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Symrrlctrien
01.01. bis 07.01.1995

Organisatoren der Tagung waren Jose M. Montesinos (Madrid), Reinhold Remmert
(Münster) und Peter Slodowy (Hamburg).

Die Idee der Tagung war es, Experten aus verschiedenen Gebieten Gelegenheit zu
geben, untereinander über die Rolle der Symmetrie in ihrem Forschungsbereich zu
berichten. Dabei sollte das Konzept der Symmetrie bzw. ihre Ästhetik im Vordergrund
stehen.
Siebzehn Vorträge beschäftigten sich mit Übersichten, Ergebnissen und aktuellen Ent­
wicklungen der folgenden Teilgebiete:

• Geschichte und allgemeine Gruppentheorie

• Ilypcrholischc Geomct.ri~

• Syrnnlctrie in KristalJographie lind Physik

• Syrrlnlctri"e in der Za.hlent.heorie

• Sylnmctric in algebraischer bzw." analytischer Geometrie

ZUTn Gelingen der Tagung trugen die offene Atmosphäre, die reichlich vorhandene
Gelegenheit zu informeller Diskussion und die sehr gute Ausstattung des Instituts (i.e.
ßibliothek) wesentlich bei.
Nicht unerwähnt bleiben sollte auch der abendliche Lichtbildvortrag "Symmetries in
thc Alhambra" von Jose M. Montesinos, der die in der Innenarchitektur und in den
Kachelmustern verborgenen krist~llographjschenRaumgruppen aufzeigte.
Alle Vorträge wurden in englischer Spr~che gehalten.
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Vortragsauszüge

S. Endraß
ties

Symmetrie Algebraic Surfaces with finitely many Singulari-

An old and easy formulated question is the following: What is the maximal number
Jt(n) of double points of a surface of degree n in IP3(<C) (with no further degeneracies)?
The exact answer is known only for n ~ 5 and there exist examples of those surfaces,
rnast of them admitting some symmetry. A family of surfaces of arbitrary degree is
introdnccd which includes aJl so rar known best examples for surfaces with finitcly I
111a.ny double points from degree two up to dcgree six. All these surfaces admit (at ,-

~ !least) a rotational symmetry of order n (or n - 1). The key idea is to restriet the., I
surface to a symmetry plane in such a manner that every singularity of the restricted :
surface, which is a plane algebraic curve of dcgree n, induces ~n orbit of n (or n - 1) t)j
si nglilari ties of the surface. So the problem is restricted to finding an algebraic curve
(within a given family) with many singularities. For n ~ 5 this curve splits off a line,
for n = 6 this curve is irreducible and admits a symmetry group of order 4 (\14). The
examples of degree five and six have been calculated with the massive use of computer
a.lgebra systems; calculations for degrees seven and eight involve huge computations
with seventh roots of unity and therefore overstress sometimes the possibilities of such
systems.

W.D. Geyer Reciprocity Laws

The symmetries of a number field are given by its Galois group Gl{. The study of these
groups GK is closely connected with reciprocity laws. This first talk about this topic
is concerned with the I-dimensional representations of GK , i.e. with the structure of
thc ahcl ian ised grou p Gf) = Gr.... f G~\., not fronl a purely group thcoretical view bu t
t.ogethcr with its arithmetic strllct.ure which corresponds to the decomposition laws of
prirncs in fic1d extensions. The talk started with Fermat's theorem about primes ocing
Sllm of 2 squares, the interpreta.tion of Gauß as dccornposition law i~ <Q(H), Etller's
\Vay to the quadra.tic reciprocity law with a side view to thc Ioeal global prineiple of
quadratic forms over fields resp. rings, the decomposition laws in quadratic extensions
a.nel cyclotomic extensions until Artin 's reciprocity law.

A. Huckleb~rry Reduction of symmetries

Let (A1,w) be a symplectic manifold equipped with a Hamiltonian action of a Lie
group G and a moment map <Il : M --t Lie(G)*. If Mo := c1>-l(O), then we consider
the Marsden-Weinstein reduction PMW : Mo ~ MofG =: Mredo This quotient may
not in general be Hausdorff. So at first we consider the case were G aets properly.
The goal is to push down the symplectic structure to obtain a (singular) symplectic
strueture on Mred • Ir G is acting freely, then this is DO problem. In fact, even if
G has finite isotropy, Mo is smooth and the quotient structure is relatively easy to
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understand. By slice arguments the case of constant orbit-dimension can be reduced
to that of finite isotropy. Finally, arguing the orbit-type' stratification, Sjamaar and
Lermann (Ann.of. Math. '91) produced a stratified symplectic structure on M red . Dur
idea (H. with P.Heinzner and F.Loose, ereIle '94, [HHL]) is to obtain a globally defined
quotient structure using methods of complex analysis.
Für this we first recall the Hilbert quotient PH : X --7 XI/G of an affine variety with

respcct to an aJgebraic action of a reductive group G = ~. This is defined by the
invariant algebraic functions Oalg(X)G =: R, i.e. XIIG = Spec(R). It is also informa­
tive to regend this as being defined by the equivalence relation x "V y :<=> Gx n Gy -I 0,
i.c. the rcduction PH : X --+ XIIG is the maxilnal Hausdorff quotient.
In t.he complex analytic setting these resl.1lts have been proved by geometrie \ analytic
metItods, c.g. for {( compact and X Stein Pu : X ---7 XII!( exists with the desired

properties. In faet there is an open Runge embedding X c X<B in aStein spaee X(f;

where G = K<C acts and XI I!< = X<B I I J(CB (Heinzner, Math.Ann.'91).
Let <.p : X ---4 IR~o be a strictly pluri-subharmonic exhaustion and ~ := ddcrp, whieh
even ma.kes sense for singular spaces. It can be shown that each fibetrÖf the reduction

Pli : X -4 XI 1[( intersects ~-l(O) = Xo in a K-orbit and the associated ~-orbit
in the fi ber X~ is the unique closed one. In particular, the inclusion X ::) X o induces
a. homeomorphism XI IK ~ X red ::::: Xol I<. Furthermore CI' can be pushed down to
Cl. strictly pluri-subharmonic function Cl'red on the complex space Xred • Thus, in thc
complex analytic setting we have the quotient structure Wred = ddc4>red.

To handle the original problem of the symplectic structure on M red , given a symplec­
tic manifold (M, T), we construct a Stein-I<ähler manifold. (X,w) with a totally real
embedding L : M y X so that I.*W = T. For compact groups and in certain cases
of proper actions this can be done in an equivariant fashion so that cI> x IM = cI>M.
Thc lla.tural embedding l.red : Mred --t Xred == X 1/ [( yields the the desired ~ingular

syrnplcctic structure, i.c. Tred := ";edwred.

'.

K. Hulek On the symmetries of the Horrocks-Mumford ~':lndle

o
1

Thc a.inl of this talk was to expla.in, how thc (finite) Heisenberg group and related
grotJps can. be llsed to construct SOlne interesting objects in algebraie geometry.
For p ~ 3 we consider V = Q;p with its sta.ndard basis {ei}iE71p • The automorphisms

have order p. They generate a. subgroup Hp of SL(p, <C) of order p3 which is a. central
extension

1 --+ J1.p = {Ei; i E 7lp} --+ Hp ----+ 'llp x 'llp ---t 0
E ~ e· idv = [a, Tl

[lp is the Heisenberg group of level p (in its Schrödinger representation). Let Np be
the normaljser of Hp in SL(p, (f;). Then
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an<! hCllce INpl = p4(p2 - 1). Thc role of this grotlp was explained in the following
cxa.mpJes:
(1) Givcn an elJiptic curve E one can construct an embedding of E into IP(V) = IPP-l

as a. normal curve of degree p which is Hp-invariant. Hs acts on E by translation with
p-t.orsion points. Using representation theory of Hp the (quadratic) equations of E
can be determined. This was done explicitly for p = 5.
(2) Using Hs-equivariant maps f± : V ~ A2 V one can construct the Horrocks­
Mumford buodle F on IP4 \vhich is - up to obvious operations - still the only known
indccomposable rank 2 bundle on IP4

• The bundle F has Ns as its ·symmetry group.
Its sections are closely related to moduli of abelian surfaces (partly joint work with
Kahn and Weintraub).
(3) In case p. = 7 the H7-invariant abelian surfaces in IP6 of degree 14 give rise to a e
Fano 3-fold X of index 1 and genus 12. Manolache and Schreyer have identified X
with the variety of polar hexagons to the Klein quartic K. tt

(4) The quadrics through an elliptic curve of degree five in JP4 define a Cremona
transformation on 1P4

• This can be used to construct (non-minimal) bielliptic surfaces
of degrce 15i ri IP 4 (joint work with Aure, Decker, Popescu, Ranestad).

H. Kareher
description

Klein's (2,3, 7)-surface: From the hyperbolic to its algebraic

The talk starts from Thurston's description of the surface model in front of the MSRI.
My ai m is to define two meromorphic functions in the hyperbolic picture and deduce
the equation w7 = z(l - z)2 between them.
First, simpler examples of genus 2 and 3 platonic tessalations (automorphisms tran­
sitive on directed edges) were given and functions obtained by dividing through sym­
metries, with an obvious "equation between them. The simplest ones are coverings of
platonic tessalations of the sphere.
Klein's surface is tessalated by twentyfour 120°-heptagons. On any platonic surface
the connection of any two midpoints of edges extends to a closed geodesic, on Klein's
surface one has to extend the segment between nearest neighbours 8-fold. Wi th these
closed geodesics one has pair-of-pants-decompositions (not with right angles) in terms
of which a11 the symmetry subgroups can be described. Division by an order 7 cyclic
suhgrollp gives a projection (with three order 7 fixed points) to the sphere, which maps
t.hc gcodesic f-triangJ~, with vertices at the nxed points, to a hemisphere. Norma.Jizee
this Inap to send the three fixed points to 0,1,00 and call this function z. Anothcr
function 10 is obtained by mapping the sa.me t.rianglc to a spherical triangle with angles
~~ lf, ~. Fourteen of these cover t.hc spherc t.hree times and analytic continuation by
rcOection is coo1patible with the identifications, thus giving w. Clearly w 7 = z(l - z)2.
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P. Kranler Concepts of symmetry ror quasicrystals

'fhe symmetry of erystals arises from orbits on IR3 under translation and point groups.
Quasierystals lack translational syrometry but display quasiperiodicity together with
non-crystallographie point symmetry. We survey and i1lustrate symmetry principles
for quasicrystals.
(I) 7l-moclules of rank N > 3 allow to extenä point syrometry to quasicrystals and
their Fourier transform, but are not sufficient to determine their spatial order.
(2) Quasiperiodic tilings generalise the spatial order associated with eells in crystals.
New COITlposition rules for these tilings encompass so-called Ioeal inflation and mat­
c:lJing rllles.
(;3) Cryst.allography in dimension N > 3 provides lattices whose projections yields 'll­
nlooulcs. Canonical tilings can be projected from faces of Vor"onoi and dual Delaunay
dOlnains of (root) Iattices. Inflation rules for tiles are related to.Non-Euclidean scaling
sYlnmetries of the lattice.
(4) In approaches going beyond N-dimensional crystallography, the commutative trans­
lation group is repIaeed by a free monoid or a free group. Substitution "rules for mono­
ids can generate quasiperiodic words. Finite "and infinite order automorphisms of free
groups generalise the notions of point and scaling symmetry. Notions of formal gram­
mars and automata can handle the spatial realisation of these algebraic structures.

~
~,;.... '.

c. Maclachlan Arithmetic Fuchsian and Kleinian groups

Arithmetic Fuchsian and Kleinian groups form a traetable and attractive cla.ss within
the class of all Fuchsian and Kleinian groups and can readily be described in terms of
quaternion algebras. E~ch such group r comes equipped with number theoretic data
which gives additional information on rand on the geometry and topology of the
quotient orbifold Hn Ir, n = 2,3. For example, the compaetness of Hn/r, the volume
of "n/I"', t.he cxistence of spherical subgrOttps a.nd the nllmber of conjügacy classes of
c1clncnts of finite order can all be dccided 01' d0.tcrrnined from thc arithmetical data.
Tlle existcnce of non-elemcntary Fuchsian -su hgroups in an arithmetic Kleinian group,
01' cquivalently, the existence of ilnmersed totally geodes~ surfaces in an arithmetic
manifold H3 Ir, occurs precisely when 'the defining quaternion algebra A defined over
k satisfies[k : k n IR] =- 2 and A ~ B ®knR k where B is a quaternion algebra defining
a Fuchsian (sub)group.
Given a Kleinian group r of finite covolume, the trace field is a number field k(r)
and one can obtain a quaternion algebra A(r), in M2 (<V), as finite sums of the group
elements over k. Arithmeticity can then be detected if the field k(r(2l ) and the qua­
ternion algebra A(r(2l) satisfy some "finite determinable" conditions. In general, this
quaternion algebra is an invariant of the commensurability class and it may be that
qua.ternion algebras have a wider role to play in the general theory of J{}einian groups
of finite covolume and hyperbolic 3-manifolds.
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H. Nicolai Kac Moody Algebras and String Theory

'fhis contribution summarises recent attempts to understand the root spaces of Kac
Moody algebras of hyperbolic type, and in particular the "maximally extended" Kac
Moody algebra E to , in terms of a DDF construction appropriate to a subcritical COffi­

pact.ified bosanic string. While the level-one root spaces can be completely characte­
rised in terms o( transversal states (the level-zero elements just span the affine sub­
algebra), longitudinal DDF states .a.re shown t.o appear beyond level one. The utility
of the rTIcthod is demonstrated by constructing an explicit and comparatively simple
rcprcsentation for certain level-two root spaces.
The embedding of the Kac Moody algebra iota a larger Lie algebra of physical states
(which is simpler to handle, at least from a physicist's point of view) is also explained. e
Fi nally it is pointed out that the structure constants of such Kac Moody algebras can
be viewed as S-matrix elements connecting physical string states. =.

S.J. Patterson Asymptotics of groups

The purpose of this talk was to discuss how group structures lead to strong asymptotic
results on various counting functions. The primary example is the circle problem,
whcre all of the deeper results rely on the Voronoi summation formulae and these reflect
thc representation theory of the group of Euclidean motions of the plane. Following
th is one considers the action of discrete groups of motions of the hyperholic plane.
Ilerc the simplest result is the analogue of the circle problem. It can be used, for
cxa.rnplc~ in connection with the modular group to cstimate the asymptotics of

{(a, b, c) E 713 I b2
- 1ac == - 0, 0 < a + c ~ x}

(D > 0 fixed) as x -f 00. This represents binary quadratic forms of discriminant -D.
The analogous problem for positive disrciminants i.s more suhtle as the corresponding
homogeneous space is not Riemannian. One can estimate the asymptotics of

{(a,b,c) E 7l.3 1 b4
- 4ac == D, laz2 + bz + cl ~ x}

where z E <C - rn.. and D > 0 are fixed and x -f 00. Finally abrief discussion of thc
corresponding problem for integral binary cubics was given; thus, for example, it isA
possible to estimate the asymptotics of •

'-

for fixed D as x 4 00. These results are, in their most recent forms, contained in
papers by W. Duke, Z. Rudnik and P. Sarnak, and of A. Eskin and C. McMullan (both
in Val 71 of the Duke Mathematical Journal), and of A. Eskin, S. Mozes and N. Shah
(llnpublishcd). The ITlcthods are by no nleans limited to arithmetic groups hut can be
applicd to wide classes of discontinolls groups.
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w. Plesken Finite uninlodular groups and Bravais manifolds

k-modular lattiees with good properties ean be obtained by using finite unimodular
groups. The cone FlR. of positive definite forms inside the spaee of all G-invariant
quadratic forms of a finite unimodular group G is called the Bravais manifold of G.
rrhe normaliser N7L of G in the full unimodular group aets properly diseontiniously
on FR. The investigation of a fundamental domain leads to niee quadratic forms and
also to sub-Bravais manifolds, i.e. finite unimodular groups eontaining G. In ease FIR
is 2-dimensional or the eommuting algebra of G in rn.nxn is a 2 x 2-matrix ring over lR
or (1;, :FJR earries a hyperbolic structure respeeted by N7L • In this case eaeh elementof
:FR n 7lnxn represents a modular lattiee, onee one of the generie lattices in :FIR n ~nxn

is modular. Examples ar~ discussed where N7l./G acts as a hyperbolic reflection group
on FR. These examples involve unimodular lattices like Es and the Leech lattice,
the 2-modular Barnes-Wall lattice of dimension 16 and the 3-modular Coxeter-Todd
lattice of dimension 12, but give many other modular lattices at the same time.

W. Schempp
("

..... ;

Symmetries govern Magnetic Resonance Imagi~g (MRI)

t\1agnctic resonance imaging (MRI) was' introduced into clinical medicine in 1981,
and in t.hc short time sinee then it has assllll1ed a role of unparalleled importance
in diagnost.ic medicine and cognitive neuroscience. It is the most important imaging
advancc since the introduction of X-rays by Wilhelm Conrad Röntgen in 1895. It is
shown that the MRI modality is governed by the symmetries of the non-split eentral
grollp extension

where the normal subgroup R is isomorphie to the one-dimensional center of the
Heisenberg nilpotent Lie group G. The symmetries find their manifestation in the
coadjoint orbit model Lie(G)*/G of the unitary dual Gof the Heisenberg group G.

E. Scholz: Shifts of the concept of symmetry during the 19t1i:'century

For 0. historieal understanding of the not ion of "symmetry" we ought to distinguish
betwecn
- symrnetrieal practiees (e.g. in mathematics pre-1800: Lagrange 1771, theory of
algchraic cquations; in crystallography: Rome de l'Isle, modifieation series of crystal
[ornIs)

- explicit conceptual use (e.g. ca. 1800 in mathematics: reflection symmetry only;
architectllre: rule governing relations between parts and the whole)
- meta.phorical use (e.g. ca. 1800 architecture: origin of beauty, rejected in other
arts)
Thc d1lal pair of categories "structure" and "symmetry" was introduced in crystallo­
grarhy during the turn from natural history to a physical scienee. R.J. Haüy charac­
tCl'ised structure by a geometrized atomistic theory (18 classes of convex polyhedra
serving as "hypothetical cores" from which crystal figures are derived by building up
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laycrs of "subtractive molecules", and symmctry by a morphological description of
cquality with respect to a hypothetical core). A group of crystallographers pursuing a
dynamistic programme of matter explanation (C.S. Weiss, J.F.C. Hessel, M.L. Fran­
kenheim, J .G. Grassmann) invented and developed vectorial structures and symmetry
stuclies with their own symbolical expressions. That lead to a complete classification
of finite symmetry systems in Euclidean space (Hessei) and apermutation representa­
tion of certain symmetry constellations (holoedrical symmetries of 6 crystal systems)
by J.G. Grassmann (father of Hermann G.).
About 1850 A. Bravais modified the atomistic paradigm of crystal structure to that of
polyhedral moleeules distributed over a regular point lattice. In that context he stu-
died the symmetries of polyhedra (finite) of point lattices (infinite) and of molecular
lattices. He characterised thus the symmetry of most of the later symmorphic space e
group types (71 of 73) C. Jordan took this as the starting point for his 1869 "Memoire
sur les groupes de mouvement" with the first explicit use of the group concept in geo-
mctry.
Thc furtller influence of Bravais-Jorda.n on the formulation of transformation groups
by Lie and Klein 3S weIl as on Sohnke-Fedorov-Schoenflies was shortly outlined. A
]a~t question was posed, not answered, whether the surprising rise of semantieal "re­
sonance" or symbolical "homology" (in the sense of natural history) in different fields
of knowledge like algebra/group theory and crystallography might find a historical
explanation in eonsidering general rules underlying the discourses which governed the
shirts in knowledge production from 18th to 19th century mathematics and natural
history jcrystallography respectively.

J. Schwermer Another look at reciprocity laws

Let EI F be a Galois extension of an algebraic number field; given an irreducible finite
dimensional representation p : Gal(E/ F) ----7' GL(V), dima;V = n, the non-abelian
Artin L-functions LE/F{S, p) are known to be meromorphic in the whole complex plane
and to satisfy a functional equation similar to that of the Zeta function but little is
known about their poles. In the abelian case (i.e. Gal(E/F) abelian, thus p is one
dimensional) it is known that these L-functions are entire (for p =F 1); this may be
viewed as areinterpretation of Artin's reeiproeity law. It seems to be expeeted that
t.lle Artin L-functions are entire in the general case. One way that has been suggested _
hy Tl. P. LanglaDds to show this is to show tha.t the Actin L-functions are equal to •
D-fuJlctiolls attached to autolllorphic forms. l'he partial solution in the case n = 2 as
givcn by Langlands (using Heeke's theory of nlodular forms) was indicated, and same
idcas of the general programme were out li ned.

D. Singerman Symmetrie Riemann surfaces and real. curves

A Rjemann surface X is said to be symmetrie if it admits an anticonfotmal involution
T : X ~ X. Whereas a compact Riemann surface represents an irreducible alge­
bra.ic function F(z, w) = 0 (connected complex curve), asymmetrie eompact Riemann

8
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slI"rracc rcprcsents areal curve, i.c. thc coefficients of f can be chosen to he real.

rrhe rtxcd point set of T consists of 0 ::; k :s; 9 + 1 disjoint simple closed curves or

Inirrors as we call them. We give a survey of many recent results, often first proved

by S.f\1. Natanzon, concerning the mirrors of symmetries.

(1) If Tl and T2 are symmetries of X (genus ~ 2) hoth with 9 +1 mirrors then TI and.

T2 commute and TI T2 is the hyperelliptic involution. Moreover, DO compact Riemann

surfacc can admit more than 2 symmetries with 9 + 1 mirrors.

(2) Ir Tl and T2 do not commute, so that the order of Tl T2 is n > 2 then the total

number of mirrors of Tl and T2 is less than or equal to ~ + 2, if n is even and less

than or equal to~ + 4 if n is odd. Both bounds are attained.

(3) We also discussed the maximum number of mirrors of m > 2 commuting symme­

tries.
Another interesting result concerns the number of conjugacy classes of symmetries

(conjugacy in Aut X, the group of holomorphic and antiholomorphic automorphisms

of X). This is the number of real models of the complex curve. This number is

::; 2( v0 + 1), and this bound is sharp. The talk ended with other examRles of sym­

Inct.ric surfaces such as Klein's curve of genus 3 and the modular curves·X'(n).
v~:..

..1. Tits The Monster group as a group of symmetries

Thc Inain pllrpose of the lecture was to construct, from scratch, a 196883-dimensional

<Q-vcctor space X and asymmetrie bilinear form ß : X x X ~ <Tl such that O(ß) =

Aul(X,ß) is thc Fischer-Griess Monster group M. From that readily follows a descrip­

tion of M as the symmetry group of a (pointed) Euclidean lattice or, equivalently, as

thc symmctry group of a convex polytope in the 196883-dimensional Eucledian space.

The proof of the main result heavily relies on:

R.L. Griess, Jr., The friendly giant, Inv. Math. 69 (1982), 1-102,

J. 1'its, On R.Griess' "Friendly giant", Inv.Math. 78 (1984),491-499,

anel uses (a small and save part) of the classif1cation of finite simple groups.

H.R. Trebin Topological Defects in. Quasiperiodic Tilings

Quasiperiodic tilings model point-atom-structures of quasicrystalline intermetallic COffi­

pounds, which have been discovered exactly ten years ago. The tiIings can be repre­

sented as planar cuts through higher-dimensional periodic crystals, whose "atoms"

are polyhcdra. If the polyhedra are connectco by "steps" a topologically complicated

hypersurrace evolves with many branch-points. Circumventing these points with the

cutt.ing plane a.long closed loops results in pcnnutations of the vertices of the tiling.

With .slIitable choiccs of thc toops vertices can be transported to infinity in a self­

di ffl1sive way. Thus quasicrystals are expected to exhibit extraordinary selfdiffusion

. Inechan isms.

Thc gcometrical background and the self-diffusion steps are illuminated for the octa­

gonal Ammann-Beenker- and the icosahedral Ammann-Kramer-Penrose tilling.

9
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J. Wess Quantum groüps in physics

'fhe C]tJant.um group S Lq (2) and its Lie algebra version was discussed in detail to
exhibit the structure of a quantuo1 group. The Hüpf algebra structure as weil as the
Poincare Rirkhoff Witt property was emphasised. The R matrix approach was put
forward a.nd the RRT relation as weH as the Young Baxter equation were explained.
As symmetric object the Manin plane as comodule was introduced and the differential
calculus of this plane was developed. This opens the way to study physical systems
which are based on inhomogeneous groups (Poincare group) and following Wigner's
definition, q-deformed one particle states and their wave equations can be studied.
For non relativistic systems thc differential calculus leads to a q-deformed Heisenberg
algebra. Quantum mechanical systems based on this algebra can be studied. The A
remarkable consequence is that these models live on lattices. .,

Berichterstatter: Jürgen Opgenorth
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