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Tag u n g s b e r ich t 3/1995

Enumerative Combinatorics and the Symmetrie Graups

l~.Ol. bis 21.01.1995

The conference was organized by George E. Andrews (University Park), Christine
Bessenrodt (Magdeburg) and J~rn B. Olsson (K~benhavn). It was attended by
43 participants, coming from Austria, Belorussia, Canada, Denmark, France,
Germany, Great Britain, Italy, Japan, Russia, Sweden and the USA. In 30 talks,
a wide spectrum on the interface of algebra and combinatorics was covered; in
a. special evening session 3 reports were given on algorithmic aspects of related
computational problems.

The main aspect of the meeting was to bring together mathematicians from alge­
bra and combinatorics for a fruitful interaction on the overlap of these areas. This
was achieved in focussing on topics in the theory of partitions and q-series, sym­
metrie functions, the theory of Coxeter groups (in particular symmetrie groups)
and Hecke algebras and their representations,. and combinatorial aspects of po­
sets. Very recently, some long standing problems of major significance in these
areas have been solved; reports on these achievements constituted same of the"
highlights of this week.
As computer algebra methods have become increasingly important for each of
the areas represented at the confere~ce, in a special session algorithms and newly
available software packages were demonstrated.

There was also a special session dedicated to Dominique Foata followed by a
festive evening. Perhaps the stimulating atmosphere of the institute and our af­
feetion for our honoured colleague was best described by the final speaker of the
meeting, Richard Stanley, whose only overhead-slide read:

Friendly
Oberwolfach
Atmosphere
Towards
Algebraic combinatorics
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VORTRAGSAUSZÜGE

K. Alladi: Refinements and generalizations of partition conjectures of
Capparelli arising from Lie algebras

Motivated by a study of vertex operat'ors in' the theory of Lie algebras, S. Ca.p­
parelli made two similar Rogers-Ramanujan type. partition conjectures in 1988.
involving partitions with difference conditions on the one hand and partitions
with congruence conditions on the other. In 1992 Andrews proved the first con­
jecture by the use of generating functions; the proof of the second conjecture is
implicit in his method. Subsequently, in collaboration with Andrews and Gor­
don, I obtained generalizations as weIl as refinements of these partition theorems
involving four free parameters by means' of a new technique called "the method
of weighted words". This approach yields combinatorial (bijective) aB weIl as ge­
nerating function proofs of the Capparelli conjectures, their gener~izations and
refinements. In addition, the method also yields several companion partition
theorems. Recently, Lie theoretic proofs of the original Capparelli conjectures
have been found hut the 'refinements and geD:eralizations we have obtained have
not yet heen realized through Lie algebras.

G. E. Andrews: Ramanujan, Partitions arid Binary Quadratic Forms

Recently I have found two apparently independent projects of mine merging into
a combined study. The first concerns four identities of Ramanujan; a typical
example is

~ (_1)n-l q(nt
1
)(1 _ qn,) _ (~_ '12 ) 2~ nq(nt1

)

~ . (1 + qn)1 - ~(q) ~ 1 _ qn .

The second concerns q-series arising in the study of the transitive closure of
acyclic digraphs (joint work with D. Crippa and K. Simon). The merger is due to
the fact that each is related to questions concerning the class numbers of binary
quadratic forms. This leads nicely to new relations between partitions and class
numbers.

eh. Barop: Projective matrix representations of Sn over C

The .foundation of the theory of projective representations - especially of 'Sn - was
laid by I. Schur in bis 1904/07/11 papers. Among others he constructed one irre-
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ducible projective matrix representation of Sn (HauptdarsteUung 2. Art). In the
60's A. Morris began to publish papers about this subject, e.g. he clarified why
'Clifford algebras are involved. In 1988 M. Nazarov announced a construction of
a fuU system of irreducible projective matrix representations of Sn. In my M.Sc.­
dissertation I tried to find a more direct approach to explain this construction.
There is also a SYMMETRICA-routine calculating Nazarov's matrices. It is also
possible to calculate them via fast fourier transformation in analogy to Clausen's
algorithm for Sn' Another - theoretical - approach is via eigenvectors on a ma­
ximal commutative subalgebra (Gelfand-Zetlin-bases) using the CSCO-Method.

A. Björner: Affine permutations of "type A"
.. ~~~~

Denote by Sn tbe group (under composition) of all bijections a : Z -+ Z sue~i·tbat

a(x) +n = a(x + n), V% E Z, and a(l) +... +a(n) = (n~I). With respeet t~ the
adjacent transpositions (mod n) (i, i + 1), i = 1, ... ,n, this gives a realization of
the affine Coxeter group An - t (Lusztig, 1983). It has appeared also in tbe work
of Shi (1986) and H. Eriksson (1994).
In this work we establish three eombinatorial facts about Sn:

1. A bijection between S~ (the minimal eoset representatives modulo Sn
<'SI,' .• ,Sn-I» and the set of all partitions with Iess than n-l parts. This

. •• • n-l 1 +q +... + qi
glves an elementary blJeetlve proof for Bott 's (1956) formula II .

, i=l 1 - q'
for the length generating function of An-I.

2. A rule for comparing G, b ESnin Hruhat order. For a E Sn, ai = a(i), ~d
j E Z, let cpj(a) =Ei:aä<j r~l. Then:

a 5 b <=> cpj(at +n, .. . , aA:+n, aA:+I,· .. ,an) 5 cpj(b1+n, .... , bk+n, bA:+h' .. ,bn )

for all 0 5 k :5 n - 1 and min{ail < j :5 max{ai}.
For a, b E S~ it suflices to take k = 0 on the right hand side.

3. A rule for comparing a, b E Sn in left weak order. Define the inversion
graph l(a) of a E Sn as the direeted multigraph on vertices 1, ... , n with an
edge of multiplicity I l aj~a.JI between i and j, for i < j, an~ directed from
i to j if ai < aj and !rom j to i otherwise. Then: a:5 b # l(a) ~ I(b).

Partial work on affine permutations of type en was also mentioned.
(Joint work with F. Brenti.)
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F. Brenti: Combinatorial properties of Kazhdan-Lusztig polynomials

We introduce a new family of polynomials, easily computable by simple recursi­
ons, ioto which any Kazhdan-Lusztig polynomial (of any Coxter group) can be
expanded linearly, and we give a combinatorial interpretation to the coefficients
in this expansion. This gives a combinatorial rule for computing the Kazhdan­
Lusztig polynomials in terms of the enumeration of paths in a. certain directed
graph, and a completely combinatorial refonnulation of the nonnegativity con­
jecture.

D. M. Bressoud: Same observations on the Borwein .eonjeeture

Let
n-lII(1 - q3i+l)(1 - q3i+2) = An (q3) - qBn (q3) - q2Cn (q3).
i=O

The Borwein conjecture states that for all n, An, Bn, and Cn have non-negative
coefficients. We discuss the relationship between these polynomials and the ge­
nerating functions for partitions with prescribed hook differences. In particu­
lar, if Qn(q) is the generating function for partitions ,\ .with '\t,'\~ ~ n and for
every i such that" Ai ~ i we have either '\i = '\i+l' or Ai ~ A~ > '\i+t, then
on(l) = An{l) = 2 ·3n- 1 and An(q) - on(q) is a polynomial with "smali" coefli­
cients.

K. Erdmann: Dimensions of simple modules for the symmetrie groupe

Let K be an algebraically closed field of characteristic p > 0 and let DA be the
simple module of the group algebra KSr of the symmetrie group, where ,\ is a
p-regular partition of r. The dimensions of n>. for ,\ with at most n parts are
tbe same a.s the multiplicities of indecomposable direct summands of E~r where
E is the natural n-dimensional module fo~' the group GLn(K). We ·determine
generating functions for dim DA, for all partitions ,\ witb two parts, by applying
some new results from the representation tl;leory of GLn(K) . . The results are
explicit rational functions.

s. Fomin: NODcommutatiye Schur functioDs

We develop (jointly with Curtis Greene) a theory of Schur functions in noncommu­
ting variables, assuming certain commutation relations that are satrsfi~d in many
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well-known examples, such as the plactic, nilplactic and nilCoxeter algebras and
the degenerate Hecke algebra Hn(O). As an application, we prove Schur-positivity
and ohtain generalizedLittlewood-Richardson and Mumaghan-Nakayama rules
for a large class of (ordinary) symmetrie functions, including stahle Schubert and
Grothendieck polynomials.

F. Garvan: Cranks, t-cores and the combinatorics of partition congru­
ences

We survey the known comhinatorial interpretations (or cranks) of Ramanujan's
partition congruences. In an earlier paper with Kim and Stanton we found cranks
which comhinatorially proved Ramanujan's partition con~uencesmodulo 5,7,11
and 25. We extend these methods to find a crank which combinatorially explains
and proves Ramanujan's partition congruence p(49n.+ 47) == O(mod 49). -y-

J. Gouiden: The combinatorial relationship between nonseparable roo­
ted planar maps and two stack sortable permutations

West conjectured and. Zeilberger proved that the number of permutations of
1, ... , n that can be sorted with two passes through a stack (TSS permutations)
is 2{3n)I/(n + 1)!(2n + 1)!.This is precisely Tutte's formula for the number of
nonseparahle rooted planar (NS) maps with n+1 "edges, but the combinatorial
relationship between these two sets is not at All clear from Zeilberger's proof.
Dulucq et al. have found a direct bijection' between the NS maps and another
class of permutations, which together with a sequence of nine further bijections
between sets of permutations gives a bijection between TSS permutations· cind
NS maps. In addition, they prove that their bijection identifies the ~umbers of
vertices and degree of the root face of the map with the number of descents +2
and the number of right to ieft maxima +1, respectively, of the corresponding
permutation, hut no direct description of their bijection is apparent.

In this talk, a new bijection is given that preserves the above statistics in a
straightforward manner. The TSS permutations are characterized by an associa­
ted lattice path, called the Raney path of the permutation since these paths were
used .hy Raney in his combinatorial proof of Lagrange;s implicit function theo­
rem. Simple path bijections then lead directly to TSS bijections that are exactly
analogous to Tutte's NS bijections, giving the required combinatorial relationship
between TSS permutations and NS maps. This is joint work with Julian West.
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D. M. Jackson: The genus series for maps

The genus series for ~aps is the eounting series for the number of (rooted) maps
on orientable and nonorientable surfaces with respeet to the degrees of vertiees,
faces and number of edges. The series for orientable surfaces and locally orientable
surfaces have expressions in terms of Schur functions and Zonal polynomials,
and there is then a eonnexion with Jack symmetrie functions. Both series have
representations in terms of integrals and it is significant that these ean be used,
with some difliculty to determine counting senes for subelasses of map, such as
monopoles. For example, the result of Harer and Zagier is reeoverable. If thete is
time I will mention the use of Pfaffians in connexion with monopoles on locally
orientable surfaees. The genus series is related to the partition function inrandom
matrix models in physies.

G. D. James: Some representations of H~cke algebras

We discuss some recent work, in eollaboration with Andrew Mathas, on the de­
composition matrices of Heeke algebras H which are associated with the sym­
metrie groups Sn' The algebra H which we consider is defined over a field of
eharacteristic zero, and the parameter q in its definition is set equal to -1. As
a consequence, the decomposition matrix is a "first approximation" to the 2­
modular decomposition matrix of Sn- The' starting point of. our investigation
is a theorem whieh says that the first eolums of the decomposition matrix has
1 opposite .every hook partition whose 2·core is not (2,1) and 0 opposite every
other partition. We combine this result with a theo~em which shows that all
the eolumns can be calculated, using the Littlewood-Riehardson' Rule, when the
2-eore is large. Dur conelusions include adetermination of all the rows of the
decomposition matrix which are indexed by partitions into at most four parts.

w. Johnson: Polynomials of q-binomial type

A polynomial sequence {Pn(x)} is said to be of binomial type if it satisfies

Pn(X +Y) =t (~)PI:(x)pn-k(Y)'
k=O

In the same way that the ordinary binomial theorem ia a model for this definition,
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we take Schützenberger's noncommutative q-binomial theorem

(x +yt = t (~) xkyn-k,
k=O q

where yx = qxy, as a model for adefinition of q-binomial type. Thus we study
polynomial seque~ces satisfying

p,,(x +y) = t (~) p,,(X)p"-k(Y) where yx = qxy
k=O q

We can give a few general properties of such sequences (e.g. a characterization in
terms of generating functions) and a few examples that have some combinatorial
significance.

T. J6zefiak: A recursive formula for Hall-Littlewood funetions

In arecent article by P. Di Franeesco, C. Itzykson and J.-B. Zuber, Polynomial
averages in the Kontsevieh model, Commun. Math. Phys. 151 (1993), 193-219, the
authors proved Kontsevich's formula and Witten's eonjeeture in the interseetion
theory of the moduli spare of punetured eurves using a family of symmetrie
funetions whieh they introduced in the paper by the following formula:

fv(X) := 2k ( _1)lvlE TI xI' + x q TI Xi + Xj det(x~q),
1 p<q XI' - X q _eI Xi - Xj . p

p,qeI ieIC

where X = {xt, ... , Xn} is a set of variables, v is apartition of length k, k~f: n,
with distinet parts, lvi = E~=t Vi, and the summation is over all k-element subsets
J = {i t < ... < ik } of {1, ... ,n} with Je being the complementof J in {I, ... ,n}.
It is apparent that the authors were not aware that the funetions were, up to
sign, so-ealled Q-funetions defined at the beginning of the eentury by I. Schur in
conneetion with spin representations of symmetrie groups.
The aim of the talk was to bring up this relationship in the eontext of more general
Hall-Littlewood (H-L) symmetrie funetions by using Maedonald's definition of
H-L funetions and by deriving a reeursive formula for H-L funetions whieh is
equivalent to the original definition of D. E. Littlewood.

A. Kerber: Enumerative eombinatorics and the symmetrie groups

It was deseribed how the first 7-designs were {ound. Here they are:
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00111000101001 001100011010000100100000oo101101100010111100000001001001010000110111011001010111000

11000111010110110011,10010111101101111111010010011101000011111110110110101111001000100110101000111

Th;e corresponding Kramer-Mesner matrix can be found in the paper by Magli­
veras/Leavitt in Computational Group Theory (Atkins ed., Acad. Press 1984).
This matrix was 'evaluated along a subgroup ladder in Sn (implementation A.
Betten), and the 0-1-vectors were found using an implemeiltation of an improved
LLL-algorithm CA. Wassermann).

s. Kerov: Big Young diagrams and long interlacing sl1equences

Let W n denote any one ofYoung diagrams (Y. d.) with n boxes, which has largest
dimension (= the number of standard Y. tableaux), dimwn = maxdimA. It will

).eYn

be convenient to consider Y. d. aB a piecewise linear function, v = A(u).
Theorem (K. & Vershik, 1985)

r 1 (y'n) _ O( ) _ { ~(arcsin i + '1'4 - u2
) ,Iul ~ 2

n~~ v:;.wn u n - u -, lul , lul ~ 2.

A similar result holds for typical Y. d. with respect to Plancherel measure of Sn gi­
yen by Mn(A) = dim2 >../n!; A E Yn. Consider now a pair of interlacing sequences,
Xl < Yt < X2 < ... < Xd-l < Yd-l < Xd, say, the roots of orthogonal polynomials
Pd-t(Z), Pd(Z). It can be uniquely represented by a Y. d.-Iooking piecewise linear
function v = Wd(U) with derivative wd(u) = ±1, the minima points at XI, .. . , Xd

and the maxima at. Yl, ... ,Yd-l. Surprisingly, the limiting shape for Wd, under
mild assumptions, also exists and coincides with the same function O.

Theorem (K., 1993) D~note by c~, bn the coefficients of recurrence relation for
polynomials Pn (z) :

Pn+l(Z) + (bn - z)Pn(z) +C~Pn-l(Z) =o.
Assume that lim C

n
-l = 1 and lim bn -bn

-
1 = O. Then

Cn Cn

!im .!..wn(c"x +bn ) = O(x),x E IR.
n~oo Cn

The same shape arises in many other contexts, too. The fact is partially explained
by recent "free probability theory" by D. Voiculescu.
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A. S. Kleshchev: Branching rules for modular representations of sym­
metrie groups and their applications to representation theory, coho-
mologies, and problem of Mullineux .

Let K be a field of characteristie p > 0, En the symmetrie group on n letters,
n>. tbe irredueible KEn-module corresponding to a (p-regular) partition .,\ of n.
The main objeet of our interest is the restriction, D>'IEn _ 1 , of D>' to the natural
subgroup En- 1 < En. We obtain var~ous results about D>'IEn _l which ean be eon­
sidered as characteristie-free versions of the eiassieal Branehing Theorem. These
results turn out to be useful for many other problems.about symmetrie groups
beeause they provide a tool for using induction.
As one of the applieations we propose a eombinatorial algorithm for deseription
of the bijeetion b on the set of p-regular partitions of n defined from

n>. ® sgn ~ Db(>'),

where sgn is the 1-dimensional sign representation of En.

.K.Koike: A Hecke algebra of (Z/rZ) l 6 n and constrlietion of its
irredueible representations

In this talk, we define a "Hecke algebr"a" .9)n,r of Gn,r = (Z/rZ) l6n (the wreath
produet of (Z/rZ) with 6 n ) and show that this "Hecke algebra" has appropriate
properties aB deformation of the group algehra of Gn,r' Namely .9)n,r is a free
module over Ao = Z[q,q-l,Ul,U2,"';Ur ] of rank n!rn and for suitable values of
parameters n and r, .f)n,r are isomorphie to Iwahori Hecke algebras of type An
and Bn • All the irreducible representations of ~n,r are naturally parametrized
by r-tuples 0 = (0(1),0(2), ... , O(r) of Young diagrams of total size n and each
irreducible representation space of .9)n,r is realized on a vec;tor space spanned by
the standard Young tableaux 1["s of shape Q. We deseribe the above irredueible
representation by giving a set of representation matrices of the generators of .f)n,r,
whieh are the natural generalization of Young's seminormal forms. Also we give
explieit description of the center of .f)n,r' This work is a collaboration with Ariki
and appeared in Adv. in Math. Vol 106 (1994) 216-243.

eh. Krattenthaler: HYP and HYPQ ... Mathematica packages for hand...
ling hypergeometrie and basic hypergeometrie series

Hypergeometrie and basie hypergeometrie series (q-series) are of great importance
in areas like special functions theory, combinatorics, probability theory, represen-
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tation theory, computer science, physics. For combinatorics, probability theory,
and computer science this comes from the fact that (almost) all binomial sums
can be written aB' hypergeometric series, and (almost) &11 q-binomial sums can
be written as basic hyperg~metric series. For special functions, represent~tion

theory, physics this comes from the fact that many important special functions
and orthogonal polynomials are hypergeometric or basic hypergeometric series.
For a non-expert the problem about (basic) hypergeometrie series is two-fold:
Computations with (basic) hypergeometric series tend to be cumbersome, and
because of lack of comprehensive tables it is difficult to find identities that one
might need. My Mathematica packages HYP imd HYPQ make hypergeometrie
and basic hypergeometrie series accessible to the non-expert. They &11ow tbe
user to: (A) convert (q-)binomial sums into (b~ic) hypergeometrie notation,
(B) manipulate (basic) hypergeometrie expression, (C) findand apply applicable
transformation formulas, (D) find and apply applicable transformation formulas,
(E) apply contiguous relations, (F) do Jormallimits of (basic) hypergeometric­
expressions, (G) use Gosper's and Zeilberger's algoritbms, (H) transform (basic)
hypergeometrie expressions' into TEX-code, and provid~ the user with tbe largest
list of identities that is currently available in one spot. Tbe packages are available
by anonymous ftp at· pap.univie.ac.at (type cd matb, cd hyp.1lypq after baving
logged in). .

B. Leclerc: Kostka-Foulkes polynomials and crystal graphs of type An

Kostka-Foulkes polynomials are q-analogues of the weight multiplicities in the
irredueible sI(n, Cl-modules. They are defined by means of the expansi~n

s.\ =E K.\p(q)Pp(q)
p

where s.\ and Pp(q) are respectively the Schur and Hall-Littlewood funetions.
Kashiwara has attaebed to the irreducible Uq ( sIn)-module V.\ a crystal basis and a
erysta! graph G..\ deseribing tbe action of certain renormalized lowering operators
on tbe erystal basis.

The aim ofthe talk is to present a eombinatorialdescription ofthe K>.,,(q) in terms
of the geometry of tbe graph G.\. This leads to n - 1 variables refinements of the
q-multiplieities of the "reetangular" weights JJ = (kn

), which are the generating
fun~tions of Kostant generalized e~ponents for the sl(n, C) simple modules. (Joint
work with A. Laseoux and J.-Y. Thibon).
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s. Martin: The infinitesimal Schur algebras

One approach in studying the representation theory of G = GLn in characteri­
stic p is to look at representations of the 'thickened' group schemes GrT associa­
ted with the r'th Frobenius subgroup of G. A second approach is to exploit the
interplay between polynomial representations of G and rational representations
of the monoid M of matrices. This reduces matters to studying the classical
Schur algebras S(n, d). In joint work ~ith Doty and Nakano we try to study
the scheme MrD (D the diagonals in "M) and set up a polynomial representa­
tion theory of so-called infinite~imal Schur algebras, Sen, d)r. These a.lgebras,
constructed by truncation of the coordinate ring of M, have very interesting ho­
mological properties. Their character theory may be relevant to eomputing the
modular irreducible characters of G.

.~::--

M. Nazarov: Classical dual pairs and affine Hecke algebras d.

Let G be one of the classical groups GL(N), O(N), Sp(N) acting on the vector
space U = CN . The question how the n-th tensor power of the representation U
decomposes into irreducible summands amounts to studying the centralizer C(n)
in End (U)0n of tbe image of G. By tbe d"efinition of the algebra C (n) we have tbe
chain of subalgebras ·C(l) C C(2) C ... C C(n). There ia a canonical orthogonal
basis in every irreducible representation of the algebra C(n) associated to this
chain. For the group GL(N) the centralizer C(n) is generated by the action of
the symmetrie group Sen) in u~n. The action of Sen) in the canonical basis was
described by Alfred Young in 1931. The aim of the talk is to' describe the action'
of the other two centralizer algebras in the canonical basis. This description
implies formulas for the dimensions of irreducible representations of the other
two cla.ssical groups. An object larger than the group Sen) may be recognized
in the construction of Young. This is the affine degenerate Hecke algebra H e(n)
which originates from the representation theory of the group GL(n) over a p-adic
field. It will be explained in the talk what playa the role of He(n) for each of the
other two centralizer algebras.

s. Okada: Minor-summation formulas and their applications

In this talk, 1 will give several applications of the following minor summation
formula of Pfaffian. Let n be an even integer. For an 'arbitrary n x p matrix
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T = (ti,j)l:$i:$n,l:$j:$p and a p x p skew symmetrie matrix A = (ai,jh:$i,j:$p, we have

L Pf(ai.,ilh:5A:,I$ndet (tA:,i,h$A:,I:5n = Pf(TAtT),
l:$il < ...<in:Sp

where Pf B ia the Pfaffian of a skew-symmetric matrix B. As an application .of
this formula, we canprove the Littlewood's formula and their variations. Also we
can give the irredueible decompositions of some restrietions and tensor pro~ucts

for "rectangular-shaped representations" of classical groups.

K. Ono: Some partition theorems

In this lecture we diseuss new results regarding the arithmetic nature of various
standar~ p~tition functions. First we mention new results regarding the parity of
the ordinary partition function p(n). We show that p(n) is even infinitely often
in every arithmetic progression and p(n) is odd in an "arithmetic progression
provided that it is odd onee. We also present a proof ofthe t-eore partition
eonjecture if Ct(n) is the number' of t-eore partitions ofn, then we show for t 2:: 4
that Ct (n) > 0 for all n. This i~plies that for primes p ~ 5 every symmetrie group
and alternating group possesses at least one defeet 0 'p-bloek. We also consider
bp ( n), the number of p-regular partitions·of n. For every positive integer" k and
every prime p, we show that bp( n) == 0 mod pA: for almost all n. .

P. Paule: Algorithms for q-identities - recent progress

Reeent progress concerning tbe algoritbmic treatment of q-hypergeometrie sums
is discussed. Based on a "discrete" version of square-free-factorization, a. natu­
ral algebraic approach to a q-analogue of Gosper's algorithm ia presented. This
analogue led to an efficient Mathematica implementation of a q-analogue of Zeil­
b~rger's "fast" algorithm for definite q-hypergeometric summation. The applica­
tions include, for instance, a simple "four-Irne" computer proof of the celebrated
Rogers-Ramanujan identities, as weIl as several results obtained by qWZ duali-
zation. '

R. A. Proctor: A New Lie Theoretic Subject Contained Entirely in
the Category of Combinatorics?

Last year we combinatorialized some' special eases of same representation theoretic
basis results of Lakshmibai and Seshadri. (Their general work was re~ently used
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by Littelmann to completely solve the century-old tensor product problem for
"all" Lie algebras.) The central objects in this new combinatorial treatment are
certaiI?- posets which we call "d-complete". Aposet possesses an LS type basis if
and only if it is d-complete. We can classify all possible d-complete posets using
Dynkin diagrams. Our proofs of these results are entirely combinatorial. It now
appears that this class of posets may provide the answer to two pre-existing purely
combinatorial problems, as is described below. If th~ conjectures below can also
be proved using ooly combinatorial techniques, then it could be said that these
results comprise a mathematical ~ubject of the semisimpleLie kind whicb exists
entirely in the category of combinatorics. Consider tbe decomposition of aposet
P into a filter F and an ideal I. Fix a natural numbering of the elements of I.
Choose a natural ordering of the elements of F, a:nd successively "slide out"· the
empty locations of F according to Schützenberger. If the same result is obtained
for each ordering of F for all decompositions P into such an F and an I and all
extensions of I, we say that P is a jeu de taquin poset. The classification ofj~»:de.
taquin posets has been regarded by some as being intractable. Empirical evid~nce
indicates that all d-complete posets should be jeu de tacquin posets. In his thesis
Stanley defined a generating fu'nction U(P; x) for the p-partitions on aposet P.
He found a special farnily of posets for which U(P; x)'s ha4 a strikingly beautiful
form. Gansner (and Sagan) found another family of "hook length" posets around
1979. Empirical evidence indicates that all d-complete posets should be hook
length posets. .

B. Sagan: Coxeter subspace arrangements and characteristic polyno­
mials

Andrews Blass and I show how the characteristic polynomial of a Coxeter_~~ub­

space arrangement can be interpreted as an Ehrhart quasi-polynomial of an aBSo­
ciated polytope. This method can be used to show that such polynomials factor
partially over Z+ and ha.ve nonnegative coeflicients when expanded in a. suita­
ble basis for the polynomial ring. I will also mention several related topics: a
generalization of this idea to symmetrie functions, a new way to calculate and
combinatorially explain the Möbius function of an arbitrary lattice, and topolo­
gical considerations.

13

                                   
                                                                                                       ©



Th. Scharf: Non-commutative cyclic eharaeters

(joint work with B. Leelerc, J.-Y. Thibon (Paris)).

Fix n E N., c := exp(21ri/n) and 9 E Sn, an n-eycle. Denote by XC:) the
irredueible eomplex eharaeter of < 9 > defined by X(:)(g):= c". By a result of

Kraskiewiez and Weyman the Frobenius eharaeteristic lik ) of Ind~~> (X (:») ean
be deeomposed into ribbon Schur functions:

lik) = L rl
maj(I)5!~

modn

This suggests an analogue in the algebra of non-commutative symmetrie funetions
(NCSF) in the sense of [Gelfand/Krob/Laseoux/Leclerc/Thibon]:

Lik) = L RI •
maj(I)5k

modn

NCSF can be equipped with an internal product "*" which is an analogue of the
inner tensor product of representations [GKLLT].' Then

n-l

L(k) * L(l) = "" < lek) l(m-l) > L(m)
n n L.J n' n n •

m=O

We note two consequences:
(i) Ind~;>(X~k») ® Ind~;>(Xil») =L.< lilc

) , l~m-l) > Ind~;>(Xim»)
m

(ii) For any 1r E Sn with maj(1r) == m (mod n), the number of (0', T) E Sn X Sn
8.t. 7r = UT and maj(O') == I (mod n); maj(T) == k.

·R. Stanley: Graph colorings and symmetrie funetions

Given a finite graph G, define asymmetrie funetion

XG = L XI( tJl)'" XK(Vd)'

K:V-IP

8ummed over all proper colorings K, of the vertex set V = {VI,' .. ,Vd} of G with
positive integers. If we set Xl = Z2 = ... = Zn = 1, X n+l = X n+2 = ... = 0, then
we obtain XG(n), the ehromatic polynomial of G evaluated at n. Henee X G is a
natural generalization of XG.
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There are many interesting problems involved. with expanding XG in terms of vari­
aus bases for the ring of symmetrie funetions, in partieular the bases m>..,p>.., S>.., e>...
For instance, if G is the incomparability graph of aposet with no indueed subpo­
set isomorphie to 1., then it is eonjectured that the expansion of Xa in terms
of the elementary symmetrie funetions e>.. has nonnegative coefficients. Gasharov
has shown that Xa is at least Schur-positive. From this one can deduce, for in­
stance, that if Ci is the number of i-element chains in aposet P with not indueed
I. , then all zeros of the polynomial E c;xi are real.

J .. Stembridge: Enriched P-partitions

Enriched P-partitions are a generalization. to posets of the tableaux for which
Sehur's Q-functions are tbe generating functions. They bear the same relation­
ship to Q-functions as "ordinary" P-partitions bear to Schur S-fu~ctions. Mo­
reover, nearly every aspect of the theory of ordinary P-partitions has an enriched
counterpart. We plant to summarize the highlights of this theory, and discuss
same applications to reduced expressions in Coxeter groups, as weH as some open
problems.

V .. Strehl: Transforming Recurrences

There are several reasons (better understanding and circumventing inefficiencies
in the multisum Zeilberger algorithm, intriguing examples from eombinatorics,
special functions and number theory) to consider the following problem: given a
holonomic sequence a = (an)n~o, i. e. a sequence annihilated by a linear difference
operator G with polynomial coefficients, and a linear transformation P, what
can be said about operators H (order?, degree of coefficients?) annihilating the
transformed sequence Pa, the case H = P . G . p-l being of particular interest.
It turns out that in the case where P is of "Sheffer type", the transformatio:t;l
G ....... P . G . p-l has partieularly nie~ properties which ean be profitably used in
implementations.

A. Vershik: Vector partitions and limit shapes

The veetor partitions appeared in eombinatorial problems, geometry, number
theory. We will speak about new applieation of this and about the eonnexion
with statistical physics.
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D. Zeilberger FOaTA on ODe FOOT

Dominique Foata's great eontributions to eombinatories, sofar, were deseribed.
In partieular the Cartier-Foata eommutation monoid and the revolution that lead
to the combinatorial approach to special funetions.

Berichterstattung: C. Bessenrodt
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