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Tagungsbericht 6/1995

Algebraie and Geometrie Combinatorics

5. - 12. 2. 1995

The topic for this workshop (organized by Anders Björner, Stockholm, Gil
Kalai, Jerusalem, and Günter M. Ziegler, Berlin) was the increasingly active
area of contact between algebraic combinatorics and geometry/topology. The
fertile interaction in recent years has led to much progress and new points of
view 1 and an increasing number of mathematicians from both sides are now
working in this border territory. The meeting brought together a young and
enthusiastic group of participants. The overall feeling expressed to the organiz­
ers was that the chosen topic is relevant and well-focused (despite the diverse
mathematical backgrounds of the participants) and inspiring for future work.
The level of interaction was high.

The program consisted of two on~hour lectures each morning (some of them
invited in advance) and four half-hour talks mainly in the late afternoon. There
were spontaneously organized informal sessions on the following topics: Integer
programming, Triangulations, Aigebraic shifting, Arrangements of hyperplanes,
and Ornaments (Vassiliev-type invariants). Informal discussions were intensive
during the afternoons and evenings, and much progress on several projects was
made during the meeting.

The excitement and value of the workshop was heightened by the presentation
of several recent major breakthroughs (presented here for the first time), such
as J. Richter-Gebert 's work on 4-dimensional polytopes settling in a unified way
a whole host of classical problems in that area, the construction of nonshellable
fans of convex cones by P. Mani and N. Mnev as a byproduct of work on
smoothing of manifolds, the work of T. Braden and R. MacPherson that proves
the long-standing monotonicity conjecture for Kazhdan-Lusztig polynomials of
Weyl groups and makes progress on a conjecture of Kalai on g-polynomials
of polytopes, G. Rybnikov's counterexample to Orlik's conjecture on complex
hyperplane arrangements, and J. Rambau's counterexample to the generalized
Baues conjecture.

The organizers are grateful to the Oberwolfach Institute and its Förderverein for
presenting the opportunity and the resources to arrange this successful meeting.
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VORTRAGSAUSZÜGE

HELENE BARCELD:
Lattice of parabolic subgroups associated with Coxeter arrangements

Let L be the lattiee eonsisting of all intersections of hyperplanes in the ar­
rangement associated with a finite real reflection group W. We show that L
is isomorphie to the lattiee L' eonsisting of all parabolic subgroups of the re­
fleetion group. This isomorphism is used to determine all W for whieh L is
supersolvable. Also when' W is irreducible and neither of type An nor Bn we
used it to show that the only modular elements are Ö, i, and the atoms of L.
Let pw(t) be the eharacteristic polynomial of L. To every element X of L there
corresponds a parabolie subgroup of W denoted Gal(X). As a third applieation
of our isomorphism between Land L' we show that if W is irred ucible then an
element X of L is modular if and only if PGal(X)(t) divides pw(t).

There is a weil known combinatorial proeedure for the generationof all oon­
broken cireuit bases (NBC bases) of a supersolvable lattice. If the NBC bas~

of a geometrie lattice can be obtained by this procedure, we say that the NBC
bases are "obtainable by hands." We show that L is supersolvable if and only
if all the NBC bases of L are obtainable by hands.
(This is joint work with E. Ihrig.)

TOM BRADEN:
Intersection homology and polytopes - recent progress

There are (at least) two instanees of polynomials of eombinatorial interest whose
coefficients are Betti numbers of even-dimensional loeal interseetion homology
groups I H2i(B::;) for a small ball around a point x in a stratified singular alge­
braie variety X. These are the g-polynomials of rational polytapes, where X is
a torie variety, and Kazhdan-Lusztig polynomials P::;,y in Weyl groups, where
X is a Sehubert variety.
Moving the point x from a larger to a smaller stratum produees maps between
these groups: if x t y lie in strata Sx, Sy with S:z; C Sy, then the pieture

gives induced maps I H.(By ) ~ I H.(Bx )'

Theorem. If X satisfies the following property, then these maps are always
injective: each stratum S has a topological tubular neighborhaod Ns ~ S x y
which is an open algebraic subvariety of X.
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Both torie varieties and Sehubert varieties satisfy this eondition, so we get the
corollaries:

1. If g(P) is the g-polynomial of a rational polytope P, and F is a face,
then g(P) ~ g(F) coefficient by coeffieient. (This is a weaker version of a
eonjecture of G. Kalai, that g(P) ~ g(F)g(lkpF).)

2. If x, y, z are in a Weyl group W, and satisfy x < y < z in the Bruhat
order, then Px,z ~ Py,z eoefficient by coeflicient.

CLARA CHAN:
Cubical polytopes, cubated spheres

It is weil known that the f-vectors of simplicial polytopes are completely char­
acterized in terms of their h-vectors, by McMullen 's g-theorem.
Much less is known about the f-vector8 of cubical polytopes (= polytope;~hose
proper faces are an combinatorial eubes). We present work toward finding the
convex huH of this set of f-veetors, which i8 an analog of McMullen-Walkup's
Generalized Lower Bound Conjecture for cubieal polytopes. Using a mirr~ring

construction on eyclic polytopes, we show that the convex hull of f-vectQrs of
PL eubated spheres eontains "Adin 's g-eone," Le., the cone of vectorssatisfying
gC ~ 0 where gC corresponds to Ron Adin 's ~~eubical h-veetor."
(Joint work with Erie Babson and Louis J. Billera, Cornell Univ.)

JESUS ANTONIO DE LOERA:
A triangulation with few neighbors

Let A = {al, a2 . .. , an} ~ IRd be a configuration of points such' that
dirn (conv(A» = d. It is weil known that any coherent triangulation_ of A
(in the sense of Gel'fand-Kapranov-Zelevinsky) has at least n - d - 1 neighbors
under bistellar moves. Here we presented the following eontrasting result:
"There exists a non-eoherent triangulation of a configuration in rn.3 with 13
points with only 6 bistellar neighbors."
We showed a model of this.

ART DUVAL:
Iterated homology of simplicial complexes

We use the exterior face ring of a simplicial eomplex to develop an iterated
homology theory for simplicial eomplexes. Let ~ be a simplicial eomplex of
dimension d - 1. For each r = 0, ... ,d, we define rth iterated homology groups
0/ ß, the r = 0 ease eorresponding to ordinary homology, and the r = 1 case
corresponding to the homology of ß' if ß is a eone over ß'. Ir a simplicial com­
plex is shellable (in the generalized nonpure sense of Björner and Wachs), then
its iterated Betti numbers (veetor-space dimensions of the iterated homology
groups over a field) give the restriction numbers hij of the shelling. Iterated
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Conj. A:
Conj. B:

Betti numbers are preserved by Kalai's algebraic shifting, and may be inter­
preted combinatorially in terms of the algebraically shifted complex in several
ways.
(This is joint work with Lauren Rose.)

JÜRGEN ECKHOFF:
f-vectors of colored complexes and clique complexes

The clique vector of a finite graph Gis the sequence C(G) = (C1 , ••• ,Cr ),

where Ck = Ck(G) is the number of k-cliques of G and r = r(G) is the clique
number of G. It seems to be very difficult to describe the set of integer vectors
which occur as clique vectors of graphs. We propose two conjectures:

Ck+l ~ 8k/k+1(Ck), k = 1, ... , r - 1.
For each graph G having clique number r, there exists
an r-partite graph H with c(H) = c(G).

The "pseudopowers" 8k/k+1 in Conj. A were introduced in a paper by Frankl,
Füredi & Kalai [Math. Scand. 63 (1988), 169-178] where an analogous state­
ment was proved for the f-vectors of r-colorable complexes (providing a COffi­

plete characterization of such vectors). Notice that the C-vector of a graph
is the f-vector of its clique complex (shifted by one). While Conj. Bis, so
far, supported by numerical evidence only, Conj. A has been established in a
number of special cases.

MICHAEL FALK:
An application of shellability to generalized hypergeometrie functions

By a theorem of Esnault-Sehechtman-Varchenko, the set of germs of generalized
hypergeometric functions at an arrangement A can be identified in part using
the Orlik-Solomon algebra of A. Yuzvinsky used sheaf theory on finite topo­
logical spaces to establish an isomorphism of this space with the cohomology
of the order complex of A, at which stage powerful combinatorial tools, Iike
shelling, can be used. In this talk we will give some background for these ideas,
some fundamental results, and an outline of the procedure used to construct
bases for the loeal system cohomology referred to above. In addition, we hope
to state precisely the main theorem of arecent joint paper with H. Terao.

SERGEY FOMIN:
Piecewi;;e-linear maps, total positivity, and pseudoline arrangements

The talk is devoted to two problems that turn out to be closely related to each
other:

1. study the piecewise-linear maps related to Lusztig's canonical basis in the
quantized enveloping algebra of the Lie algebra of the group of unipotent
upper-triangular matrices (u.u.m.);
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2. study the variety of totally positive u.u.m.

The relation between these two problems was recently discovered by G. Lusztig.
(At the moment, we only consider the An case.)
Main results (general description):

1. explicit closed formulas for these piecewise-Iinear maps that avoid the
iteration process from their original definition;

2. formulas for decompositions of a unipotent upper-triangular matrix into
a product of elementary Jacobi matrices.

The main method is a combinatorial Ansatz based on a representa.tion of re­
d uced words by pseudoline arrangements.
(This is joint work with A. Zelevinsky and A. Berenstein.)

JACOB E. GOODMAN:
Some combinatorial questions for convex sets on affine Grassm~nians

We discuss three unsolved problems growing out of the convexity strueture of
the affine Grassmanian G~,d of k-flats at finite distance in IRd introduced~in [1].

1. How many convex point sets are needed to give a "minimal; irredundant
presentation" of a set of n k-flats in general position in rn.d as the set of a11
of their commom k-transversals? (In [lJ, it is shown that 2(d-l)(n-d)+2d

suffiee in the special case k = d - 1; for exarnple, any n lines in the plane,
no two parallel, ean be rninimally and irredundantly presented by 2n line
segments.)

2. It is proved in [1] that G~ 3' the space of lines in IR3 , ean be partitioned
into three non-empty con~ex sets, but not into two. More generaliy, the
smallest n > 1 for whieh Gi..dhas a partition into n convex sets is no

more than (d;; I) + 1 and - if the sets are closed under parallels - at
least d - k + 1. What is the eorreet value of nasa function of k and d?

3. In [2] we establish the first known polynomial upper bound for the number
of "geometrie permutations'" induced on k-flat transversals by a suitably
separated family of n eompact eonvex sets in lRd : O(nk(k+l)(d-k)), if k aod
d are fixed. Much better bounds are known in the special case k = d --1:
O(nd- 1). Can our upper bound be redueed in the general case, perhaps
to O(n(k+l)(d-k)-l)?

[1] J. E. Goodman and R. Pollack, Foundations of a theory of convexity on
affine Grassmann manifolds, Mathematika, to appear.

[2] J. E. Goodan, R. Pollack, and R. Wenger, Bounding the number of geometrie
permutations indueed by k-transversals, preprint.
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TAKAYUKI HIBI:
Ehrbart polynomials of convex polytopes

Let P C IRN be an integral convex polytope of dimension d. Given an integer
n ~ 1, set nP := {na: Q' E P} and define i(P, n) := #(nP n lhn

). Ehrhart
proved that i(P, n) is a polynomial in n of degree d with i(P,O) = 1. We define
the sequenee bo, b., b2, ... by

Then bi =" 0 for every i > d. We say that b(P) :== (<50 , <51, .•. , Öd) is the <5-vector
of P. We study what can be said about the Ö-vector of an integral eonvex
polytope P by using algebraic techniques for Cohen-Macaulay rings.

MONIQUE LAURENT:
The geometry of the set of positive semidefinite matrices with diag­
onal entries

We consider the convex set cn eonsisting of the positive semidefinite symmetrie
n x n matrices whose diagonal entries are all equal to one. cn is ealled an
elliptope and its elements are known as the correlation matriees. One motivation
for the study ofcn comes from combinatorial optimization. Indeed, thematriees
xxT for x E {±l}n clearly belong to cn; they eorrespond to the cuts of the
complete graph ](n and for this reason are called the cut matrices. Hence by
optimizing a linear objective function on f n one obtains an upper bound for the
max-cu t problem. This upper bound can be computed in polynomial time and
a nice recent result of Goemans and Williamson shows that the upper bound is
within 13% of the optimum cut.
Another motivation for the study of f n comes from the following problem in
linear algebra: Given a partial symmetric matrix (Le., whose entries are speci- .
fied only on e su bset E) decide whether the unspecified entries ean be chosen so .
as to obtain a positive semidefinite matrix. Let G denote the graph on n nodes
with edge set E. An obvious necessary condition for a partial matrix to be
completable to a psd matrix is that every principal subdeterminant consisting
of specified entries be non negative. This condition is also sufficient if and only
if the graph G is chordal (result by Grone et al.). Other necessary conditions
were given by Barrett et al.; they are sufficient for the graphs with no ](4 minor.
The convex set f n is, in fact, closely related to the convex body T H(G) whieh
was introduced by GrätscheI, Lovasz and Schrijver as a positive semidefinite
relaxation for the stable set problem.
The following facts are known about the Jacial structure of t:n : It has vertices
(namely, the cut matrices). The possible dimension of its faces are known; they
form a lacunary interval. The highest possible dimension for a polyhedral face
is the largest integer k such that (k~l) ~ n.
(Joint work with S. Poljak)
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NATI LINIAL:
On the geometry of graphs

The basic idea in this study is to gain information about graphs by viewing
them as geometrie objects. Similar ideas can be fouod in the literature, where
geometry models the graph in one of two ways:
(1) Represent the topological properties of the g~aphs (e.g. planarity, embed­
ding to other 2-dim. manifolds etc.)
(2) Represent the adjacency/nonadjacency relationship among vertices (e.g.
Koebe-Andreev-Thurston Thm., Lovasz and then Goemans-Williamson and
Karger-Motwani-Sudan embed graphs on the unit sphere so that adjacent
vertices get mapped to remote points, Linial-Lovasz-Wigderson characterized
graph connectivity through "convex embedding" in Euclidean space etc.).
Here we attempt to model correct1y the metric of the graph. While isometrie
embeddings of graphs were already looked at previously, we consider ~. ~ore

relaxed notion where distances are allowed to be distorted to some ei~ent.

Specific results are: Characterization of the least distortion with which a> given
graph can be embedded in 12 (always O(log n) by a result of Bourgain), and
efficient algorithms to find such embeddings. Similarly for embedding in other
lp spaces. Another set of results has to do with graphs whose embeddings are
better than the warst case. Such graphs have small balanced separators; 0 they
have good low-diameter decompositions (in the sense of Linial-Saks) and good
low-diameter covers (a 130 Awerbuch-PeIeg). Finally the gap between max-flow
and min-cut in multicommodity flow can be interpreted within our framework
and can be shown to be o (log k), where k is the number of source-sink pairs.
Many open problems remain in this area.
An early version of this work appeared in FOCS'94. An updated version can
be obtained via e-mail fromnati<Dcs.huji.ac.il

PETER MANI-LEVITSKA:
Convex polytopes and smooth manifolds

We know that every (compact) differentiable manifold can be triangulated.
In the opposite direction, several efforts have been made to understand the
obstructions for imposing a smooth structure on a piecewise linear manifold.
We have been thinking about this problem in the framework of J. Munkres'
smoothing theory, and came up with the following answer: Let M be a compact
topological manifold, and T = (C, f) a triangulation of M. M has a smooth
atlas if, and only if, for every vertex v of C, there exists a convex polytope Pv

and a simplicial isomorphism <Pv : link(v, C) ~ 8Pv•

Among the corollaries are two negative answers to fairly old problems:

• There exist nonshellable fans.

• There exist simplicial complexes At B with UA = UB such that one
cannot find a coroman multiple stellar subdivision.

Many other questions, however, are still open.
(This is joint work with Nikolai Mnev.)
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Juli MATOUSEK:
Combinatorial bounds far discrepancy

Recently, it has been shown that tight or almost tight upper bounds for the
discrepancy of many geometrically defined set systems can be derived from
simple combinatorial parameters of these set systems. Namely, if the primal
shatter function of a set system 'R on an n-point set X is bounded by const.md

,

then IR.I == Q(nl/2-1/2d) (whieh is known to be tight), and if the dual shatter
function is bounded by const.md , then IRI == O(nl/2-1/2dy1og n). We prove
that for d == 2,3, the latter bound also cannot be improved in general. We also
show that bounds on the shatter functions alone do not imply the average (Lt)
discrepancy to be much smaller than the maximum discrepancy; this contrasts
results of Beck and ehen for certain geometrie cases. In the proof we give a
construction of a certain asymptotically extremal bipartite graph, which may
be of independent interest.

PETER MCMULLEN:
Tensor weights· and polytope algebras

The universal abelian group for valuations on polytopes is the polytope (or
Minkowski) ring ll; Minkowski addition induces a multiplication on n. It is
known (Pukhlikov & Khovanskii) that the quotients of n by powers of the ideal
corresponding to translations are (essentially) graded algebras. They have fam­
ilies of separating functions taking tensor values - basically, volume, moment
vector, inertia tensor, and so on, on faces of polytopes.
This suggests developing an independent algebra of tensor valued weights on
polytopes. These are governed by the Minkowski connexions - analogous of
the Minkowski relations for scalar valued weights - on each face of a polytope.
With a multiplication geometrically induced by Minkowski addition, a graded
algebra results. Ir P is a simple polytope, the corresponding algebra n(p) is
(almost certainly) isomorphie to the face ring of the dual polytope P* - the
Hilbert functions are the same.

ALEXANDER B. MERKOV:
Finite-order invariants of ornaments

An ornament is a collection of plane curves no three of which intersect at the
same point. The homotopy dassification of ornaments is a model example of
a wide dass of similar problems about submanifolds with restrictions on their
singularities and mutual disposition. We investigate the finite-order invariants
of ornaments generalizing Vassiliev invariants of knots and links. This prob­
lem leads naturally to the homological and combinatorial study of generalized
"k-equal manifolds," connected multigraphs, and configuration spaces. On the
other hand, the invariants guessed by means of homological calculations allow
very classical and elementary descriptions.

8
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RICKY POLLACK:
Complexity aod algorithms in real algebraic geometry - recent
progress

Theorem 1. (Quantifier Elimination)
Given areal closed field R, a .family P == {Pt, . .. , Ps} of 5 polynomials in k + l
variables, Xl, ... , Xk, Yt , ••. , Yl with coefficients in DeR that have degree at
most d, and a first-or~er formula

where Qi E {V',3}, Qi =F Qi+t, Y = (YI , ... , Yl ) is a block of i free variables,
Xl11 is a block of ki variables, EI<i<w ki == k , and F(Pl' ... ' Ps) is a quantifier­
free Boolean formula with atomic predicates of the form

1 ~ i ~ 5,

r

where u E {> t <, ==}, there exists an equivalent quantifier-free formula,

I J,

\II(Y) == V1\ (Fij(Y) iij 0),
i=lj=l

where Pij (Y) are polynomials in the variables Y, iij E {>, <, ==}

I ~ s(l+l)n .. (ki +l)d(l+l)n i O(kd ,

Ji ::; sn,(k,+l)dn,O(kd,'

and the degrees of the polynomials Pij(Y) are· bou~ded by dn,o(~e). Mc>xeover,
there is an algorithm to compute \II(Y) using .

s( l+ 1)O( k, +1)d( l+ I )no( ki )

arithmetic operations in D.

Theorem 2.
Suppose Q, PI, .. . , Ps E R[Xi, ... , Xk] have degrees ~ d and the variety V ==
{x E RkIQ(x) == O} has dimension k', then the number of cells (connected
components of realizable (over V)'sign conditions of PI,.'. Ps) is boundedby

(This is joint work with S. Basu and M.-F. Roy.)
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JÖRG RAMBAU:
A counterexample to the "Generalized Baues Conjecture"

Associated with every projection of polytopes 'Ir : P ~ 'Ir(P) one has a partially
.ordered set of aB "locally coherent strings" in P: the families of proper faces
of P that project to valid subdivisions of n(p), partially ordered by the natural
inclusion relation.
The "Generalized Baues Conjecture" posed by Billera, Kapranov & Sturmfels
asked whether this partially ordered set always has the homotopy type of a
sphere of dimension dim(P) - dim (11' (P)) - 1.
The special case dim(lr(P)) = 1 appeared as a conjecture of Baues in the
theory of combinatorial models of loop spaces and has been proven by Billera,
Kapranov & Sturmfels.
It turns out that the conjecture also holds for dirn(P) - dim(lr(P» ::; 2, but
fails otherwise.
There is an explicit counterexample 11' : P ~ lr(P), where P is a 5-dimensional
simplicial 2-neighborly polytope with 10 vertices and 42 facets and 'Ir(P) is a
hexagon in IR2

•

The construction is based on an analysis of the geometrie relation between the
various normal cones of tibers of the projection.
(This is joint work with G. M. Ziegler, Berlin.)

VICTOR REINER:
Triangulations of cyclic polytopes: the higher Stasheff-Tamari posets

We consider a partial order S(n, d) on the set of all triangulations of a cyclic
d-polytope C(n, d) with n vertices. In the case d = 2, this is the well-known
Tamari poset Tn on triangulations of an n-gon. For d = 3 we prove a simple
encoding of this partial order which shows that S(n, d) is a lattice for d ~ 3
in which open intervals (x, y) have the homotopy type of either a sphere or
ball, and that the set of all triangulations of C(n, d) is connected by bistellar
operations for d ::; 5.
(Joint with P.H. Edelmann, Univ. of Minnesota)

JÜRGEN RICHTER-GEBERT:
Realization spaces of 4·polytopes are universal

Studying the set of all convex polytopes with n vertices in dimension d leads
to two major questions:

• what combinatorial types occur?

• what does the "space 0/ all realizations" of a combinatorial type look like?

It is the purpose of the talk to show that one cannot expect "nice" answers to
these questions: .

• boundary complexes of 4-polytopes cannot be characterized locally

10
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• realization spaces of 4-polytopes can be "arbitrarily bad" (Le., stably
equivalent to any given semialgebraic set V).

So far no similar result was known for any fixed dimension.
The proof proceeds by modelling elementary additions and multiplications as
constraints in realization spaces of "Addition Polytopes" and "Multiplication
Polytopes." These polytopes are used to encode the defining equations of a
semi-algebraic set into the boundary structure of a 4-polytope.

GRIGORI RYBNIKOV:
N on-matroid topological invariants oe complex hyperplane arrange­
ments

We consider arrangements of hyperplanes in a complex projective space. The
homotopy type of the complement M of such an arrangement is the main ,Qbject
of our investigation. It is weil known that the cohomology ring H*(M;~"1Z) de­
pends only on the matroid of the arrangement. We prove that the funda'Inentai
group of M is not determined by the matroid uniquely.
We use an algebraic invariant of the lower central series of the fundamental
group 1ft (M), which appears to be a tripie Massey product on Hl(M, Zr. Un­
like Massey products on H*(M, Cl, the Massey product on the integer'coho­
mology ring can be non-trivial. Using this we show for two combinatorially
equivalent arrangements of eight Iines on Cp2 that there is 00 isomorphism
of the fundamental groups of their complemeots which agrees to the canonical
isomorphism of first homology groups. This leads to construction of two line
arrangements of thirteen lines with the same underlying matroid such that the
fundamental groups 01 their complements are not isomorphie.

KARANBIR S. SARKARIA:
Combinatorics +---+ Topology

In this seminar we have been looking at many diverse eom binatorially defined
homologies of a simplicial complex !<. Let's look at a few of these:
(a) Subcochain complexes 01 (C*(/{assoc) , 8), theusual cochain complex offune­
tions I ·on vertex sequences, are given by imposing on the 1'5 the requirement
l(voVt ... vq ) = (-1)7r l(v7rov7t t •• ,vlI'q) as 1r runs over (i) all permutations (ii)
only rotations and reversals (iii) rotations only (iv) reversals only and (v) id's
(no other permutation groups will work). Of these homologies perhaps the most
interesting are (ii) and (iii) for which (over characteristic zero) the answer is

Hdih(!(assocl ~ ffi H*-4i (!()
j~O

and H * (ror· ) ~ ffi H*-2i( r~·).cycl fi assoc W .n

j~O

Now Jet us look at (b) Borne subchaincomplexes 0/ (C· (!{comm), 8), the chain
eomplex determined by increasing (with respect to a chosen linear order on
vert(!()) vertex sequences: viz. for each r ~ 1, we can ask that no vertex
repeats more than r times. Then Bier has shown that for r odd one gets the
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usual homology~ but

for r even ii.(!(comm,r) "J EB H.(lkK(U)),
(JEK

This result is elose to (c) homology 0/ some deleted joins, viz. define

!(.!( ._ {(U, 8) E K . K the join la n 8 == 0, aU 8 E I(}.

Then one has ..
t• ,.

f~'

(ker(81 n ker82 n ...) ~ (ker(81 n ker82 n ...)

(here Oi denotes the omission of the ith vertex; one checks that im80 is indeed
anormal subgroup of ker8o) which was calculated by Milnor:

H~oore(]<comm) ~ 11".(5°.. K).

I'U wind up by finally saying that (f) one can use characters other than (_l)i •
also: for example if the coefficients contain p-th roots of unity one can equip
C.(Kcomm ) with operator

iI.(K. K) ~ EB H.(lkK(U)).
(JEK

(The homology of the fuU deleted join K * K = {(a, 8)la n 8 == 0} is more
interesting and harder. Note also that one has similar definitions K *G !(,
I< .G K for all groups G and their homologies are all very interesting.)
This result is best explained via (d) some spaces 0/ I<: Instead of just looking
at 1/<1, Le., Conv(K) = U(JEK conv(a) in m,vert(K), it makes equal sense 1"0 look
e.g. at Aff(!<) == UO"EK aff(u) and Lin(K) == U(JEK lin(u). The latter is con­
tractible, but with very nice coordinate ring (so enters algebraic geometry... )
and a very nice link Sph(K) at the origin. In fact K. K triangulates Sph(!(),
so above formula follows by Goresky-MacPherson (ar can be proved directly).
Likewise the simplicial space K .SI K - or its cyclic counterpart" - triangu­
lates Sphc(K): one can also consider above spaces over p-adics and use i-adic­
cohomologies. The equivariant homology of K • !(: this gives that of Proj (!(),
and of !( .SI!( that of Proic(K) (the quotients of Sph(!<) and Sphc(/() under
7h/2 and SI, respectively).
(e) Non-abelian chains, Le. the free non-abelian group F.([(comm) generated by
!<comm, was used by Moore to define a homology H~oore(]<comm) == keroo/imoo

where

211" i
w = exp(-),

p

which now obeys [)P == 0, and so define~ for each pair (r ts) with r + S = Pt
the homology H.;r,s([(comm) kercr /im8s. Its calculation over cyclo­
tomic integers is involved but over field coefficients the only nonzero cy­
clotomic homology is Hkp+r-l;r,s(!() "J Hkp+s-l;r,s(]() ~ H2k(I() and

Hkp-l;r,s(I() ~ Hkp-l;s,r(I<) ~ H2k-dI<).
(Many more simplicial homologies will be given in the Chandigarh Topology

Seminar 1994-95 lecture notes.)
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ALEXANDER SCHRIJVER:
eoHo de Verdiere invariants and characterization of planarity

We discuss the new graph invariant introduced by Yves CoHo de Verdiere. This
invariant is monotone nnder taking minors, and moreover it characterizes planar
graphs. We give the short praof due to Hein van der Holst of this fact, and we
make some further observations.
(Joint work with H. vao der Holst, M. Laurent, and L. Lovasz.)

BERND STURMFELS:
Polyherlral methods rar sparse polynomial systems

Dur objec~ of interest is a system of n equations

fi(X) = L Ci,a Xa

Bt:Ai

in n variables x = (Xi, ... , Xn) with fixed supports Ai C zn. In this talk,; we
survey results and open problems concerning complex roots and real roots of (*).
Our starting point is Bernstein 's Theorem, which states that - for generic Ci,a

- the number of roots of (*) in (C·)Tl equals the mixed volume M (Q1, ... ,Qn)
of the Newton polytopes Qi = conv(Ai). An algorithmic proof is sketched.
Concerning real. roots, the situation is much less understood. Khovanskii's

Fewnomial Theorem states that (*) has at most 2Tl (n + 1)(~) roots in (IR")Tl
where N = #(A 1 U ... U An). This appears to be far from the truth, however.
We preseot evidence that the maximum number of real roots is far less than
Khovanskii's bound.

REKHA R. THOMAS:
Using Gröbner bases to solve integer programs (A Comparison..be­
tween linear and integer programming)

Let I PAtc{b) denote the integer program min{cx : Ax = b, x E lNn
}, where

A E ~dxn, b E 7L.Jd, c E IRn and rank(A) = d. We show that the re­
duced Gröbner basis with respect to A and c forms a minimal test set for
the family I PA,e ( .) as b varies. This leads to the construction of an (n - d)­
polytope St(A) which is shown to be normally equivalent to fb Ptdb, where
Pt = conv{x E IN n : Ax = b}. The edges directions of St(A) are precisely
the edge directions of Pt as bvaries and this is shown to be the Universal
Gröbner basis of A. We compare these results with their analogues for linear
programming.
(This is joint work with Bernd Sturmfels.)
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SINISA VRECICA:
On (I, ß)-pairs of multicomplexes

We define a multicomplex as an order idealof monomial~ (not necessarily
square-free) over {x}, ... , x n }, generalizing the notion·of simplicial complex.
In joint work with Anders Björner we try to establish the relations among
I-vectors and Betti numbers of multicomplexes.
We show in the case of the order homology that Betti numbers depend only
on the square-free monomials of M. For another nation of homology theory
obtained by generalizing the boundary operator from the simplicial category
we construct a topologieaJ model for multieomplexes. We also establish some •
necessary and some sufficient conditions on. (I, ß)-pairs of multicomplexes. For
example, we show that the f-vector and Betti numbers ofa multicomplex satisfy
the relations ak(!2k+l + ß2k) ~ f2k-l, k ~ 1.

MICHELLE WACHS:
On Lie k-algebras and homC?logy of partition posets

We define a Lie k-algera to be a (k + 1)-ary skew symmetrie operation on
a bigraded vector space whieh satisfies a certain relation of degree 2k + 1.
The nation of Lie I-algebra coincides with the notion of Lie superalgebra. An
ordinary Lie algebra is precisely a Lie I-algebra with odd elements. We show
first that the boundary map in the Koszul complex squares to zero. We then
show that the 1nk+l homogeneous part of the free Lie k-algebra with nk + 1

even generators is isomorphie as an Snk+l-module to the cohomology of n~~+l '
the poset of all partitions of nk + 1 in whieh every block size is := 1 mod k.
This result is analogous to a classieal result relating the free Lie algebra with
n generators to the cohomology of the partition lattice. We also construct an
explicit basis for the 1nk+l graded piece of the free Lie k-algebra with nk + 1
even generators. Lastly we compute the Lie k-algebra homology of the free Lie
k-algebra.
(This is joint work with Phil Hanlon.)

RADE ZIVALJEVIC:
Combinatorial geometry on vector bundles .

A collection of 3 red, 3 white, and 3 blue points in the plane rn.2 can be parti­
tioned into 3 vertex-disjoint multicolored triangles with a common point. Some­
thing similar is possible in the 3-space lR3 but this time we need 5 points of
each color in order to guarantee existance of such a partition. The weIl known
Kuratowski nonplanarity criterion implies that K3,3 is not embeddable in IR?
which implies that for any collection of 3 red and 3 blue points in the plane there
exist two intersecting vertex disjoint line segments with end points of different
color.
These three (topological) statements can be abbreviated as follows.

14
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(Ks,StS~ rn..3) :=::::} 3 t-4 1

(1(3,3 ~ rn..2 ) :=::::} 2 t-4 1

For example the last statements says that for every continuous map on the left
there exist three points in three disjoint triangles which are mapped to the same
point in IR3

.

The results above can be extended in a systematic way to include results in
. which the existence of a common point (common D-dimensional transversal) is

replaced by the existence of a. common k-dimensional transversal. An example
is the statement

(K6,6 -+ rn.3 ) :=::::} (4.--+ line)

which says that for every collection of 6 red and 6 blue points in IR3 there exist
4 multicolored line segments with a common line transversal.
The motivation for these problems comes actually from a different line of
thought, namely from the so called Tverberg-Vrecica problem (Europ. J. Comb.
1993). The reader can find more information about this and related problems
in the review paper H. Edelsbrunner, S. VreCica, R. Zivaljevic, Combinatorics
and geometry oE partitions of masses and point sets in IRn (to appear).
A general picture seems to indicate that a natural environment for both ~t~e

formulations and solutions of these problems is "Combinatorial Geometry··~on
vector bundles", an extension of the usual Combinatorial Geometry of points,
lines etc. in lRd where lRd is replaced by a vector bundle, points are system­
atically replaced by continuous cross sections of this bundle etc. Indeed, all
results above and many more are formulated and proved in this context (R. Z.,
Combinatorial geometry on vector bundles, in preparation). The main techni­
cal novelty in all proofs of these results is a systematic use of the parametrized
version of the ideal·valued cohomological index theory as developed by J. Ja-
worowski, S. Husseini, E. FadeU , A. Dold etc. - <

~·F-

Berichterstatter: Günter M. Ziegler, TU Berlin
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