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Enumerative Combinatorics and the Symmetric Groups

15.01. bis 21.01.1985

The conference was organized by George E. Andrews (University Park), Christine

Bessenrodt (Magdeburg) and Jgrn B. Olsson (Kgbenhavn). It was attended by
43 participants, coming from Austria, Belorussia, Canada, Denmark, France,
Germany, Great Britain, Italy, Japan, Russia, Sweden and the USA. In 30 talks,
a wide spectrum on the interface of algebra and combinatorics was covered; in
a special evening session 3 reports were given on algorithmic aspects of related
computational problems. :

The main aspect of the meeting was to bring together mathematicians from alge-
bra and combinatorics for a fruitful interaction on the overlap of these areas. This
was achieved in focussing on topics in the theory of partitions and g-series, sym-
metric functions, the theory of Coxeter groups (in particular symmetric groups)
and Hecke algebras and their representations, and combinatorial aspects of po-
sets. Very recently, some long standing problems of major significance in these
areas have been solved; reports on these achievements constituted some of the
highlights of this week.

As computer algebra methods have become increasingly important for each of
the areas represented at the conference, in a special session algorithms and newly
available software packages were demonstrated.

There was also a special session dedicated to Dominique Foata followed by a
festive evening. Perhaps the stimulating atmosphere of the institute and our af-

fection for our honoured colleague was best described by the final speaker of the
meeting, Richard Stanley, whose only overhead-slide read:
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K. Alladi: Refinements and generalizations of partition conjectures of
Capparelli arising from Lie algebras

Motivated by a study of vertex operators in the theory of Lie algebras, S. Cap-

parelli made two similar Rogers-Ramanujan type partition conjectures in 1988

involving partitions with difference conditions on the one hand and partitions
with congruence conditions on the other. In 1992 Andrews proved the first con-
jecture by the use of generating functions; the proof of the second conjecture is
implicit in his method. Subsequently, in collaboration with Andrews and Gor-
don, I obtained generalizations as well as refinements of these partition theorems
involving four free parameters by means of a new technique called “the method
of weighted words”. This approach yields combinatorial (bijective) as well as ge-
nerating function proofs of the Capparelli conjectures, their generalizations and
refinements. In addition, the method also yields several companion partition
theorems. Recently, Lie theoretic proofs of the original Capparelli conjectures
have been found but the refinements and generalizations we have obtained have
not yet been realized through Lie algebras.

G. E. Andrews: Ramanujan, Partitions and Binary Quadratic Forms

Recently I have found two apparently independent projects of mine merging into
a combined study. The first concerns four identities of Ramanujan; a typical

example is , v
o 1yn-15(")(1 — on o D\ & g
Z ( 1) (1q+ qu)(zl q ) - (-E(_q)n) 9 .

n=1 n=1 1- T

The second concerns q-series arising in the study of the transitive closure of
acyclic digraphs (joint work with D. Crippa and K. Simon). The merger is due to
the fact that each is related to questions concerning the class numbers of binary
quadratic forms. This leads nicely to new relations between partitions and class
numbers.

Ch. Barop: Projective matrix representations of S, over C

The foundation of the theory of projective representations - especially of S, - was
laid by I. Schur in his 1904/07/11 papers. Among others he constructed one irre-
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ducible projective matrix representation of S, (Hauptdarstellung 2. Art). In the
60’s A. Morris began to publish papers about this subject, e.g. he clarified why

Clifford algebras are involved. In 1988 M. Nazarov announced a construction of

a full system of irreducible projective matrix representations of S.. In my M.Sc.-
dissertation I tried to find a more direct approach to explain this construction.
There is also a SYMMETRICA-routine calculating Nazarov’s matrices. It is also
possible to calculate them via fast fourier transformation in analogy to Clausen’s
algorithm for S,. Another - theoretical - approach is via eigenvectors on a ma-
ximal commutative subalgebra (Gelfand-Zetlin-bases) using the CSCO-Method.

A. Bjorner: Affine permutatxons of “type A”

Denote by S, the group (under composition) of all bl]ectlons a:Z—7Z such that »

a(z)+n = a(z +n), Vz € Z, and a(1) +... + a(n) = (*}'). With respect to the
adjacent transpositions (mod n) (i, i + 1), t =1,...,n, this gives a realization of
the affine Coxeter group An-; (Lusztig, 1983). It has appeared also in the work
of Shi (1986) and H. Eriksson (1994).

In this work we establish three combinatorial facts about S,:

1. A bijection between 57 (the minimal coset representatives modulo S, =
© <81,...,8n-1>) and the set of all partitions with less than n— 1 parts. This

gives an elementary bl_]ectlve proof for Bott’s (1956) formula H

=1

- ql
for the length generating function of A,_;.

2. A rule for comparing @, b € S, in Bruhat order. For a € S, a; = a(i), and
J € Z,let pj(a) = Yoi,;[5524]- Then:

a<b& pilar+n,...,6+n, Gepr,y...,80) < cp,j(b1+n,.._.,bk+n, Bk41y vy bn)

for all 0 < k < n —1 and min{e;} < j < max{a;}.
For a,b € S} it suffices to take k = 0 on the right hand side.

3. A rule for comparing a,b € S, in left weak order. Define the inversion
graph I(a) of a € S, as the directed multigraph on vertices 1,...,n with an
edge of multiplicity | [*=| | between i and j, for i < j, and directed from
i to j if a; < a; and from j to ¢ otherwise. Then: a < b « I(a) C I(b).

Partial work on affine permutations of type C, was also mentioned.
(Joint work with F. Brenti.)
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F. Brenti: Combinatorial properties of Kazhdan-Lusztig polynomials

We introduce a new family of polynomials, easily computable by simple recursi-
ons, into which any Kazhdan-Lusztig polynomial (of any Coxter group) can be
expanded linearly, and we give a combinatorial interpretation to the coefficients
in this expansion. This gives a combinatorial rule for computing the Kazhdan-
Lusztig polynomials in terms of the enumeration of paths in a certain directed
graph, and a completely combinatorial reformulation of the nonnegativity con-
jecture.

D. M. Bressoud: Some observations on the Borwein conjecture
Let - » ‘ :
[1( = ¢+ - ¢**?) = An(¢®) = ¢Ba(¢®) = 4°Cnla®).
=0 5
The Borwein conjecture states that for all n, A, By, and C, have non-negative
coefficients. We discuss the relationship between these polynomials and the ge-
nerating functions for partitions with prescribed hook differences. In particu-
lar, if @.(q) is the generating function for partitions A with A;,A] < n and for
every i such that A; > i we have either A; = Ajyq, or A 2 Al > Ay, then
an(1) = An(1) = 23" and Aa(q) — an(q) is a polynomial with “small” coeffi-
cients. :

K. Erdmann: Dimensions of simple modules for the symmetric groups

Let K be an algebraically closed field of characteristic p > 0 and let D* be the
simple module of the group algebra K'S, of the symmetric group, where X is a
pregular partition of r. The dimensions of D* for A with at most n parts are
the same as the multiplicities of indecomposable direct summands of E®" where
E is the natural n-dimensional module for the group GL,(K). We determine
generating functions for dim D, for all partitions A with two parts, by applying
some new results from the representation theory of GL,(K). The results are
explicit rational functions.

S. Fomin: Noncommutative Schur functions

We develop (jointly with Curtis Greene) a theory of Schur functions in noncommu-
ting variables, assuming certain commutation relations that are satisfied in many
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well-known examples, such as the plactic, nilplactic and nilCoxeter algebras and
the degenerate Hecke algebra H,,(0). As an application, we prove Schur-positivity
and obtain generalized Littlewood-Richardson and Murnaghan-Nakayama rules
for a large class of (ordinary) symmetric functions, including stable Schubert and
Grothendieck polynomials.

F. Garvan: Cranks, ¢-cores and the combinatorics of partition congru-
ences :

We survey the known combinatorial interpretations (or cranks) of Ramanujan’s
partition congruences. In an earlier paper with Kim and Stanton we found cranks
which combinatorially proved Ramanujan’s partition congruences modulo 5, 7, 11
and 25. We extend these methods to find a crank which combinatorially explains

and proves Ramanujan’s partition congruence p(49n.+ 47) = 0(mod 49).

1. Goulden: The combinatorial relationship between nonseparable roo- -

ted planar maps and two stack sortable permutations

West conjectured and Zeilberger proved that the number of permutations of
1,...,n that can be sorted with two passes through a stack (TSS permutations)
is 2(3n)!/(n + 1)!(2n + 1)!. This is precisely Tutte’s formula for the number of
nonseparable rooted planar (NS) maps with n+1 edges, but the combinatorial
relationship between these two sets is not at all clear from Zeilberger’s proof.
Dulucq et al. have found a direct bijection between the NS maps and another
class of permutations, which together with a sequence of nine further bijections
between sets of permutations gives a bijection between T'SS permutations and
NS maps. In addition, they prove that their bijection identifies the numbers of
vertices and degree of the root face of the map with the number of descents +2
and the number of right to left maxima +1, respectively, of the corresponding
permutation, but no direct description of their bijection is apparent.

In this talk, a new bijection is given that preserves the above statistics in a
straightforward manner. The TSS permutations are characterized by an associa-
ted lattice path, called the Raney path of the permutation since these paths were
used by Raney in his combinatorial proof of Lagrange’s implicit function theo-
rem. Simple path bijections then lead directly to TSS bijections that are exactly
analogous to Tutte’s NS bijections, giving the required combinatorial relationship
between TSS permutations and NS maps. This is joint work with Julian West.
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D. M. Jackson: The genus series for maps

The genus series for maps is the counting series for the number of (rooted) maps
on orientable and nonorientable surfaces with respect to the degrees of vertices,
faces and number of edges. The series for orientable surfaces and locally orientable
surfaces have expressions in terms of Schur functions and Zonal polynomials,
and there is then a connexion with Jack symmetric functions. Both series have
representations in terms of integrals and it is significant that these can be used,
with some difficulty to determine counting series for subclasses of map, such as
monopoles. For example, the result of Harer and Zagier is recoverable. If there is
time I will mention the use of Pfaffians in connexion with monopoles on locally
orientable surfaces. The genus series is related to the partition function in random
matrix models in physics.

G. D. James: Some representations of Hecke algebras

We discuss some recent work, in collaboration with Andrew Mathas, on the de-
composition matrices of Hecke algebras H which are associated with the sym-
metric groups S,. The algebra H which we consider is defined over a field of
characteristic zero, and the parameter g in its definition is set equal to —1. As
a consequence, the decomposition matrix is a “first approximation” to the 2-
modular decomposition matrix of S,. The starting point of our investigation
is a theorem which says that the first colums of the decomposition matrix has
1 opposite every hook partition whose 2-core is not (2,1) and 0 opposite every
other partition. We combine this result with a theorem which shows that all
the columns can be calculated, using the Littlewood-Richardson Rule, when the
2-core is large. Our conclusions include a determination of all the rows of the
decomposition matrix which are indexed by partitions into at most four parts.

W. Johnson: Polynomials of ¢g-binomial type

A polynomial sequence {pn(z)} is said to be of binomial type if it satisfies

w4+ y)= Z)Pn- .
e+ =32 () rlpest)

In the same way that the ordinary binomial theorem is a model for this definition,
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we take Schiitzenberger’s noncommutative g-binomial theorem

n n _
+y) =) (k) zyt,
k=0 q

where yx = gzy, as a model for a definition of g-binomial type. Thus we study
polynomial sequences satisfying

n n
palz+y) =) (k) Pa(Z)Pn-k(y) where yz = qzy
k=0 q

We can give a few general properties of such sequences (e.g. a characterization in
terms of generating functions) and a few examples that have some combinatorial
significance.

T. Jézefiak: A recursive formula for Hall-Littlewood functions

In a recent article by P. Di Francesco, C. Itzykson and J.-B. Zuber, Polynomial
averages in the Kontsevich model, Commun. Math. Phys. 151 (1993), 193-219, the
authors proved Kontsevich’s formula and Witten’s conjecture in the intersection
theory of the moduli space of punctured curves using a family of symmetric
functions which they introduced in the paper by the following formula:

" Iy, + T z;+ x5 v,
fX) =22 (- Y0 T 22 T S —det(al),
7T p<q TP T Tq g TTEj .
PqE] JEIC

where X = {z,,...,7,} is a set of variables, v is a partition of length k, k< n,
with distinct parts, |v| = ELI v;, and the summation is over all k-element subsets
I={i <...<#}of {1,...,n} with I being the complement of I in {1,...,n}.
It is apparent that the authors were not aware that the functions were, up to
sign, so-called Q-functions defined at the beginning of the century by L. Schur in
connection with spin representations of symmetric groups.

The aim of the talk was to bring up this relationship in the context of more general
Hall-Littlewood (H-L) symmetric functions by using Macdonald’s definition of
H-L functions and by deriving a recursive formula for H-L functions which is
equivalent to the original definition of D. E. Littlewood.

A. Kerber: Enumerative combinatorics and the symmetric groups

It was described how the first 7-designs were found. Here they are:

7
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0011100010100100110001101000010010000000101101 100010111100000001001001010000110111011001010111000
1100011101011011001110010111101101111111010010011101000011111110110110101111001000100110101000111

The corresponding Kramer-Mesner matrix can be found in the paper by Magli-

veras/Leavitt in Computational Group Theory (Atkins ed., Acad. Press 1984). -

This matrix was evaluated along a subgroup ladder in S, (implementation A.
Betten), and the 0-1-vectors were found using an implementation of an improved
LLL-algorithm (A. Wassermann).

S. Kerov: Big Young diagrams and long interlacing sequences

Let w, denote any one of Young diagrams (Y. d.) withn boxes,v which has largest
dimension (= the number of standard Y. tableaux), dimw, = max dim A, It will

be convenient to consider Y. d. as a piecewise linear function, v = A(u).
Theorem (K. & Vershik, 1985)

2 in % g
lim —l-—w,,(u\ﬁz‘) = Qu) = { 2(arcsin2 + v4 —u?) ,|u|<2

n—oo /N Iu' N |u| 2 2.

A similar result holds for typical Y. d. with respect to Plancherel measure of S,, gi-
ven by M,()\) = dim® A\/n}; X € Y,. Consider now a pair of interlacing sequences,
T <y1 < T3 < ...< Ty < Yg-1 < T4, say, the roots of orthogonal polynomials
P,_1(2), Ps(z). It can be uniquely represented by a Y. d.-looking piecewise linear
function v = wy(u) with derivative w)(u) = +1, the minima points at z,,...,zq4
and the maxima at yi,...,¥4-1. Surprisingly, the limiting shape for wq, under
mild assumptions, also exists and coincides with the same function Q.

Theorem (K., 1993) Denote by c2,b, the coefficients of recurrence relation for
polynomials P,(z) :

Poy1(2) + (b — 2)Pa(2) + 2 Poa(2) = 0.

Assume that lim °:—"l" =1and limg"'c:—""- = 0. Then

Jim -cl:wn(cnz +b,) = Q(z),z € R.

The same shape arises in many other contexts, too. The fact is partially explained
by recent “free probability theory” by D. Voiculescu.
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A. S. Kleshchev: Branching rules for modular representations of sym-
metric groups and their applications to representation theory, coho-
mologies, and problem of Mullineux

Let K be a field of characteristic p > 0, X, the symmetric group on n letters,
D? the irreducible KX,-module corresponding to a (p-regular) partition A of n.
The main object of our interest is the restriction, D*|g,_,, of D* to the natural
subgroup T,_; < X,. We obtain various results about D>*|g,._, which can be con-
sidered as characteristic-free versions of the classical Branching Theorem. These
results turn out to be useful for many other problems about symmetric groups
because they provide a tool for using induction.

As one of the applications we propose a combinatorial algorithm for description
of the bijection b on the set of p-regular partitions of n defined from

D*@sgn = Db(*),

where sgn is the 1-dimensional sign representation of Z,.

K. Koike: A Hecke algebra of (Z/rZ)! S, and construction of its

irreducible representations

In this talk, we define a “Hecke algebra” $),, of Gn, = (Z/rZ)1 &, (the wreath
product of (Z/rZ) with &,) and show that this “Hecke algebra” has appropriate
properties as deformation of the group algebra of Gn,. Namely fi,, is a free
module over Ag = Z[g,q7!,u1,us,...,u,] of rank n!r* and for suitable values of
parameters n and r,f),, are isomorphic to Iwahori Hecke algebras of type A,
and B,. All the irreducible representations of i, are naturally parametrized
by r-tuples a = (af!),a®,...,al?) of Young diagrams of total size n and €ach
irreducible representation space of £, is realized on a vector space spanned by
the standard Young tableaux T’s of shape a. We describe the above irreducible

representation by giving a set of representation matrices of the generators of §,,,

which are the natural generalization of Young’s seminormal forms. Also we give
explicit description of the center of £),,. This work is a collaboration with Ariki
and appeared in Adv. in Math. Vol 106 (1994) 216-243.

Ch. Krattenthaler: HYP and HYPQ - Mathematica packages for hand-
ling hypergeometric and basic hypergeometric series

Hypergeometric and basic hypergeometric series (g-series) are of great importance
in areas like special functions theory, combinatorics, probability theory, represen-

9
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tation theory, computer science, physics. For combinatorics, probability theory,
and computer science this comes from the fact that (almost) all binomial sums
can be written as hypergeometric series, and (almost) all g-binomial sums can
be written as basic hypergeometric series. For special functions, representation
theory, physics this comes from the fact that many important special functions
and orthogonal polynomials are hypergeometric or basic hypergeometric series.
For a non-expert the problem about (basic) hypergeometric series is two-fold:
Computations with (basic) hypergeometric series tend to be cumbersome, and

because of lack of comprehensive tables it is difficult to find identities that one ' o
might need. My Mathematica packages HYP and HYPQ make hypergeometric ‘

and basic hypergeometric series accessible to the non-expert. They allow the

user to: (A) convert (g-)binomial sums into (basic) hypergeometric notation, 9

(B) manipulate (basic) hypergeometric expression, (C) find and apply applicable
transformation formulas, (D) find and apply applicable transformation formulas,
(E) apply contiguous relations, (F) do formal limits of (basic) hypergeometric
expressions, (G) use Gosper’s and Zeilberger’s algorithms, (H) transform (basic)
hypergeometric expressions into TEX-code, and provide the user with the largest
list of identities that is currently available in one spot. The packages are available
by anonymous ftp at pap.univie.ac.at (type cd math, cd hyp.hypq after havmg
logged in).

B. Leclerc: Kostka-Foulkes polynomials and crystal graphs of type A,

Kostka-Foulkes polynomials are g-analogues of the weight multiplicities in the
irreducible sl(n,C)-modules. They are defined by means of the expansion

5= Kx(a)Pu(e)

where s, and P,(q) are respectively the Schur and Hall-Littlewood functions.

Kashiwara has attached to the irreducible U,(sl,)-module V} a crystal basis and a

crystal graph G, describing the action of certain renormalized lowering operators .
on the crystal basis.

53

The aim of the talk is to present a combinatorial description of the K,(q) in terms
of the geometry of the graph G,. This leads to n — 1 variables refinements of the
g-multiplicities of the “rectangular” weights u = (k"), which are the generating
functions of Kostant generalized exponents for the si(n, C) simple modules. (Joint
work with A. Lascoux and J.-Y. Thibon).

10
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S. Martin: The infinitesimal Schur algebras

One approach in studying the representation theory of G = GLn in characteri-
stic p is to look at representations of the ‘thickened’ group schemes G, T associa-
ted with the r’th Frobenius subgroup of G. A second approach is to exploit the

. interplay between polynomial representations of G and rational representations

of the monoid M of matrices. This reduces matters to studying the classical
Schur algebras S(n,d). In joint work with Doty and Nakano we try to study
the scheme M, D (D the diagonals in M) and set up a polynomial representa-
tion theory of so-called infinitesimal Schur algebras, S(n,d),. These algebras,
constructed by truncation of the coordinate ring of M, have very interesting ho-
mological properties. Their character theory may be relevant to computing the
modular irreducible characters of G. -

M. Nazarov: Classical duﬂ pairs and affine Hecke algebras ;.

Let G be one of the classical groups GL(N), O(N), Sp(N) acting on the vector
space U = CV. The question how the n-th tensor power of the representation U
decomposes into irreducible summands amounts to studying the centralizer C(n)
in End (U)®" of the image of G. By the definition of the algebra C(n) we have the
chain of subalgebras C(1) C C(2) C ... C C(n). There is a canonical orthogonal
basis in every irreducible representation of the algebra C(n) associated to this
chain. For the group GL(N) the centralizer C(n) is generated by the action of
the symmetric group S(n) in U®". The action of S(n) in the canonical basis was

described by Alfred Young in 1931. The aim of the talk is to describe the action -

of the other two centralizer algebras in the canonical basis. This description
implies formulas for the dimensions of irreducible representations of the other
two classical groups. An object larger than the group S(n) may be recognized
in the construction of Young. This is the affine degenerate Hecke algebra He(n)
which originates from the representation theory of the group GL(n) over a p-adic
field. It will be explained in the talk what plays the role of He(n) for each of the
other two centralizer algebras.

S. Okada: Minor-summation formulas and their applications

In this talk, I will give several applications of the following minor summation
formula of Pfaffian. Let n be an even integer. For an arbitrary n x p matrix

11
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T = (ti;)1<i<n1<i<p and a p x p skew symmetric matrix A = (a;;)1<i,j<p, We have .

E Pf(ai, i )1<kicndet(tri)ickicn = PE(TA'T),

1<i1 <..<in<p

where Pf B is the Pfaffian of a skew-symmetric matrix B. As an application of
this formula, we can prove the Littlewood’s formula and their variations. Also we
can give the irreducible decompositions of some restrictions and tensor products
for “rectangular-shaped representations” of classical groups.

K. Ono: Some partition theorems

In this lecture we discuss new results regarding the arithmetic nature of various
standard partition functions. First we mention new results regarding the parity of
the ordinary partition function p(n). We show that p(n) is even infinitely often
in every arithmetic progression and p(n) is odd in an arithmetic progression
provided that it is odd once. We also present a proof of the t-core partition
conjecture if ¢;(n) is the number of ¢-core partitions of n, then we show for ¢ > 4
that c:(n) > 0 for all n. This implies that for primes p > 5 every symmetric group
and alternating group possesses at least one defect 0 p-block. We also consider
b,(n), the number of p-regular partitions of n. For every positive integer k and
every prime p, we show that by(n) = 0 mod p* for almost all n.

P. Paule: Algorithms for ¢-identities - recent progress

Recent progress concerning the algorithmic treatment of g-hypergeometric sums
is discussed. Based on a “discrete” version of square-free-factorization, a natu-
ral algebraic approach to a g-analogue of Gosper’s algorithm is presented. This

" analogue led to an efficient Mathematica implementation of a q-analogue of Zeil-

berger’s “fast” algorithm for definite g-hypergeometric summation. The applica-
tions include, for instance, a simple “four-line” computer proof of the celebrated
Rogers-Ramanujan identities, as well as several results obtained by ¢WZ duali-
zation. ‘

R. A. Proctor: A New Lie Theoretic Subject Contained Entirely in
the Category of Combinatorics?

Last year we combinatorialized some special cases of some representation theoretic
basis results of Lakshmibai and Seshadri. (Their general work was recently used

12
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by Littelmann to completely solve the century-old tensor product problem for
“all” Lie algebras.) The central objects in this new combinatorial treatment are
certain posets which we call “d-complete”. A poset possesses an LS type basis if
and only if it is d-complete. We can classify all possible d-complete posets using

Dynkin diagrams. Our proofs of these results are entirely combinatorial. It now .

appears that this class of posets may provide the answer to two pre-existing purely
combinatorial problems, as is described below. If the conjectures below can also
be proved using only combinatorial techniques, then it could be said that these
results comprise a mathematical subject of the semisimple Lie kind which exists
entirely in the category of combinatorics. Consider the decomposition of a poset
P into a filter F and an ideal . Fix a natural numbering of the elements of I.
Choose a natural ordering of the elements of F, and successively “slide out”. the
empty locations of F according to Schiitzenberger. If the same result is obtained
for each ordering of F for all decompositions P into such an F and an [ and all

extensions of I, we say that P is a jeu de taquin poset. The classification of jéu de.

taquin posets has been regarded by some as being intractable. Empirical evidénce
indicates that all d-complete posets should be jeu de tacquin posets. In his thesis
Stanley defined a generating function U(P;z) for the p-partitions on a poset P.
He found a special family of posets for which U(P;z)'s had a strikingly beautiful
form. Gansner (and Sagan) found another family of “hook length” posets around
1979. Empirical evidence indicates that all d-complete posets should be hook

length posets.

B. Sagan: Coxeter subspace arrangements and characteristic polyno-

mials

Andrews Blass and I show how the characteristic polynomial of a Coxeter sub-
space arrangement can be interpreted as an Ehrhart quasi-polynomial of an asso-
ciated polytope. This method can be used to show that such polynomials factor
partially over Z* and have nonnegative coefficients when expanded in a suita-
ble basis for the polynomial ring. I will also mention several related topics: a
generalization of this idea to symmetric functions, a new way to calculate and
combinatorially éxplain the Mdbius function of an arbitrary lattice, and topolo-
gical considerations.

13
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Th. Scharf: Non-commutative cyclic characters

(joint work with B. Leclerc, J.-Y. Thibon (Paris)).

Fix n € N*, ¢ := ezp(2ri/n) and g € S,, an n-cycle. Denote by X(f‘) the
irreducible complex character of < g > defined by X (:) (9) := €*. By a result of

Kraskiewicz and Weyman the Frobenius characteristic i of Ind%y, (X (:)) can
be decomposed into ribbon Schur functions:

W=

maj(I)=k
modn

This suggests an analogue in the algebra of non-commutative symmetric functions
(NCSF) in the sense of [Gelfand/Krob/Lascoux/Leclerc/Thibon]:

LP= %" R

maji(I)=k
modn

NCSF can be equipped with an internal product “#” which is an analogue of the
inner tensor product of representations [GKLLT]. Then

. n-1
LE L0 =" <1®, 1m0 > L,
m=0

We note two consequences: :
. " 1 k) j(m—i n m
(i) Ind%:, (X)) @ Ind%, (X)) = Y < i, 6™ > IndZ;, (X5™)

(ii) For any 7 € Sy, with maj(r) =m (mod n), the number of (¢,7) € S, x Sy
s.t. # = ot and maj(co) = I (mod n); maj(r) = k.

R. Stanley: Graph colorings and symmetric functions

Given a finite graph G, define a symmetric function

Xa: Z z,(u,)...z‘(w),

x:V P
summed over all proper colorings « of the vertex set V = {vi,...,v4} of G with
positive integers. If we set z; =23 =... = Zp =1, Tnp1 = Tny2 = ... =0, then

we obtain xg(n), the chromatic polynomial of G evaluated at n. Hence X 1s a
natural generalization of xg.
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There are many interesting problems involved with expanding xc in terms of vari-
ous bases for the ring of symmetric functions, in particular the bases m, pa, sa, €x.
For instance, if G is the incomparability graph of a poset with no induced subpo-
set isomorphic to I , then it is conjectured that the expansion of x¢ in terms
of the elementary symmetric functions e, has nonnegative coefficients. Gasharov

has shown that Xg is at least Schur-positive. From this one can deduce, for in- -

stance, that if ¢; is the number of i-element gha.ins in a poset P with not induced
I. , then all zeros of the polynomial ¥ ¢;z' are real.

J. Stembridge: Enriched P-partitions

Enriched P-partitions are a generalization to posets of the tableaux for which
Schur’s Q-functions are the generating functions. They bear the same relation-
ship to Q-functions as “ordinary” P-partitions bear to Schur S-functions. Mo-
reover, nearly every aspect of the theory of ordinary P-partitions has an enriched
counterpart. We plant to summarize the highlights of this theory, and discuss
some applications to reduced expressions in Coxeter groups, as well as some open

problems.

V. Strehl: Transforming Recurrences

There are several reasons (better understanding and circumventing inefficiencies
in the multisum Zeilberger algorithm, intriguing examples from combinatorics,
special functions and number theory) to consider the following problem: given a
holonomic sequence a = (@a)n0, i. €. asequence annihilated by a linear difference
operator G with polynomial coefficients, and a linear transformation P, what
can be said about operators H (order?, degree of coefficients?) annihilating the
transformed sequence Pa, the case H = P - G - P~! being of particular interest.
It turns out that in the case where P is of “Sheffer type”, the transformation
G +— P -G - P! has particularly nice properties which can be profitably used in
implementations.

A. Vershik: Vector partitions and limit shapes

The vector partitions appeared in combinatorial problems, geometry, number
theory. We will speak about new application of this and about the connexion

with statistical physics.
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D. Zeilberger FOaTA on one FOOT

Dominique Foata’s great contributions to combinatorics, sofar, were described.
In particular the Cartier-Foata commutation monoid and the revolution that lead
to the combinatorial approach to special functions.

Berichterstattung: C. Bessenrodt
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