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Numerical Methods for Singular Perturbations

22.~28.1.1995

The meeting was orga.nized by P. Hemker (Amsterdam), H.-G. Roos (Dresden)
and M. Stynes (Cork). Its topic, "NumeJ;ical methods for singular perturbati­
ons", had not previously been the subject of an Oberwolfach meeting. Yet m~y
.differential equations in the applied sciences - for example in fluid dynamics ­
are singularly perturbed and standard numerical methods often fall to provide
satisfactory solutions to such problems. In the last 25 years, many different
techniques have been developed to overcOme the shortcomings of the standard
methods. Despite the efforts made, our current knowledge ia not at the level
needed for effective application to practical problems such as nonlinear models
in several spare dimensions. Recent progress in the use of anisotropie and pie-­
cewise uniform grids, a deeper understanding of when fitted operator methods
can be applied., and new results on adaptive approaches for singularly perturbed
problems galva.nized the organizers into bringing together scientists from these
areas.
The aims of the meeting were:

1. The dissemination of information about current research and open questions
in the numerical and asymptotic analysis of singular perturbation problems;
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2.. The evaluation of "optimal" methods for the solution of such problems;

3. An examination of promising future research directions in this area.

In all, 30 lectures were given. They covered the key aspects in the discretization
and numerical analysis of singular perturbation problems. Most of the research
tools that are effective for these problems were addressed by participants at the
meeting; the variety of techniques represented meant that aim (1) above was
quite successfully achieved. For aims (2) and (3), it was very important that
the schedule left ample time for discussion both for long periode, during the day
and after lectures. This enabled individuals with different points of view ande\
di1ferent approaches to meet and profit from each other's experience. Tbe warm
and stimulating atm08phere of tbe Forschungsinstitut ia also a stimulating factor
in fostering such mixing. The week's workshop laid the foundation for several
future collaborationa between different groups and induviduals, which testifies to
the attainment of aims (2) and (3).
All participanta agreed enthusiastically that tbe workshop was extremely useful,
that contact between different groups should be maintained, and that when suf­
ficient further development of the area has taken place (in, say, three years) a
meeting with the same topic should if possible be organized.
The alphabetical list of contributions below can be divided under· the following
headings: Operator fitted uniformly convergent methods; anisotropie and piece­
wise uniform meshes; defect correction; stabilized finite element, finite volume
and finite difference methods; adaptive methods; methods for shock layers; nu­
merica1 methods for the Navier-Stokes equations at high Reynolds numbers.

Vortrags&uszüge

D. ADAM:

Nonconforming Uniformly Convergent Finite Element Methods for Singularly

Perturbed Elliptic Problems in Two Dimensions

A new analysis of a noncnforming Galerkin finite element method for solving
linear elliptic singularly perturbed boundary value problems on rectangular do­
mains ia given. In the case of ordinary boundary layers the method ia shown to
be convergent uniformly with respect to the perturbation parameter of order h1/ 2

in the energy norm. The trial functions are exponentials fitted to the differential
operator.
NumericaJ tests confum that the nonconforming method is numerically stable
and the order of convergence obtained ia optimal.
Besides this, the method yields satisfactory numerica1 results for the same kind
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of problems on L-shaped domains as well.

L. ANGERMANN:

APosteriori Errar Estimates for Singularly Perturbed Elliptie Problems

The lecture presents a formal extension of Babuäka&Rheinboldt'8 a.pproach to the
problem of aposteriori error estimation for singularly perturbed elliptie problems
which Me diseretized by means of an upwinded FEM. It ia shown that, for such
problems, there can be obtained uniform (w.r.t. the perturbation parameter)
errar estimates in a suitable chosen norm. Moreover, a. new method 10 simplify
tbe practical computation of the more complicated error indicators is proposed..

T. APEL:

LOcal Inequalities for Anisotropie Finite Elements

The elassicallocal interpolation error estimates (see e.g. [eiarIet '78]) were deri­
ved under an assumption which is in two dimensions known as Zlamal's minimal
angle condition. This condition was weakened by different authors ([Jamet '78],

. [Babuäka/Azis '76}, (Knick '89}) to a maximal angle condition. But the possible
advantage of using. mesh sizes with different asymptotics in different directions
which leads to small angles, was not extra.cted.
In tms presenta.tion, anisotropie interpolation error estimates in two and three
dimensions are given. Here, one derives benefit fr~m the different asymptotics
of the mesh sizes. Mo~ver, an anisotropie version of the inverse inequality is
presented.
Anisotropie meshes are already suecessfully applied to Poisson-like problems in
domains with.edges and to convection-diffusion problems where boundary layers
oceur.

o. AXELSON:

Uniformly Convergent Difference Methods of Arbitrary High Order for Singularly

Perturbed Convection Diifusion Problems

A general framework to construet difference methods for singularly perturbed
convection diffusion problems with diseretization error estimates of arbitrary high
order, which hold uniformly in the singular perturbation parameter, is presented.
The method is based on the use of a defeet-correction method and special, adap­
tively graded and patched meshes, with meshsizes varying between h and e/2h,
where h is the meshsize, used in the part of the domain where the solution is
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smooth, f ia the singular perturbation parameter and iJ/2h is the final meshaize
in the boundary layer.
Similar constructions hold for the interior layers. The correction operator ia a
monotone operator enabling tbe estimate of errors of optimal order in maximum
norm.

C. CANUTO:

Wavelet-Based Adaptive Methods for Advection-Diffusion Boundary Value

Problems

Functions which describe phenomena in science and engineering often exhibit a
structure, weIl localized both in physical spare and in frequency spare (or in
scale). Boundary layer problems and turbulence offer examples of such a be­
haviour. Classical bases are weIl localized in space (e.g. finite element bases)
or in frequency (e.g. Fowier hases), hut not in both spaces at tbe same time.
Recently developed bases, like wavelets and hierarchical f.e. bases combine both"
aspects. They allow an adaptive approximation of functions, in which negligable
components are discarded. This is the rationale for stating an adaptive discreti­
zation of pde's. "
We review tbe construction of (biorthogonal) wavelets, starting from the classical
Haar basis. Attention is paid to those aspects (Bernstein and Jackson inequali­
ties, decay of wavelet coefficients, local and global characterization of functional
spaces) which are not relevant to numerical analysis. Next, we consider a mo­
del advection-diffusion equation,. and we show how the upper-Ievel portion of
the approximate solution (in a hierarchical decomposition) can be used as an &­

posteriory error indicator. This justifies the wavelet analysis of the approximate
solution, in order to change adaptively the upper-Ievel complement to optimize
the error distribution. Two examples (lD and 2D) are given; in the 2D example,
the tensor product diadic grid used for wavelet analysis is simply superimposed
to the (Delaunay) grid used to represent the f.e. solution._

c. CLAVERO:

Uniform Convergence for One Dimensional Problems Dsing Shishkin'Mesh

In this communication we prove that classica1 schemes are uniformly convergent
where they are defined on special meshes of Shishkin type. We examine the
convection-diffusion and the reaction-diffusion problem. In each case we define
in appropriate form a piecewise uniform mesh which condensing the points of the
mesh in the boundary layers.
Also, we show some numerical results for the numerical integration for parabolic
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singularly pertubed problems. The method uses the altemating directions techni­
que and the previously finite difference schemes constructed on Shishkin'meshes
for ID problems. These examples show that the method is uniformly convergent
for this type of problems.

A. CRAIG:

A Class of Petrov-Galerkin Methode for the Stationary Convection-Diffusion

Equation

An upwinded· Petrov-Galerkin method is proposed which is applicable to the
n-dimensional convection-diffusion equation. The essential property of theme­
thod ia that it sets the ~-projectionof the error on element boundaries, into
a particular class of functions, to zero. This has the consequence &t prQ!lucing
nonoScillating approximations. The method is described and both asymptotic
and nonasymptotic analysis are presented. The standard Galerkin method and
tbe cell vertex finite valume method are seen to be limiting cases in the pure
diffusion and pure convection limits respectively.

J. DALiK:

.An Explicit Modified Method of Chara.cteristics for the Two-Dimensional

Convection-Diffusion Problem with Dominating Convection

I want to motivate and describe a basic mechanis~ of a certain combination
of the characteristics with the finite difference method for a numerical solution
of non-stationary twodimensional convection-diffusion problems withdominating
convection.
To each triangulation without obtuse angles, this method relates a stable appro­
ximate solution. Numerical experiments illustrate that this solution is disturbed .
by minimal amount of the artificial diffusion. I wish to point out some problems
which one has to solve on the road to an error-estimate.

P. A. FARRELL:

Uniformly ConvergentDifference Schemes for Semi and Quasilinear Singularly

Perturbed ode's

In this lecture results were presented which showed that standard difference sehe­
mes, with a fitting factor frozen in the neighbourhood of the boundary layer, on
a uniform mesh cannot convergence e-uniformly in tbe maximum norm to the
solution of tbe differential equation. Uniformly convergent schemes consisting of
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monotone finite difference schemes on piecewise uniform meshes, conde~sed in
the neighbourhood of the boundary layer(s), were presented for both semi and
quasilinear singularly perturbed ode's. Theoretical rates of uniform convergence
were given in hoth cases, and numerical results ~ere presented, which showed
that these were in practice conservative estimates.

A. FELGENHAUER:

Mixed Formulation Analysis of L-Spline Galerkin-Petrov F.E.M.

We consider a GALERKIN - PETROV finite element discretization of a singularly
perturbed twopoint boundary value problem on the real interval [0,1] proposed by
O'RIORDAN and STYNES. The method is determined by piecewise exponential
trial and test functions fitted to tbe convection-diffusion part of the differential
operator. In contrast 10 the standard finite element analysis we do not describe
the discretized problem by reduction of the variational equation to a finite di­
mensional subspace but by variationally formuIated side constraints. It will be
demonstrated, that abstract results from· the theory of mixed formulations are
applicable. This new analysis simplifies the proof of convergency, even in the case
of piecewise linear f.e.m., and enables a new approach of constructing exponential
fit ted finite element metbods adapted to singuIarly perturbed differential opera­
tors. Tbe application of this method to the twcrdimensional case is discussed.

J. E. FLAHERTY:

High-Order Finite Element Methods for Singularly-Perturbed Elliptic and
Parabolic Problems

We develop a framework for applying high-order finite element methods to singu­
larly-perturbed elliptic and parabolic differential systems that utilizes special
quadrature rules to confine spurious effects, such ~ excess diffusion and non­
physical oscillations, to boundary and interior layers. This approach is more sui­
ted for use with adaptive mesb-refinement and order-variation techniques than
other problem-dependent methods. Quadrature ruIes, developed for twcrpoint
convection-diffusion and reaction-diffusion problems, are used with finite element
software to salve examples involving ordinary and partial differential equations.
Numerical artifacts are confined to layers for al1 combinations of meshes; orders,
and singular perturbation parameters that were tested. Radau or Lobatto qua­
drature used with the finite element method to solve, respectively, convection­
and reaction-diffusion problems provide the benefits of the specialized quadrature
fonnulas and are simpler to implement.
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A. HEGARTY:

Central Differencing for Shishkin Meshes

It ia well-known that upwind finite difference operators on Shishkin meshes yield
e-uniformly convergent numerical solutions of linear elliptic singular perturba­
tion problems, wh~ e ia the small parameter; however, heretofore, it had been
considered that a non-monotone difference operator, such as central differencing,
which does not satisfy a maximum principle, would not be uniformly convergent.
In earlier paper, we had shown that, for a model parabolic layer problem, central
di1rerenclng produced a numerical solution which appeared to be uniformly COD­

vergent of order greater than one; in this case, tbe oscillation could be eliminated
by an apppropriate choice of the loca.tion of the transition from fine to oo&rf!le
meshes. In the regular layer case, it was shown that, for a model problem~which
satisfied° some compatibility conditions, the numerical solution again indltated"
uniform convergerice of order grea.ter then oue. Similar behaviour was observed
for a second problem, without such compatibility; nevertheless, in this situation,
f-dependence of the convergence of the linear solver was observed. Numerical
solutions for small values of f could only be obtained by using powerful iterative
salvers, BiCG-Stab(L), which are expansive in their use of 2L matrix products
per iteration.. Thus, the practicability 9f this approach needs further investiga­
tion.

w. HEINRICHS:

Defect Correction for Singular Perturbation Problems

A defect correction procedure with first order upwind preconditioning is applied
to high order finite difference (ß-schemes, narrow stencils) and spectra.l discretiza­
tions of singular perturbation problems. By Fourier analysis the preconditioning
properties and smoothing eft'ects are studied. For variable coefficient problems
ßow directed point iterations are proposed. The defect correction is used in a
multigrid frame for relaxation. This procedure is applied to tbe Boussinesq ßow
problem in vorticity-streamfunction formulation. Numerical results for increasing
Rayleigh numbers are presented.

D. HIETEL:

Cell-Orientated Scmidiscretizations for thc Numerica.l Solution of

Convection-Dominated Problems

Tbe method of lines applied to nonstationary partial differential equations usua.lly
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leads to stift' systems of ordinary differential equations. The cell-orientated semi­
discretization ia based on finite-volume-type approximation of conservation laws
by using cell and edge averages. The time dependent problem ia then a system
of differential-algebraic equations. We present tbe derivation of this method,
tbe stability and convergence properties. Numerica1 results for tbe convection-
diffusion problem and tbe lineanzed Shallow-Water equations sbow that this ~e-

thod ia well suited for convection dominated situations. Finally the metbod can
be interpreted as a PETROV-GALERKIN method which ia conforming in tbe one­
dimensional and nonconforming in tbe two-dimensional caBe. This motivates a
modificatioD of the trial and test functions which can be applied to triangulations a,
which should be studied by future work. .. -)

v. JOHN:

A Parallel and Adaptive Algorithm for tbe Stokes- and -Navier-Stokes-EquatioDs

We present a parallel and adaptive algorithm for soh,ing the Stokes and Navier­
Stokes equationa. The .linear, respectively linearized, equations are discretized
using the non-conforming Pt/Po element of Crouzeix/Raviart. A residuala po-

"sterl<?ri error estimator by Verfürtb is used for the adaptive mesh design. We
abtain expected results. But tbere ia still the open question in which norm the
error should be estimated. We demonstrate on some numerical tests with scalar
convection diffusion equations that tbe meshes and quality of solution using dif­
ferent a poateriori error estimators (for 11 . IINl and 11' ··llv) are sometimes rather
different.

J. LORENZ:

Boundary Conditions for Low - Mach - Number Flows

.We derive the model.system

wd (l~f \~f) w~ =v (~ ~) w~~ _

with w = [ : ~;: :~], where u and q describe velocity and pressure fluc­

tuations, respectively. Here E: is the M~ number and U > 0 is, the velocity of
a base ßow. Simple boundary conditions to be posed at artificial boundaries are
U + q = Uz - fUt = 0 at x = -L (inflow) and U - q =0 at x =L (outflow).
Tbe same principle can be applied to tbe simple advection-diffusion problem
U, + aU: = VUzz , a > o. Hone uses tbese boundary conditions for Burger's
equation Ut +tu.&z = vU:r:% by freezing u at outflow, one encounters difficulties if
u = 0 initially at outflow. A possibility is to switch from tbe outflow condition
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u~ = 0 to Ut + UU~ = 0 if u exceeds a threshold at x = L.

G. LUBE:

Resolution ofBoundary Layers with Anisotropie Finite Elements

Standard Galerkin finite element 8Olutions of tbe diffusion-advection-reaction pro­
blem may suffer ttom numerical instabilities which are generated by· dominant

. convection and / or reaction term.s unless the mesh is sufficiently refined. As a
remedy, we consider·astabilized Galerkin metbod (Galerkin/Least-squares FEM)
which ia in contrast to standard upwind type metbods consistent with the weak
formulation.
We extend the a-priori analysis for isotropie meshes to ani80tropically refined
meshes at least in boundary layers. As a result we find (nearly) uniformly valid
errar estimates. In detail we discuss the construetion of the layer mesh and the
design of the numerical dumping parameters.
We present some numerica1 results and consider the applicationof domain de­
composition method for such problems.

J. J. H. MILL.ER, E. O'RIORDAN, G. I. SHISHKIN:

On the Non-Existence of e-Uniform Fitte<! Operator Methods on Uniform Meshes

for the Singularly Perturbed Beat Equation

It has been shown that. it is not possible to an f-uniform fitted finite difference
method on a uniformrectangular mesh for singularly perturbed equations having
8Olutions conta.ining a parabolie boundary layer. This negative result is true even
in thesimplest case of the heat equation with a small coeffieient of conductivity.
On the other hand it is easy to construct a simple fit ted piecewise uniform mesh,
on which standard finite difference operators yield numerical methods that are
f-uniform for such problems.
The key steps in the proof of the non-existence result are discussed.

B.O'MALLEY, J. LAFORGUE:

Shock Layer Solution for ViscoUB Shoek Equations

An explicit solution to the steady Burgers' problem

fUz % = UU~, u(-l) = 1 T e~/t., 0< a< 1, u(l) = -1

- was provided, giving a shock at a - 1 or 1 - a.
An explicit solution to Burgers' problem
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Ut + UU: = EU::, u(±l, E) = =fl, t > 0, U(Z,O) decreasing, u(±I,O) = =fl
·was given via the Cole-Hopf transformation ~d the shock was shown to follow
the slowly moving asymptotic profile

(
X _ Xe(te-I / f»). . E (1 +tanh(-fcl U(S,O}ds})

tanh Wlth Xe[T) ~ 2log . 1 •

210 . . 1 - tanh(-fcl u(s,O}ds}

For the viscous shock problem

u.+(f(u»z = fUz : with f(u) < f( -I) = /(1) for lul < 1 and 1(1) < 0 < f~(-I),

boundary conditions u(±I, t, e) = =fl, anddecreasing initi~ value, the steady
state ia implicitly defined via

rp du'

'I =J f(v} - f(±1}
o

where cp('1) ~ ={=I ± L±e-A'J:'1oof] ± 00, where A± =±fl(±I) > 0 and L± > 0 are
known. After shock forms, the limiting solution is given by

(
1 1 )-1

for 'T = te-Ale and A = 2 - +- .
A+ A_

Here, Xe satisfies the initial value problem for

~< = c { e-(z.(..)~z.(oo))A-/< _ e(z.(..)';'z.(oo))A+/<}

for sorne c > 0 and the stable steady-state Xc(oo) ~ ~+~~:. Numerica1 aspeets
are being studied with Mare Garkey (Lyon I).

E. O'RIORDAN, J. J. H. MILLER, G. I. SHISHKIN :

Central Ideas for the Proofof an f-uniform Convergence of a Shishkin Mesh

In asingularly perturbed problem in two-dimensions on a rectangle where the
solution contains only regular layers, it ia known that a monotone finite difference
operator and a piecewise-unifonn Shishkin mesh yield an f-uniformly convergent
~te difference method. The proof of tms result and other more general results
has been given by Shishkin several years ago. Here, we outline the key ideas that
might be helpful to a reader of the full proofs..
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u. RISCH:

Global and Local Error Estimates for an Upwind Finite Volume Discretization

of Singularly Perturbed Equations

We consider the equation -f~U + b(z)Vu + c(z)u = fez) in n c R'J witb
o< f<: 1. Tbe finite volume discretization is based on cells constructed as dual
polygons for an (in geJ;leral non-uniform) triangular mesh. For a class of upwind
metbods tbe error in an energetic (or maximum, resp.) norm ia estimated by
cv'hllul12

t
2t O (or cv'hlluI12 t CO tO' resp.) with Cindependent of E•

. Furtbermore, in subdomains outside boundary layers and additional numerical
layers, the factors lIull... an be omitted. The thickness of numerical boundary
layers ia asymptotically O(h) at ordinary layers and O(v'h) at parabolic ones.

R. SACCO:

Divergence Free Exponentially Fitted Finite Elements for Conveetion-Diffusion
Problems

We deal with a new nonconforming finite element method for tbe numerical s0­

lution of convection-diffusion equations with a dolninating convective term. In
tbe applications that we keep in mind, attention is paid to thestudy of current
continuity equations arising in the Drift-diffusion model for semiconductor devi­
ces. The proposed finite element approach extends to the 2D problem in the case
of triangular decompositions the well-known Scharfetter-Gummel exponentially
fitted scheme by a proper choice of the trial functions for approximating the UD­

known u(~).

This latter turns out to be nonconforming over the whole domain n and ~ves rise
to divergence-free current fieldsl(u) = fY:U - uf!.. over each element of the trian­
gulation. Tbe test functions Are piecewise linear continuous over 0. Tbe resulting
method is therefore a noncanforming Petrov-Galerkin finite element scheme. The
basic properties of the novel trial fun~tions are illustrated and the performance
of the P-G metbod are tested on several classical model problems of convection­
dominated flows.

F. SCHIEWECK:

On the Numerical Solution of the Navier-Stokes Equations for High Reynolds
Numbers

We study tbe discretization errar for an upwind finite element approximation
of the stationary incompressible Navier-Stokes equations in the case of high
Reynolds numbers. Since tbe existing theory does not cover this case we do
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sorne "experimental" convergence analysis for numerical test problems to get
first answers at al1. It turns out that the interpolation error of the pressure may
cause an O(Re)-error in the velocity. This effect can be removed for a certain
range of Reynolds numbers by means of a pressU!e separation.

v. SHAIDUROW, A. THIELE, L. TOBISKA

Fitted Quadrature Rules in the Finite Element Method for Singularly Perturbed

Problems

Standard finite element methods for 80lving convection dominated convection­
diffusion problems results in instabilities unless tbe mesh is very fine. Therefore,
several modifications have been developed in the literature to overcome this dif­
ficulty and to stabilize the schemes. Some of the most used modifications are
the different upwind techniques, tbe streamline diffusion or Galerkin least square
metbod, tbe exponentially fitted techniques and the coDstructioD of special grids.

We present 30 new approach for stabilizing convection-diffusion problems of the
form

-eAu+ div (00) = f in {l, u =0 on r,
where e is supposed to be a smaU parameter'- The main idea of tbe new techni­
que consists of using a special integration rule on each finite element with weights
depending on the streamline direction and the mesh Peclet number', thus it can
be easily implemented in existing computer progtams. First, we· apply this idea
to tbe one-dimensional case when .standard piecewise linear trial and test func­
tions are used on a uniform grid with mesh-size h~ It is proved tbat the solution
uh of the quadrature-modified scheme converges, uniformly with respect to e, to
the exact solution u of first order in the grid nodes. Then the tW<rdimensional
case with an exponential boundary layer is considered. The quadrature-fitted
technique results in a five-point scheme with an M-matrix. Finally, we give two
numerical illustrations in two-dimensional case which confirm theoretical coDsi­
derations.

G. I. SHISHKIN:

Grid Approximation of the Solution and Diffusion Flux for Singularly Perturbed

Equations with Neumann Boundary Condition

. Neumann boundary value problems for singularly perturbed parabolic equations
are considered on a segment and on a rectangle. The second order derivatives of
differential equations contain a small parameter f2 which can take auy value in
the interval (0,1]. For the zero value of th~ parameter, the parabolic equation is
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reduced to a first order (with respect to the time variable) one. On the boundary
the normalized diffusion flux (that is the product of the solution gradient and
the parameter e) orthogonal to the boundary is given. It is required to find the
solution and the normalized diffusion f1uxes.
As it is weIl known, the solution of classical finite difference schemes on uniform
grids does not converge e-uniformly. Moreover, we show that, when the para­
meter tends to zero, the approximate solution a.nd the error can unboundedly
increase for some schemes, or the error can tend even to the exact solution for
other schemes.
For the boundary value problems under consideration special finite difference
schemes are constructed. These schemes allow to approximate the solution and
the normalized diffusion f1uxes e-uniformly. The method of special condensing"
grids ia applied to construct the schemes and to study their convergence.

G. STRAUBER:

Numerical Methods for Pollutant Transport in Rivers with dead Zones

We numerical1y investigated the following dead-zone model descrihing the trans­
port of pollution in rivers (or in soil):

8CI(:,t) + v8CI(:tt) _ D82CI$,t)
8t 8: 8

8C2(:,t)
8t

*(C~(X,t) - Cl(X, t» - kCt(X, t)

;;(Cl(X, t) - C2(X, t» ....: kC2(X, t)
(1)

(0 :$; x ~ L, t ~ 0) where L > 1 (say L = 105 m) that ia :i <: 1.

Several difference schemes - among them two new modified box schemes - ap­
proximating system (1) were investigated and their a.ccuracy and sta~ility and
monotonicity conditioDS were compared to each other. The modified "box schemes
proved to be more accurate for practical1y used steplengths than classical schemes.

L. TOBISKA:

Stabilized Finite Element Methods for the Navier-Stokes Equations

A robust Navier-Stokes solver for higher Reynolds numbers seems to require (at
least) two ingredients:

1. Astahle discretization method allowing one to measure the error in a suita­
ble norm in terms of the approximation error with a multiplicative constant
which is (almost) independent of the Reynolds number.

2. A meshrefinement strategy to adapt the mesh to the singular behaviour of
the solution in local regions as for instance near interna! or boundary layers.
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The paper gives an overview of different techniques for stabilizing finite element
methods for solving scalar convection-diffusion problems, the linearized and COID­

plete Navier-Stokes equations. Thereby the main features' of upwind type and
streamline-diffusion type methods will be clarified.

z. UZELAC:

Some Spline Difference ScheIDe for Solving Singularly Perturbed Problems

For the non-turning point case of problem

Ley(x) == fY"(Z)+p(x)y'(z)-q(z)y(z) = f(z) , x E (0,1), y(O) =0:0, y(I) = Ql

f is a small parameter, p(z) :F 0, g(x) ~ 0, we derive a fami1l of difference
schemes on uniform meshes. As a collocation equation we use: Lu(z) == fUIl +
fiü' - qu' = i, where p, q and i are piecewise constant approximations of the
coefficients p(x),q(x} and f(x). As an application function we use an exponential
spline e(z) E span {I, z, e-Pi%, ePiZ

}, Pi are tension parameters, e(z) = ei(x) =
Uj + mjh + ~(cosh JJj - .1) + ;;(sinh JJj - JJj). Free parameters JJj, Gj and bj we

find from conditions: e(z) E C1[0, 1] and telex) = i for % = Xi and x = %i+1.

Defining pj in a way that a scheme is exact for solutions of Lu(x) = 0 and
choosing Pi = ~(p(Xj) + P(Xj+l)), qj and h in the same way, we generate EI
Mistikawy Werle scheme (EMW) choosing Pi = P(Xj+l/2), qj and jj in the same
way we derive a scheme we call it IEMW scheme. Both schemes are second order
uniform and have classical accuracy. We derive a new one in the following way:

4(1 - ß) IEMW - ßEMW, where ß = { 1~2 for h :5 t:

for f< h .

We proved that this combination leads to the scheme which ia 0 (h4 /(t:2 + h2 »).

R. VULANOVIC:

Exploiting Monotonicity in Numerical Methods for Singular Perturbation

Problems

Singular perturbation problems whose solutions are monotone and have inte­
rior ahocks are solved by interchanging the independent and dependent varia.bles
and using equidistant finitc-difference schemes. Examples illustrate that this ap­
proach can locate the shock accurately, which is not the case with the standard
methods.

14

                                   
                                                                                                       ©



G. ZHOU:

How Accurate ia the Streamline Diffusion Finite Elemnet Metbod?

Since the streamline diffusion finite element method was proposed, va.rious COD­

vergence results have been given. On usual quasi-uniform mesbes, tbe pointwise
accuracy was proved by Johnson et al to O(h5

/
4

), which was later improved by
Niijima to O(hll/ 8 )! By orienting tbe mesb in the streamline direction and impo­
sing a uniformity conditioD on tbe mesh, this result has been improved. again by
Zbou and Rannacher to its optimal order of O(h2

). In this paper, we investigate
the actual accuracy of the streamline diffusion finite element method. A special
structured mesh has been analyzed for showing that the convergence order in
the L2 norm changes from O(h2/ 3 ) to O(h2 ) depending on some mesb parameter.
And the pointwise error is bounded to O(h3/ 2). Numerical tests verify the analy­
sis and show that the convergence order of O(h3

/
2

) cannot be improved without
any mesh condition. Same open questions are raised for discussions. --";~:~.

Berichterstatter: H.-G. Roos
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