 21l «()4v3 + d4v3) + 2J.L a4V3 = F3.
12 A+ Il az1 az1 3 a2zIa2z~

In several eases, we loose the H 1 coercivity and we work on other functional spaces on
which coercivity holds.
Most of these results are joint work with D. Cioranescu (Paris 6). Same extensions are

joint woirk with 1. Charpentier (who also made numerical computations), S. EI Otmani, e
R. Kauffmann, S. M Sac Epee.

Bjöm Sandstede
Bifurcations of homoclinic orbits in the Fitz-Hugh-Nagumo system
(joint work with M. Krupa & P. Szmolyan)

We eonsider the system

I\:::v-f(u) + w, f(u) '" -u(u - I) (u - a)

W=~u -yw)c

1. ~
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which decribes travelling waves for the Fitz-Hugh-Nagumo system. We show that the

well-known slow and fast waves of this equations emanate from a heteroclinic cycle of

the limit system for E =0, C =0 and a = t. Moreover, we prove that, for large y > 0, the

slow wave undergoes an inclination-flip bifurcation. This gives rise to the existence of

N-pulse solutions which do not possess an oscillatory toil.

Klaus R. Schneider
Jumping behavior in reaction rates for bimolecular reactions

We study the behavior of the reaction rates rlIE, r71E and r/E on [0, Tl of bimolecular

reactions which are described by the differential equations

Edx/dt =EIa(t) - egl(x) - rl(x) - r(x, y), x(O, e) = xo,

Edy/dt = EIb(t) - Eg2(X) - r2(x) - r(x, y), y(O, E) = yO,
where a1l functions are sufficiently smooth and satisfy

rl (0) =r2(0) = r(O, y) =r(x, 0) =O. This system is a singular singularly pert,urbed one

whose associated system has two equilibria xo == 0 and Xt(t) (depending on the:"parameter

t). We prove the following results: The reaction rates have a transition layer near the

zeros of Xl (t). The proof is based on asymptotic expan.sions, differential Hiequalities

techniques and a spe~ial coordinate transfonnation. Open equation: Does the jumping

behavior trigger pattern fonnation when diffusion is included.

Daniel Sevcovic
Smoothness or the singular limit or invariant manifolds
The aim is to study the Cl singular limit dynamics of invariant manifolds for

semidynamical systems generated by the following system of sinularly ~perturbed

evolution equation in Banach spaces
Ut + Au = g(u, w)

EWt + Bw = f(u, w)
where A, B are generators of analytic semigroups in Banach spaces X and Y, resp., g

and f are nonlinear functions and 0 < E « 1 is a small parameter. The main purpose is to

prove, under suitable assumptions on f, g, that for small values of the vanishing

parameter E > 0 the system has a finite dimensional invariant center-unstable manifold~

which is in the Cl topology elose to the invariant manifold Mo for the reduced problem

where E =O.

Pavel E. Sobolevskii
Asymptotic or viscoelastic model solution when viscous coefficient teods
to zero
Initial boundary value problem
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3 II

"dv/at + L vk ·iJv/iJXk - M v - 'I' (t, s)&vds - grad P = f ,
k=l 0

O~t~T, x E n,
(1) divv=O,

v= 0, o~ t ~ T, x E dn ,

l

v(O, x) =u(x) , X E n ,ipet. x)dx = 0 • 0 s; t s; T ,

is considered. Here n is an open bounded domain of points x = (xJ, X2, x3) E R3 with

boundary an, and n = n u an; v = (VI, v2, V3), u and f are vector-functions; p and q.t are

scalar functions; e> 0, T>°are constants. Under assumption of smoothness of the problem

data an, fand u and under condition of nondegenerate elasticity

(2) 'I'(t, t) ~ '1-'0 > 0,

there exist 10 E (0, T) and M(N) E [0, +00) (N = 0, 1, ... ), which do not depend on E > 0,

such that problem (1) has a unique solution

v(t, x;e) E e([O, to], W~(n» f1 C1([O,to), L2(Q)}, p(t, x; e) E C([O,to], W~(n», and the
following estimates are true:

N

(3) IIv(t,x;e) - L E~ vm(t, x)lIw1(Q) ~ M(N) . eN + 1 ,
m=O m.

N

(4) l~y(t.X;E) - ml:o ~ ym(t, x)IIL,(Q) S; M(N)· EN+ I ,

N

(5) IIp(t,x) - L e~ prn(t, X)IIW!(il) ~ M(N) . EN + 1 .
m=O m.

The pair [vm(t, x), pm(t, x)] is an unique solution of initial-boundary value poblem, which

we will obtain, if we will fonnally differentiate relations (1) rn-limes with respect to E and

will put in the- received relations E =O.

Uwe Stroinski

Order theory and oscillation at delay diffential systems
We introduce weakly oscillating Co-semigroups and present a spectral characterization. The

main tool in the proof is a theorem of Landau-Widder on the Laplace transfonn of positive

functions. Furthennore, we apply our result to a delay differntial system and generalize a

result of Arino and Györi. With help of the Perron-Frobenius theory of positive matrices we

obtain Iteasy" computable sufficient conditions for oscillation of such equations. This solves

a problem posed by Györi and Ladas.
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Luc Tartar
A probiem in micromagnetics
In a bounded open set a of R3 occupied by a erystal one has a field m corresponding to a

macroscopic spin and the constitutive relation B = H + m and as H = grad u one has
_div(grad u + mXa) =O. One wants to minimize the total energy T(m) sum of the

magnetostatic energy tf Igrad ul2dx. the anisotrope energy L!p(m)dx. the effeet of an

applied magnetie R3 field -LHo' m d x and the exchange energy e2L1Dm1
2
dx.

In the case e2 --+ 0 the study of minimizing sequences leads to using Young measures for

describing the limit ofL<p(m)dx and H-measures for describing the limit oftfIgrad ul
2
dx.

Some infonnations on the relation between Young measures and H-measures obtained with

Francois Murat slow that minimizing sequences Illu --+~ are;' such that

div«mu --7t1lco)Xn) -+ 0 in H-l strong and that the relaxed problems are obtaining by using

Iml S 1 and replacing <p by its convex envelope.

Ping J. Xun
Traveling waves as limits of solutions on bounded domains
In this talk the speaker reponed some results about the bistable equation Ut =E

2
Uxx - fa(u)

with Neumann boundary condition where a typical example. of fa(u) is

fa(u) =(u + a)(u2 - 1). After the rescaling x --7 EX, the equation is defined in a large domain

(- .1, L) and the speaker shows how the solutions of the rescaled equation with some
E E

appropriate initial conditions approach the traveling wave solution of~:the equation

Vt = Vxx - fa(v), lxi< 00 and v (± 00) = ± 1.

Wen-An Yong
Existence and Asymptotic Stability of Traveling Wave Solutions of a Model
System ror Reacting Flow
The talk presents some results about existence and asymptotic stabiltiy of traveling wave

solutions to the following model system for reacting flow in Lagrangian coordinates:
se(v) - s

Vt - Ut =0, Ut - p(v, s)x = 0, St =---.
E'V

The traveling wave solutions smooth out steady shock waves for the reduced system, which

is derived by letting E -+ 0 from the original system,

Vt - Ut = 0, Ut + p(v, se(~»x = O.
The results are based on the stability. condition:

-pv(v, s) > pv(v, s) . se(v) > 0 for v > 0, S E [0, 1],
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and the genuine nonlinearity condition:
2 '

-.d.:.- Pv(v, Sc(v» "* 0
dv2

- 16-

fOT v:> O.
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