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Organisatoren der Tagung waren Jose M. Montesinos (Madrid), Reinhold Remmert
(Miinster) und Peter Slodowy (Hamburg).

Dic Idee der Tagung war es, Experten aus verschiedenen Gebieten Gelegenheit zu
geben, untereinander iiber die Rolle der Symmetrie in ihrem Forschungsbereich zu
berichten. Dabei sollte das Konzept der Symmetrie bzw. ihre Asthetik im Vordergrund
stehen.

Sichzehn Vortrage beschiftigten sich mit Ubersichten, Ergebnissen und aktuellen Ent-
wicklungen der folgenden Teilgebiete:

o Geschichte und allgemeine Gruppentheorie

o llvperbolische Geometrie

e Symmetrie in Kristallographie und Physik

¢ Symmetrie in der Zahlentheoric

¢ Symmetric in algebraischer bzw. analytischer Geometrie

Zum Gelingen der Tagung trugen die offene Atmosphire, die reichlich vorhandene
Gelegenheit zu informeller Diskussion und die sehr gute Ausstattung des Instituts (i.e.
Bibliothek) wesentlich bei.

Nicht unerwahnt bleiben sollte auch der abendliche Lichtbildvortrag ”"Symmetries in
the Alhambra” von Jose M. Montesinos, der die in der Innenarchitektur und in den
Kachelmustern verborgenen kristallographischen Raumgruppen aufzeigte.

Alle Vortrage wurden in englischer Sprache gehalten. )
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Vortragsausziige

S. Endrafl Symmetric Algebraic Surfaces with finitely many Singulari-
ties ’

An old and easy formulated question is the following: What is the maximal number
u(n) of double points of a surface of degree n in IP3(C) (with no further degeneracies)?
The exact answer is known only for n < 5 and there exist examples of those surfaces,
most of them admitting some symmetry. A family of surfaces of arbitrary degree is
introduced which includes all so far known best examples for surfaces with finitely
many double points from degree two up to degree six. All these surfaces admit (at
least) a rotational symmetry of order n (or n — 1). The key idea is to restrict the
surface to a symmetry plane in such a manner that every singularity of the restricted
surface, which is a plane algebraic curve of degree n, induces an orbit ofn (orn—1)
singularities of the surface. So the problem is restricted to finding an algebraic curve
(within a given family) with many singularities. For n < 5 this curve splits off a line,
for n = 6 this curve is irreducible and admits a symmetry group of order 4 (V,). The
examples of degree five and six have been calculated with the massive use of computer
algebra systems; calculations for degrees seven and eight involve huge computations
with seventh roots of unity and therefore overstress sometimes the possibilities of such
systems.

W.D. Geyer Reciprocity Laws

The symmetries of a number field are given by its Galois group Gr. The study of these
groups G is closely connected with reciprocity laws. This first talk about this topic
is concerned with the 1-dimensional representations of Gk, i.e. with the structure of
the abelianised group G¥ = Gx/GY, not from a purely group theoretical view but
Logether with its arithmetic structure which corresponds to the decomposition laws of
primes in ficld extensions. The talk started with Fermat’s theorem about primes being
| sum of 2 squares, the interpretation of GauB as decomposition law in Q(v/—1), Euler’s

way to the quadratic reciprocity law with a side view to the local global principle of
F quadratic forms over fields resp. rings, the decomposition laws in quadratic extensions
‘ and cyclotomic extensions until Artin’s reciprocity law.

A. Huckleberry Reduction of symmetries

‘ Let (M,w) be a symplectic manifold equipped with a Hamiltonian action of a Lie
group G and a moment map @ : M — Lie(G)*. If Mo := ®-1(0), then we consider
the Marsden-Weinstein reduction pyw : Mo — Mo/G =: M,.4. This quotient may
not in general be Hausdorff. So at first we consider the case were G acts properly.
The goal is to push down the symplectic structure to obtain a (singular) symplectic
structure on M,.q. If G is acting freely, then this is no problem. In fact, even if
G has finite isotropy, My is smooth and the quotient structure is relatively easy to
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understand. By slice arguments the case of constant orbit-dimension can be reduced
to that of finite isotropy. Finally, arguing the orbit-type stratification, Sjamaar and
Lermann (Ann.of. Math.’91) produced a stratified symplectic structure on M, 4. Our
idea (H. with P.Heinzner and F.Loose, Crelle '94, [HHL]) is to obtain a globally defined
quotient structure using methods of complex analysis.

For this we first recall the Hilbert quotient pg : X — X//G of an affine variety with
respect to an algebraic action of a reductive group G = . This is defined by the
invariant algebraic functions Quy(X )¢ =: R, i.e. X//G = Spec(R). It is also informa-
tive to regard this as being defined by the equivalence relation z ~ y :& GznGy # 0,
i.e. the reduction py : X — X//G is the maximal Hausdorff quotient.

In the complex analytic setting these results have been proved by geometric \ analytic

‘ methods, e.g. for K compact and X Stein py : X — X//K exists with the desired
properties. In fact there is an open Runge embedding X C XT in a Stein space X(_E
2 where G = KT acts and X//K = X®// KT (Heinzner, Math.Ann.91).

| Let ¢ : X —> IR29 be a strictly pluri-subharmonic exhaustion and w := dd‘p, which D
i\ even makes sense for singular spaces. It can be shown that each fiber?of the reduction
pir i X — X//K intersects ®'(0) = Xo in a K-orbit and the assotiated KC-orbit
in the fiber XT is the unique closed one. In particular, the inclusion X 2> Xo induces
a homeomorphism X//K = X,.q = Xo/K. Furthermore ¢ can be pushed down to
a strictly pluri-subharmenic function ¢,.s on the complex space X;eq. Thus, in the
complex analytic setting we have the quotient structure w,.q = dd®@,eq-

To handle the original problem of the symplectic structure on M,.q, given a symplec-
tic manifold (M, ), we construct a Stein-Kahler manifold (X,w) with a totally real
| embedding ¢ : M <& X so that t*w = 7. For compact groups and in certain cases
' of proper actions this can be done in an equivariant fashion so that Ox|M = Op.
The natural embedding treg : Meed — Xrea = X//K yields the the desired singular
symplectic structure, 1.e. Tred := ¢} gWred-

K. Hulek  On the symmetries of the Horrocks-Mumford bundle

{ The aim of this talk was to explain, how the (finite) Heisenberg group and related
groups can. be used to construct some interesting objects in algebraic geometry.
o For p > 3 we consider V = C” with its standard basis {e;}iez,. The automorphisms

@

e ey, Tie > Ee (e =€)
=)
have order p. They generate a subgroup H, of SL(p,T) of order p® which is a central

extension )
1 —p,={e1€Z)} — Hy — ZyxZ, —0
e = e-idy=|[0,7]

H, is the Heisenberg group of level p (in its Schrédinger representation). Let N, be
the normaliser of H, in SL(p,€). Then

N, = H, >aSL(2,Z,)
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and hence |N,| = p(p? — 1). The role of this group was explained in the following
examples: :

(1) Given an elliptic curve E one can construct an embedding of E into IP(V) = IPr-!
as a normal curve of degree p which is H-invariant. Hs acts on E by translation with
p-torsion points. Using representation theory of H, the (quadratic) equations of E
can be determined. This was done explicitly for p = 5. :
(2) Using Hs-equivariant maps f* : V — A’V one can construct the Horrocks-
Mumford bundle F on IP* which is - up to obvious operations - still the only known
indecomposable rank 2 bundle on IPY. The bundle F has Ns as its symmetry group.
Its sections are closely related to moduli of abelian surfaces (partly joint work with
Kahn and Weintraub).

(3) In case p. = 7 the Hy-invariant abelian surfaces in P8 of degree 14 give rise to a ’
Fano 3-fold X of index 1 and genus 12. Manolache and Schreyer have identified X
with the variety of polar hexagons to the Klein quartic K.

(4) The quadrics through an elliptic curve of degree five in IP* define a Cremona
transformation on IP%. This can be used to construct (non-minimal) bielliptic surfaces
of degree 15 in IP? (joint work with Aure, Decker, Popescu, Ranestad).

H. Karcher Klein’s (2,3,7)-surface: From the hyperbolic to its algebraic
description

The talk starts from Thurston‘s description of the surface model in front of the MSRI.
My aim is to define two meromorphic functions in the hyperbolic picture and deduce
the equation w” = z(1 — z)? between them.

First, simpler examples of genus 2 and 3 platonic tessalations (automorphisms tran-
sitive on directed edges) were given and functions obtained by dividing through sym-
metries, with an obvious equation between them. The simplest ones are coverings of
platonic tessalations of the sphere.

Klein’s surface is tessalated by twentyfour 120°-heptagons. On any platonic surface
the connection of any two midpoints of edges extends to a closed geodesic, on Klein’s
surface one has to extend the segment between nearest neighbours 8-fold. With these
closed geodesics one has pair-of-pants-decompositions (not with right angles) in terms
of which all the symmetry subgroups can be described. Division by an order 7 cyclic
subgroup gives a projection (with three order 7 fixed points) to the sphere, which maps
the geodesic Z-triangle, with vertices at the fixed points, to a hemisphere. Normalize.
this map to send the three fixed points to 0,1,00 and call this function z. Another
function w is obtained by mapping the same triangle to a spherical triangle with angles
2 3. Fourteen of these cover the sphere thrce times and analytic continuation by
reflection is compatible with the identifications, thus giving w. Clearly w” = z(1 —2)%.
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P. Kramer Concepts of symmetry for quasicrystals

‘The symmetry of crystals arises from orbits on IR® under translation and point groups.
Quasicrystals lack translational symmetry but display quasiperiodicity together with
non-crystallographic point symmetry. We survey and illustrate symmetry principles
for quasicrystals.

(1) Z-modules of rank N > 3 allow to extend point symmetry to quasicrystals and
their Fourier transform, but are not sufficient to determine their spatial order.

(2) Quasiperiodic tilings generalise the spatial order associated with cells in crystals.
New composition rules for these tilings encompass so-called local inflation and mat-
ching rules.

(3) Crystallography in dimension N > 3 provides lattices whose projections yields Z-
modules. Canonical tilings can be projected {rom faces of Voronoi and dual Delaunay
domains of (root) lattices. Inflation rules for tiles are related to Non-Euclidean scaling
symmetries of the lattice. ’

(4) In approaches going beyond N-dimensional crystallography, the commutative trans-
lation group is replaced by a free monoid or a free group. Substitution rules for mono-
ids can generate quasiperiodic words. Finite and infinite order automorphisms of free
groups generalise the notions of point and scaling symmetry. Notions of formal gram-
mars and automata can handle the spatial realisation of these algebraic structures.

C. Maclachlan Arithmetic Fuchsian and Kleinian groups

Arithmetic Fuchsian and Kleinian groups form a tractable and attractive class within
the class of all Fuchsian and Kleinian groups and can readily be described in terms of
quaternion algebras. Each such group I' comes equipped with number theoretic data
which gives additional information on I' and on the geometry and topology of the
quotient orbifold H*/T,n = 2,3. For example, the compactness of H"/T', the volume
of II™/T", the existence of spherical subgroups and the number of conjugacy classes of
clements of finite order can all be decided or determined from the arithmetical data.
The existence of non-elementary Juchsian subgroups in an arithmetic Kleinian group,
or cquivalently, the existence of immersed totally geodesit surfaces in an arithmetic
manifold H3/T, occurs precisely when the defining quaternion algebra A defined over
k satisfies [k : kNIR} = 2 and A = B ®«nr k where B is a quaternion algebra defining
a Fuchsian (sub)group.

Given a Kleinian group T of finite covolume, the trace field is a number field k(T)
and one can obtain a quaternion algebra A(T), in M,(C), as finite sums of the group
elements over k. Arithmeticity can then be detected if the field k(T'?) and the qua-
ternion algebra A(I'?)) satisfy some "finite determinable” conditions. In general, this
quaternion algebra is an invariant of the commensurability class and it may be that
quaternion algebras have a wider role to play in the general theory of Kleinian groups
of finite covolume and hyperbolic 3-manifolds.
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H. Nicolai Kac Moody Algebras and String Theory

This contribution summarises recent attempts to understand the root spaces of Kac
Moody algebras of hyperbolic type, and in particular the "maximally extended” Kac
Moody algebra Eq, in terms of a DDF construction appropriate to a subcritical com-
pactified bosanic string. While the level-one root spaces can be completely characte-
rised in terms of transversal states (the level-zero elements just span the affine sub-
algebra), longitudinal DDF states.are shown to appear beyond level one. The utility
of the method is demonstrated by constructing an explicit and comparatively simple
representation for certain level-two root spaces.

The embedding of the Kac Moody algebra into a larger Lie algebra of physical states -
(which is simpler to handle, at least from a physicist’s point of view) is also explained.
Finally it is pointed out that the structure constants of such Kac Moody algebras can
be viewed as S-matrix elements connecting physical string states.

w

S.J. Patterson Asymptotics of groups

The purpose of this talk was to discuss how group structures lead to strong asymptotic
results on various counting functions. The primary example is the circle problem,
where all of the deeper results rely on the Voronoi summation formulae and these reflect
the representation theory of the group of Euclidean motions of the plane. Following
this one considers the action of discrete groups of motions of the hyperbolic plane.
Here the simplest result is the analogue of the circle problem. It can be used, for
cxample, in connection with the modular group to estimate the asymptotics of

{(a,b,¢) € Z* | b? —4ac = -D,0 < a+c < x}

(D > 0 fixed) as = — oo. This represents binary quadratic forms of discriminant —D.
The analogous problem for positive disrciminants is more subtle as the corresponding
homogeneous space is not Riemannian. One can estimate the asymptotics of

{(a,b,c) € Z° | b* — dac = D,laz’ + bz 4+ ¢| < x}

where z € € — R and D > 0 are fixed and z — co. Finally a brief discussion of the
corresponding problem for integral binary cubics was given; thus, for example, it is.
possible to estimate the asymptotics of

{(a,b,c,d) € Z*| — 27a%d? + 18abcd + b?c® — 4ac® — 4b3d = D, |a| + |b| + |c| + |d] < x} -

for fixed D as z — oo. These results are, in their most recent forms, contained in
papers by W. Duke, Z. Rudnik and P. Sarnak, and of A. Eskin and C. McMullan (both
in Vo! 71 of the Duke Mathematical Journal), and of A. Eskin, S. Mozes and N. Shah
(unpublished). The methods are by no means limited to arithmetic groups but can be
applicd to wide classes of discontinous groups.
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W. Plesken Finite unimodular groups and Bravais manifolds

k-modular lattices with good properties can be obtained by using finite unimodular
groups. The cone Fr of positive definite forms inside the space of all G-invariant
quadratic forms of a finite unimodular group G is called the Bravais manifold of G.
The normaliser Nz of G in the full unimodular group acts properly discontiniously
on Fn. The investigation of a fundamental domain leads to nice quadratic forms and
also to sub-Bravais manifolds, i.e. finite unimodular groups containing G. In case Fr
is 2-dimensional or the commuting algebra of G in IR™*" is a 2 x 2-matrix ring over IR
or €, Fr carries a hyperbolic structure respected by Nz. In this case each element of
FrNZ"*" represents a modular lattice, once one of the generic lattices in Fm N znrxn
is modular. Examples are discussed where Nz /G acts as a hyperbolic reflection group
on Fr. These examples involve unimodular lattices like Eg and the Leech lattice,
the 2-modular Barnes-Wall lattice of dimension 16 and the 3-modular Coxeter-Todd
lattice of dimension 12, but give many other modular lattices at the same time.

W. Schempp Symmetries govern Magnetic Resonance Imagiﬁg (MRI)
c

Magnctic resonance imaging (MRI) was introduced into clinical medicine in 1981,
and in the short time since then it has assumed a role of unparalleled importance
in diagnostic medicine and cognitive neuroscience. It is the most important imaging
advance since the introduction of X-rays by Wilhelm Conrad Rontgen in 1895. It is
shown that the MRI modality is governed by the symmetries of the non-split central
group extension

R«<G—ROR

where the normal subgroup R is isomorphic to the one-dimensional center of the
Heisenberg nilpotent Lie group G. The symmetries find their manifestation in the
coadjoint orbit model Lie(G)*/G of the unitary dual G of the Heisenberg group G.

E. Scholz: Shifts of the concept of symmetry during the 19th century

For a historical understanding of the notion of ”symmetry” we ought to distinguish
between

— symmetrical practices (e.g. in mathematics pre-1800: Lagrange 1771, theory of
algebraic equations; in crystallography: Romé de I‘Isle, modification series of crystal
forms)

— explicit conceptual use (e.g. ca. 1800 in mathematics: reflection symmetry only;
architecture: rule governing relations between parts and the whole)

~ metaphorical use (e.g. ca. 1800 architecture: origin of beauty, rejected in other
arts) .

The dual pair of categories "structure” and "symmetry” was introduced in crystallo-
graphy during the turn from natural history to a physical science. R.J. Haiiy charac-
terised structure by a geometrized atomistic theory (18 classes of convex polyhedra
serving as "hypothetical cores” from which crystal figures are derived by building up
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layers of "subtractive molecules”, and symmetry by a morphological description of
cquality with respect to a hypothetical core). A group of crystallographers pursuing a
dynamistic programme of matter explanation (C.S. Weiss, J.F.C. Hessel, M.L. Fran-
| kenheim, J.G. Grassmann) invented and developed vectorial structures and symmetry
| studies with their own symbolical expressions. That lead to a complete classification
| of finitc symmetry systems in Euclidean space (Hessel) and a permutation representa-
| tion of certain symmetry constellations (holoedrical symmetries of 6 crystal systems)
! by J.G. Grassmann (father of Hermann G.).
| About 1850 A. Bravais modified the atomistic paradigm of crystal structure to that of
‘ polyhedral molecules distributed over a regular point lattice. In that context he stu-

died the symmetries of polyhedra (finite) of point lattices (infinite) and of molecular
| lattices. He characterised thus the symmetry of most of the later symmorphic space
| group types (71 of 73) C. Jordan took this as the starting point for his 1869 " Mémoire
| sur les groupes de mouvement” with the first explicit use of the group concept in geo-
| metry.

The further influence of Bravais-Jordan on the formulation of transformation groups
| by Lie and Klein as well as on Sohnke-Fedorov-Schoenflies was shortly outlined. A
last question was posed, not answered, whether the surprising rise of semantical "re-
sonance” or symbolical "homology” (in the sense of natural history) in different fields
of knowledge like algebra/group theory and crystallography might find a historical
explanation in considering general rules underlying the discourses which governed the
shifts in knowledge production from 18th to 19th century mathematics and natural
history/crystallography respectively.

| J. Schwermer Another look at reciprocity laws

Let £/F be a Galois extension of an algebraic number field; given an irreducible finite
| dimensional representation p : Gal(E/F) — GL(V), dimgV = n, the non-abelian
| Artin L-functions Lg,r(s, p) are known to be meromorphic in the whole complex plane
| and to satisfy a functional equation similar to that of the Zeta function but little is

known about their poles. In the abelian case (i.e. Gal(E/F) abelian, thus p is one

dimensional) it is known that these L-functions are entire (for p # 1); this may be
viewed as a reinterpretation of Artin’s reciprocity law. It seems to be expected that
the Artin L-functions are entire in the general case. One way that has been suggested
by R.P. Langlands to show this is to show that the Artin L-functions are equal to

L-functions attached to automorphic forms. The partial solution in the case n =2 as

given by Langlands (using Hecke's theory of modular forms) was indicated, and some

idcas of the general programme were outlined.

D. Singerman Symmetric Riemann surfaces and real curves
A Riemann surface X is said to be symmetric if it admits an anticonformal involution

T . X —> X. Whereas a compact Riemann surface represents an irreducible alge-
braic function F(z,w) = 0 (connected complex curve), a symmetric compact Riemann
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surface represents a real curve, i'e. the coeflicients of f can be chosen to be real.
The fixed point set of T consists of 0 < k < g+ 1 disjoint simple closed curves or
mirrors as we call them. We give a survey of many recent results, often first proved
by S.M. Natanzon, concerning the mirrors of symmetries.

(1) If Ty and T are symmetries of X (genus 2 2) both with g+ 1 mirrors then T) and

T, commute and Ty T is the hyperelliptic involution. Moreover, no compact Riemann
surface can admit more than 2 symmetries with g + 1 mirrors.

(2) If Ty and T; do not commute, so that the order of TyT; is n > 2 then the total
number of mirrors of Ty and T is less than or equal to 53 + 2, if n is even and less
than or equal to 3-";'3 +4 if n is odd. Both bounds are attained.

(3) We also discussed the maximum number of mirrors of m > 2 commuting symme-
tries.

Another interesting result concerns the number of conjugacy classes of symmetries
(conjugacy in Aut X, the group of holomorphic and antiholomorphic automorphisms
of X). This is the number of real models of the complex curve. This number is
< 2(\/g + 1), and this bound is sharp. The talk ended with other examples of sym-
metric surfaces such as Klein’s curve of genus 3 and the modular curves :Y(n)

J. Tits The Monster group as a group of symmetries

The main purpose of the lecture was to construct, from scratch, a 196883-dimensional
@-vector space X and a symmetric bilinear form B: X x X — @ such that O(8) =
Aul(X, B) is the Fischer-Griess Monster group M. From that readily follows a descrip-
tion of M as the symmetry group of a (pointed) Euclidean lattice or, equivalently, as
the symmetry group of a convex polytope in the 196883-dimensional Eucledian space.
The proof of the main result heavily relies on:

R.L. Griess, Jr., The friendly giant, Inv. Math. 69 (1982), 1-102,

J. Tits, On R.Griess’ "Friendly giant”, Inv.Math. 78 (1984), 491-499,
and uses (a small and save part) of the classification of finite simple groups.

o~

H.R. Trebin Topological Defects in. Quasiperiodic Tilings

Quasiperiodic tilings model point-atom-structures of quasicrystalline intermetallic com-
pounds, which have been discovered exactly ten years ago. The tilings can be repre-
sented as planar cuts through higher-dimensional periodic crystals, whose "atoms”
are polyhedra. If the polyhedra are connected by "steps” a topologically complicated
hypersurface evolves with many branch-points. Circumventing these points with the
cutting plane along closed loops results in permutations of the vertices of the tiling.
With suitable choices of the loops vertices can be transported to infinity in a self-
diffusive way. Thus quasicrystals are expected to exhibit extraordinary selfdiffusion

* mechanisms.

The geometrical background and the self-diffusion steps are illuminated for the octa-
gonal Ammann-Beenker- and the icosahedral Ammann-Kramer-Penrose tilling.
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J. Wess Quantum groups in physics

The quantum group SL,(2) and its Lie algebra version was discussed in detail to
exhibit the structure of a quantum group. The Hopf algebra structure as well as the
Poincaré Birkhofl Witt property was emphasised. The R matrix approach was put
forward and the RRT relation as well as the Young Baxter equation were explained.
As symmetric object the Manin plane as comodule was introduced and the differential
calculus of this plane was developed. This opens the way to study physical systems
which are based on inhomogeneous groups (Poincaré group) and following Wigner’s
definition, g-deformed one particle states and their wave equations can be studied.
For non relativistic systems the differential calculus leads to a ¢g-deformed Heisenberg
algebra. Quantum mechanical systems based on this algebra can be studied. The .
remarkable consequence is that these models live on lattices.

Berichterstatter: Jiirgen Opgenorth
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