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Qualitative Aspects of Partial Differential Equations
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Die Tagung fand unter Leitung von H.Berestycki (Paris), B.Kawohl (Köln)
und G.Talenti (Florenz) statt. Leitmotiv war die Gestalt von Lösungen par­
tieller Differentialgleichungen. Inhaltliche und methodische Schwerpunkte
lagen auf den drei Themen Rearrangement, neue Anwendungen der Moving
Plane Methode und Blow up Phänomene. Die hervorragende Atmosphäre
des Instituts und eine Abendsitzung mit 22 offenen Problemen trugen zu
einem regen Austausch von Ideen bei.

ABSTRACTS:

James Serrin:
Asymptotic Stability and blow up of solutions of dissipative wave
systenns .
We treat dissipative wave systems subject to the action of strongly nonlinear
potential energies. A typical example ia

'Utt - ~u + A(t) IUt Im -
2±V(x) I'U IP-2 U = 0 (t,X)f I x n (1)

. u(t,x) = 0 (t,x) f I x an (2)

wbere I = [0,00) and n is a bounded open set in IIl'. Tbe values of u are
taken in mN ; N ~ 1, whilem,p > 1 and AfC(I ~ mZ)(N), VfC{Ö --+ m~).
Tbe tenn Y (x) 1 U IP-2 u represents arestoring force if the + sign is used,
and an amplifying force for the - sign. Let the energy of a solution be
defined by E{u(t» = /{( u(t) 12 + 1 Du 12 ±!Y(x) 1 u I")dx. Then for then P
typical ca.se (1)&(2) our results show, that all solutions u satisfy E(u(t») -+ 0
88 t -+ 00, provided that

2n
2 :5 m :5 max(P'--2)'n-

li
1 Jt 1+ I A(s) Im

dsm- < 00
t-OO tm h(8 )m-t
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and the + sign is used; while when the - sign appears all solutions u satis-
fying E(u(O» < 0 blow up in finite time T provided .

/

00 • h(t)
max (2, m) < P, 0 mm (c, IA(t) I~ )dt = 00.

Here c ia any positive constant, and (A(t)v, v) ~ h(t) I v 12•

Almut Burchard:
The Riesz Rearrangement Inequality

We detennine the cases of equality in the Riesz Rearrangement inequality,
whicll says that for any functions 1,9, h : IJr' -.. JRt (so that spherically
decreasing rearrangements '-, g- ,h· can be defined):

J(f,9,h):= / / 1(7I)g(x -7I)h(x) dyd:z: :5 J(/",gO,hO)

This inequality has found applications in functional analysis (such 88 Young's,
the Sobolev, and the Hardy - Littlewood - Sobolev inequalities) and to vans­
tional problems of Mathematical Physics (shape of fluid bodies). It ia closely
related to the Bronn - Minkowski and the i80perimetric inequalities.
Tbe mai~ result states, that for charaeteristic functions of measurable sets,
there are two easeB. H the volume satisfies a certain size relation, then equal­
ity implies that (essentially) tbe sets must be already symmetrie. If tbe
size relation ia violated, then there are many cases of equality. Similarily, if
the distribution funetions of two of the three funetions are continuous, tben
equality implies tbat I, g, h are (up to tbe symmetries of J) already symmet­
rically decreasing.

Giovanni Alessandri:
On Courant's Nodal Domain Theorem
Tbe Courant nodal domain theorem states, that if u is tbe n - th eigenfune­
tion in tbe selfadjoint elliptie eigenvalue problem

-V· (AVu) +qu = >..pu in 0, u = 0 on ao (1)

8lld the leading coefficients are Lipschitz continuous then:

•

U nodal domains of u ~ N

2

(2)
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My aim is to investigate the esse when the Lipschitz rondition is dropped or

relaxed. The results are:
(I) When n = 2 and A t Loo then (2) continues to hold.
(11) When n ~ 3, A t ca and N > 1 then (2) is repla.ced by

U nodal domains of u :5 2(N - 1).

Fred Weissler:
Exact Selfsimiliar Blow-Up for Semilinear Parabolic Equations with
Nonlinear Gradient Term
In a joint work with S.Tayachi we consider self - similar solutions of

8t tP = 6,p- b 1vt/J 19 + 1t/J IP-l t/J
where t/J = t/J(t,x),Xt Jl{',t < O,b > O,p > l,q = !f:r'. More precisely

-1 I X I
1/J(t,x) = (-t);=Iu( ~),

v-t

where
n-l r 1 1

11." +(-- - -) u' - b I u' 19 - -- 11.+ I u IP- 11. = 0
r 2 p-l

We prove that for n = 1, there exist bo > 0, Al > 1 such that if 0 < b < bo and
1 < P< Po, then there ia a regular solution u(r) such that u(r) > 0, u'(r) < 0
for al1 r> 0 and lim,._oo r;!ru(r) = c > O. It follows th~t limt-o- .;p(t, x) =
'-2' ' .

clxlp=!·

Friedemann Brock: '
Continuous Steiner Symmetrisation and Applications to Problems
in the Calculus of Variations
For each function u : J!f' -+ IR having the property that all level sets {'U > c},
c > inf 11. have a finite Lebesgue measure we construct a scale of functions
ut,O ':5 t :5 00, which is a rontinuous homotopy between u and u· ( the
Steiner symmetrisation of u ), Le.:

11.0 = 11. U
OO = u·

t -+ u t continuous in L~(ur) and
rightoontinuous in W':',P(Dr) for 1 < p < 00.

3
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We prove variOUB integral inequalities which are "continuous" analogues of
weH known inequalities for Steiner symmetrisation.
As an application we show that smooth solutions of the semilinear problem:

-V·(Vul"VuIP-
2

} 0 in 0
u > 0 ioO

u=Oin80

With n = O· bounded, , continuous in u, '{., u} = '.(., u) satisfies sorne
weak - Ioeal - kind of symmetry. .

Olga Oleijnik: a".,
On Asymptotics of Solutions to Some Nonlinear Elliptic Equations ..
Many problems of Mathematical Physics lead to consider the asymptotic be-
haviour at infinity of solutions of semilinear seoond order elliptic equations in
unbounded domains and, in particular, in cylindric8J domains. Questions of
this kind occur in problems of the tbeory of travelling waves, homogeneization
theory, stationa.ry states, boundary layer theory, biology, ftame propagation,
in probability theory (branching processes) and 80 on.
For equations of tbe fonn

fl "L 8.(Q.i;(x)8i u(x}} + L B;(X}(J;u(x) -/(x, u) = 0
ij=l ~1

in tbe dcimain S = {x: x' fW,O < X" < co} with the boundary oondition
u = 0 on (J = {x : x' f 8w,O < x" < co} or au/all = 0 on (J, ,where w

-is 8 bOlUlded smooth domain, r = (Xl, ••• ,Xn -l), 11 ia a conormal direction,
Wlder some oonditions on a'j, Bi and I the asymptotic behaviour for u{x} 8S

Xn .-.. 00 is giYen.
"Two new approaches to investigate these problems a.re given (the method of
subsolutions and supersolutions and the ~ethod of mean value functions).

Michael Wiegner:
Blow Up of Solutions of Some Degenerate Parabolic Equations
We study the degenerate parabolic equation

Ut v!'~U+tf+l on n x (O,T) e
u 0 on 80 x (0, T)

4
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a.nd u(x,O) = 4>(x). Here n c Jl(' is a smoothly bounded domain, p > I,
BIld 0 < C() $ 4>(x)/dist(x,an) ~ CI· If ~I < 1, where Al denotes the first
eigenvalue of -ß on n with Dirichlet oonditions, we prove:
There is a unique solution, positive and smooth inside, with max (u(t, x»~
00 far t ~ Ta,' and the lifespan To can be estimated by cIPc(n, p, {}) :::; To ~
CÖPc(n,p,O). Same nwnerical calculations in thc one dimensional 8ynunet­
ric case (0 = (-a,a),a >" .q.,XUz :5 0 forall t) give hints, that thc scaled
asymptotic profile w(x) = lilIlt-To u(t, x)/u(O, t), which is eaaily seen to fulfill .
w(x) 2: cos(x), may be different from oo8(X).

Michel Chipot:
Elliptic Equations Involving"Critical Exponents and Nonlinear Neu-
mann Boundary Conditions
Let n 2: 3, H = {x = (Xl, ...~Xn) : Xl > O}, a,b constants. We describe all
the nonnegative sohitions to

-~u au~ in H·
~~~;.

,
··,;l.....~

8u
bu~ in 8B

811

'Yhere v = -ei. There are two types of solutions depending on a and b:

(I) 'U

(11)

0(1 x - XO
1
2 +ß)-;:! where 0 > 0

b . ') ß a·----..L
---0;;'=1 = on=2

n - 2 ' n(n - 2)
solutions depending on XI only

This is joint work with M.Fila (Bratislava), I.Shafrir (Metz).

Thomas Lachland-Robert: - "
Some Application ofthe Monotone Rearrangement to Elliptic Equa-
tiona in Cylinders
We study the problem

e -ßu· = f(x',u) on n= (O,h) x w

lJu 0 {O,h} x W811 on
u 0 on- {O,h} x 8w

5

(1)

(2)

(3)
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where h > O,w C mN - 1 is a bounded domain, x ~ (X.,x')! 0, and j is
superlinear and subcritica1.
We prove, that if h > a criticaJ value h·, then there exists a solution U of (1)
_ (3) satisfying 81u < O. (This implies, that there are many solutions if h ia
large).
We use the montone decreasing rearrangement in order to exhibit this solu-
tion. In the simple case j(x!, u) = a(x')uP , a > 0, bounded and p! (1,~)
an analysis of the equality f I Du 12= J I Du· 12 suffire.
In the more general case we use the mountain pass theorem (/ has to satisfy
the corresponding 88SumptiOns) and the continuity of the rearrangement in·
the Hl- nonn for adense subset of Hl.

Hans - Christoph Grunau:
Positive Solutions to Semilinear Poyharmonic Dirichlet Problems
Involving Critical Sobolev Exponent
We are concemed with tbe semiliriear polyharmonie model Dirichlet problem
(-6)Kv = AV + v Iv la-l in B and [JOv 18B= 0 for I er 1:5 K - 1. Here K is
a positive integer, Bis the unit ball in ur, n > 2K ,8= :!~~ is the critical
Sobolev exponent. Let AK denote the first Dirichiet eigenvalue of (_6)K in
B. The existence of a positive rß4jal solution v is sbown for

•
•
•

A! (O,AK),
A ((Ä,AK ),

if n ~ 4K
for same A(X(n,K) {(O,AK ) if 2K + 1 :5 n ~ 4K - 1.

The crucial pOint is to show the positivity of 8 solution v with the help of
the positivity of Green's function for (_ß)K in balls

Vincenzo Ferone:
Convex Symmetrization .
Let H(e) : IR:' -.-. IR be nonnegative, Positively homogeneous of degree one
and convex such that the measure of the set {x : H(x) :5 I} is equal to the
measure of the unit ball in lK'. One can define the perimeter of a set E with
respect to H a.s

PH(E) = sup {f div,p: t/H. CJ(IK'j IK'), Jr!(,p(x» $ I}
E

where JIO(x) SUPH(E):$;'- < x,e > is the polar function of H. Tbe following

6
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.1 I 1"-1isoperimetrie inequality can be proven: PR (E) 2: nlt/i E-;;-
where lCn =1 {e : no({) S I} I. Using this inequality it is possible to show,
that for any nonnegative function compaetly supported in lH' such that
f Jl2(Vu)dx < 00, the following "generalized" Polya-Szegö principle holels:

R' .

f ~(Vu)dx 2: f ~(Vü)dx
R" R"

where 'Ü ia the rearrangement of u such that its level sets are homothetic to
the set {~ : no(e> SI}. Using (1) one can also obtain romparison results
for 8Olutions of the Dirichlet problem:

-V· (a(Vu» = I,

where n c ur ia a bounded open set and aCe) satisfies (a(e) ,e) ~ H?(~):..
Tbe ahow results are oontained in' a joint paper .with A.Alvino, P.L.LionS
and G.Ttombetti. --

NeH Trudinger:
Symmetrization for FUlly Nonlinear Elliptic Equations
We apply our isoperimetric inequalities for quemlassintegrals on non-convex
domains to obtain synunetrization results for nonlinear operators of tbe fonn
Fm[u] = [D2U ]m = SUffi of the m x m principle minors of the Hessian matrix
D2U , acting on m- admissable functions u( C2(fl) , n c IR", Le. functions
u satisfying (D2U +~]m 2: [D2U ]m, Ve 2: 0, ef 8". Here m = 1, ... , n, the case
m = 1, m = n corresponding respectively to the Laplacian and the Mange
Ampere operators, being already weIl studied. Two examples of our resulta
are:
(1) If Fm[u] = t/J 2: 0 in 0, 'U m-admissable, u = 0 on an, then 'U~_l ~ 11.0

in BR, where u:n-l ia the m - 1 - symmetrand of u as detennined by the

.querm88Sintegral Vn-rn+1J R = (±Vn-m+l(fl»)~, and Uo ia the solution
of the radial problem Fm[uO] = t/Jt in B R , UO = 0 on 8BR , "pt is the spherical
rearrangement of "p.
(2) Im[u]:= f F'j.8j'u8j u 2: Imlu:n-l], for all m - admissable u in n, u = 0 on

o .
an, where F'::(r) = ~Fm(r).

7
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Congming Li:
Same Applications of the Method of Movi.ng Planes

. 1) Jointly with Wenxiong ehen, we seek metrics conformal to the standard
ones on sn having preseribed Gaussian eurvature in case n = 2 (the Niren­
berg Problem), or prescribed scalar eurvature for n ~ 3 (tbe Kazdan-Warner
problem). There are well-known Kazdan..Warner and Bourguignon-Ezin nec­
essary conditions for a funetion R(x) to be the sca1ar eurvature of sorne ooD­
formally related metric.
We show that, in a.ll dimensions, if R(x) ia rotationally symmetrie and niono­
tone in tbe region wbere it is positive, then tbe problem has Da solution at all.

. It follows that, on!P, for a non-degenerate, rotationally symmetrie function _.
R(8), a necessary and sufficient oondition for the problem to have a solution •
ia that H changes signa in the region where it ia positive. This oondiiion,
bowever, is still not sufficient to guarantee the existence of a rotationally
symmetrie solution. .We also consider aimilar neoossary conditions for DOD-

symmetrie functions.
2} I generalize and simplify the work of L. Caffarelli, B. Gidas and J. Sprock
about loeal asympototics of non-negative solutions to semilinear elliptic equa­
tions.

'3) Jointly with J. Bebemes and Y. Li, we studied the existence, uniqueness
and stability of tbe travelling front with exponetial decay to seme combus­
tion problems.

T .A. Shaposhnikova:
Homogenization of Differential Operators in Partially Perforated
Domains
In the leeture we ronsider the problem of homogenization for the Laplace
~perator in a partially perforated domain {lt: in the case when the size of the
holes is much smaller than tbe size of the cello Tbe boundary of the holes
are denoted by Sf. and the exterior boundary is denoted by r (. We study the
following boundary va.lue problems:

(I) ßUt:=/ in {}t:,ut:=O on OOt:; e(lI) ßUt:=/ in {} lJut: 8Sf, 'Ut:=O rt:;. t:, ßv + bt:u( = 0 on on

(lI I) 6u,=/ in {} au,
aSf, 'U,=O' r,;(, 8v = 0 on on

8
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We study tbe bebaviour of U E wben f ~ 0 and for every case we obtained
estimates for U E -u, wbere u ia a solution of a limit problem. We also consider
the corresponding spectral problems

Peter·Laurence:
3-D MIlD Equilibrium: The Inverse Problem
80th, the equations of ideal state MHD equilibria and inviscid, inoompress­
ible, steady rotational ftow, can be written 88

Vxuxu

V·u

Vp in n
-0 in {}

where in MHD, u is tbe magnetic field and in fluids tbe fluid velocity.
Tbe physically relevant boundary condition is u· 11 = 0 on lKl.Until recently
no 8Olutions were known to exist in domains l'l, that do not p08Be8S a symme­
try. In the case {} = T = a 3 - 0 tarus, close to axissymmetry, we establish
the existence of such tori by 80Iving an appropiate inverse problem.

Steven J. Cox:
The Design and Identiftcation of Dissipatve Structures
With respect to the dissipative wave eQuation

Utc{x, t) - uzz(x, t) + a{x)Ut{x, t) = 0 for 0 < x < 1

with fixed ends, we show, under the assumption that a f BV(O, 1), that the
rate at which energy decays coincides with tbe spectral abscissa of the gen­
erator of the 8880ciated semigroup.
We show that this decay rate assumes its (negative) minimwn over those
a(x) whose total variation does not exceed a given oonstant. We show, that
a(x) = 11" ia a weak loeal minimum and provide numerical evidence in support
of the oonjecture that 1r is in fact the Iocal minimizer.

Steffen Heinze:
Wave Solutions for Reaction Diffusion Systems in Perforated Da­
mains
Consider a system of reaction - diffusion equationS in the f - periodicaJlly
perforated Jl(', with Neumann boundary oonditions at the holes. Travelling

9
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waves in this domain satisfy

kof.
u(t - ...!.-,X + fe,) = u(t,x) i = 1, ... ,n

c

. where (k - 1, ... , Jen) is the direction and c ia the unknown velocity of the
wave. As the period of tbe domain tends to zero the homogenized system
admits a. nondegenerate wave solution. It ia shown, that then the original
problem also admits a wave solution. Furthennore ermr estimatea in powers
of f are given. This problem has" applications, e.g. in oombustion processes.

Vladimir Oliker: •
Same Results on Mean and Gauss Curvature Flow
We consider an evolution that starts SB a ftow of smooth nonparametrie sur­
faces propagating in spare with normal speed equal to mean curvature. Tbe
boundaries of the aurfaces are assumed to remain fixed. Tbe domains over
which such flows are oonsidered are not required to be "mean convex" . Con­
sequently, singularities may develop on the boundary. We show, that such
singularities will disappear in finite time and the solution will herome smooth
up to the boundary. We also investigate the asymptotic behaviour of such
flows as t --+ 00. These resu1ts are obtainedjointly with N.N. Uraltseva..

Martin Flucher:
Vortex Motion in Two Dimesional Hydrodynamics and The Core
Energy Method
We study the dynamics of point vortices in an inviscid, inoompressihle fluid
in a bounded container. This ia a dynamical system of infinite kinetic en­
ergy. Still we can derive 8 finite integral of motion hy means of the core
energy method. The resulting renormalized is a Hamiltonian reftecting the
interaetion between different vortices via a special Green function and the
self interaction cf each vortex with the boundary in tenns of a Robin func­
tion (regular J}art of the Green function). A list of qualitative statements on
the dynamies of tbe vortex renters can be derived from oonservation of the
Hamiltonian using results of [BF].
[FG] Flucher M., Gustafsson B.: Vortex motion in two dimensional hydro- •
dyna.mics (in preparation) "
[BF] Bandle C., Flucher M.: Harmonie radius and ooncentration of energy,
hyperbolie radius and Liouville equation ~u = expu and 6u = u~, (10

10
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appear in SIAM Review).

Bradley Willms:
An Isoperimetrie Inequality for the Buckling of a Clamped Plate
This is joint work with H.F. Weinberger. We consider a homogeneous,
isotrope plate covering a smoothly bounded, plane domain, clamped on the
boundary 8D, under a unifonn, compreßsive load proportional to A. At tbe
critical buckling load, A = Al is the least eigenvalue of the boundary value
problem

A2u+A t Au =.0 in D
8u

u= 8v = 0 in

where u(x, y) ia the transverse displacement, and Ais the Laplacian operator.
Let D· == unit.dise. Then a ronjecture of-Polya and Szegö ia that

AI(D) ~ At(D-) VD such that 1D 1=) D- I

They also showed, that u > 0 in D is a sufficient condition for the validity
of tbe conjecture in all dimensions. Following Courant & Hilbert we show
that a "naive" necessary condition for a minimwn of At(D) under domain
variation, ia that Au fSD= c.
From this boundary condition it follows,that Dia a "Schiffer" domain, Le. a
domain for which there exists a non constant solution V to .

AV+AIV 0 in D
8u

0 in GD
8v

-c
in 8D .-:;.=v =

Al

If D is not a disc, then the isoperimetrie inequalities of Faber & Krahn of
Payne & Polya & Weinberger arId of Payne & Weinberger are rombined to
give the result, Al (D) > Al (D-). Existence of 8. minimizer follows locally in
IFr from a theorem of Pironneau, and global existence for convex domains
in m.2 is proved with an idea of B.Kawohl.

11
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Jerrold Bebernes:
Beyond Blow Up
Consider the Cauchy initial value problem

Ut - ßu = (1- f)!(U), Xf 1Ir, t ~ 0, f > 0 (1)

with u(x,O) = Uo(x) ~ 0, where 1.1() is radially symmetrie, decrasing and
Uo = u(r) f [J2, r =1 x I satisfies 'U() = 0, t4(r) :5 O. For J(u) = expu or uP ,

p> 1, assume Uo is such that the 88sociated (ignition) problem (f = 0):

Ut - ßu = I(u) (2)

has finite blow up time T. Then the blow up set i8 (0, T) and the final time •
blow up profile called a hot spot is precisely known. Tbe questlon adressed
ia to determine the behaviour of tbe solution Q(x, t) of (1), which exists on
IR x [0,00) and ia bounded above by ~ for t ~ T.

Michiel Bertsch:
Fourth Order Parabolic Equations
Consider the equations

Ut

(1)

(2)

(1) describes interface ßuctuation and w(z, t) bas the properties of a. proba­
bility density: w(z, t) 2: 0 and / w(z, t)dx = 1 ( see Bleher, Lebowitz, Speer
in Comm. Pure Appl. Matb, 1994).
(2) is a model for the dynamics of 8 thin liquid film on a horizontal solid sur­
fare driven by surfa.ce tension. Tbe lubrification a.pproximation is 888umed
to be valid a.nd u stands for the thickness of the liquid film. Current values
for n oie n = 2 and n = 3.
We show that (1) and (2) possess nonnegative solutions (although the linear
equation Ut'+ UU%Z = 0 does not preserve nonnegativity) and study their
positivity properties. Both equations exhibit nonuniqueness, and for (2) the
qualitative behaviour of the solution depends strongly' on the value of ß. As
a euriosity we observe, that in order to obtain strictly positive approximating
solutions~ instead of regularizing the equations, we malre (1) more singular

12
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and (2) more degenerate.
(1) is in preparation aB joint werk with R.DaJ Passo (Roma) , while (2) ia joint
work with E. Beretta (Roma) and R.Dal P8SS0 and will appear in Archive

- Rat. Mech. Anal..

Nicola Garofalo:
Smoothi~gEffects and Monotonicity far Evolution Equations
Consider the Allen - Cahn equation in ur x (O,~) "

6u"- u, = u3
- 'U

It models the motion of phase transition layers by surface tension. Solutions
to (1) satisfy a monotonicity property which is, in fa.ct, sha.red by solutions
of a. large class of equations related to motion by mean curvature. Here is
the main result .
Theorem.: Let u be a smooth solution to

~u - Ut = F'(u) in m;a x (0, (0)

u(x, 0) = ~(x),

and suppose that F(u) ~ 0 for all U f IR. If I V1I() 12 :5 2F(v.o), then for any
(x, t) f mn x (0, (0) one has

IVu(x, t) 12$ 2F(u(x, t».
Similiar monotonicity results hold for equ~tions of the type

under general structural assumptions on ~.

G.R. Burton:
Rearrangements and Vortices
Let n c IR? be a bounded open set and suppose an ia 8 smooth simple closed
CUTVe. An ideal fluid, oheying the Ewer equations in nwith t~gential veloc­
ity on ao, is studied. Tbe vorticity, which ia a vector field perpendicular 10
m2

, .may be represented by a sca.lar field e, BIld the kinetis energy E can be
expressed by E(~) = l f ~Ke, where K = (_~)-1 (zero Dirichlet boundary

n

13
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conditions). The following variational problem ia considered: Find critical
points of E subject to the oonstraiIit, that eis a rearrangement ~f a pre­
scribed function {o. Solutions with prescribed energy are shown to exist, snd

. to represent steady ftows of the fluid.

Xu-YanChen:
Strang Unique Continuation and Local Asymptotics far Parabolic
Equations
LocaI behaviour of 8Olutions of second order linear parabolic equations near
zero points is investigated. Tbe main results are:
(i) strang unique continuation theorem: a solution having a zero point of
infinite order vanishes identicaJly;
(ii) a complete classificatioD of local forms of asymptotics in terms of poyno­
misl solutio~ of the cl8Bsical hea.t equation;
(Hi) upper botind estimates for tbe Haus40rff dimension of nodaJ sets.
Applications include:
(iv) a complete long - tenn description of spatio - .temporal structure for
bounded nonegative solutions of a Donlinear parabolic problem on a ball;
(v) the b.ang - bang principle and a description of 08cillations for optimizers
in a contral problem involving one - di~ensional parabolic equations.

Walfgang Reichel :
Symmetry for an OverdeterJ;Jlined Boundary Value Problem in Po­
tential Theory
We oonsider a boundedsmooth domain n c JFr& with a oonstant 80urce dis­
tribution <p > 0 on an. Let \11 be the induced single layer potential. We prove
the following conjecture ~f P. Gruber: n ia a ball if and only if \11 is oonstant
in fl. As '11 satisfies the overdetermined elliptic boundary va.lue problem (11
ia the outer unit normal) .

o in IIr-O,

-t/J < 0 on an,
COflst. > 0 on 80, •we can use tbe moving plane method of Alexandroff and Serrin to show the

radial symmetrey of Cl and 'l1. In fact, the linear problem from potential

14
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radial symmetrey of n and \11. In fact, the linear problem from potential
theory turns out to be a very special case of a large elass of nonlinear overde­
termined boundary vaJue problems

6'11 + f(u, I Vu I)
8'11
811

U

u

o in IR" - n,
const. ~ 0 on an,
const. > 0 on an,
o at 00

on 8D .

in D c IR?

\
;)

I
I'

\

i
I

I

Under suitable hypotheses on f, the'moving plane method is used again to
show, that all solutions end the underlying domain are radial.

Fi-iedmar Schulz: .
Symmetrization with Respect to a Measure
Tbe spherical symmetrie rearrangement ~. of a nonnegative me88urable. fwlc­
tion u on' ur with respect to a meaSure given by a nonhomogeneous deiljity
distribution p was studied. Conditions on u were given, which guarantee that
u· is continuous or absoltely continuous on lines, i.e., Sobolev regular.'_:
Tbe energy inequality was proven in n = 2 dimensions by employing a Carle­
man type isoperimetrie inequality if logp is subha.rmonie. The energy equal­
ity was settled, 8S weIl as the C88e of n > 2 dimensions considered, when it
was assumed, that p = Jh with a K - quasioonformal map h.

APPENDIX: OPEN PROBLEMS

Problem 1: Consider a capillary surface

d
. VU
IV = K.U-Jl + IVul2

with prescribed contact angle

Vu·n
-;::=== = cos "YJl + IVul2

Let a(D) = minu, ß(D) = maxu. If D· is s disc of same ares 88 D, show
D D

that .
a(D) ~ a(D·) and ß.(D) ~ ß(p·) .

15
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(Suggested by C.Bandle; from the last page of R.Finn's book.)

Problem 2: Consider the P-function 8880ciated to ~u + AU = 0 in D, Le.
consider 4> := IVuI2 + '\u2

• This function satisfies

D.e/J- VQQVe/J = 0 in D, where Q = IVul2 •

If D c m2 ia convex and 4> = COllSt on 8D, show that Q is quasiconcave.
This would lead to a proof of Schiffer'a (or the Pompeiu) problem. (Suggested
by B.Willms.)

Problem 3: Consider the variational problem min R(v) = fD dx/(l +IVvI2) •

over the following set A of admissible functions: A := {v E W~oo(B) I 0 ~

v :5 M, v is concave}. Here D ia a oonvex domain in M'. It ia known that
a solution to this problem exists, and what it looks like if D ia a ball in IR?
and if the solution ia radial. Prove or disprove that for D = B1(O) C Jl('
the solution is radial. (Suggested by B.Kawohl.)

Problem 4: Let D c IR? be convex and coDsider the solution 'u of Ut - ~u =
oin D x m+, under initial condition u(x, 0) == 1 in D and boundary condition
u(x, t) = 0 on 8D. It is known that for every positive t the function u has
exactly one spatial ~aximumX m (t), the hot spot. Suppose that the hot spot
does not move in time. Does this imply sorne sort of symmetry of D? Partial
answers to this questions ca.n be found in SIAM Reviews. (Suggested by
B.Kawohl, originally from M.Klamkin.)

Problem 5: Let D c IR? and consider ~u + '\2U = 0 in D, u =. 0 on
8D. Can it happen, that a noda! surface {x E D I u(x) = O} has positive
distance to aD? Tbe answer ia negative (Alessandrini/Melas) if D ia convex.
(Suggested by B.Kawohl, originally from.L.Payne)

Problem 6: Let D c /R2 and oonsider ~u + v2U = 0 in D, au/an = 0 on
8D. Here VI = 0 is the firsteigenvalue. Show that lul attains its maximum
onlyon aD. (Suggested by B.Kawohl, originally from J.Rauch.)

Problem 7: Consider the Monge-Arnpere-type equation

det[D2u] = (-'\u)" in 0 C /Rn , U = 0 on .80 , •

where n is uniformly convex. It is known that there exists a convex solution
'U and 8 positive "eigenvalue" ,\ such that U E Coo(O) n C111(0). Show
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•

•

that u E coo(n). The same problem ca.n be posed for other curvature type
operators, namely Fm [D2u] = (-Au)m with 15m 5 n. (Suggested by
N.'Ihtdinger.) .

Problem 8: Pompeiu's problem: Characterize those sets n c m.2 such that
(f E C(Hl2 ) and 1(7(0) I(x)dx = 0 for every rigid motion (J) implies I == O.
This question ia known to be equivalent to Schiffer's conjecture: Consider

ßu + AU = 0 in n c m? , au/an = 0 on an ,
and suppose that in addition u = roost on ao. Show that n must be a
ba.ll. There have been many attempts to prove this conjecture; a more recent
cohtribution states: Han ca:n be parametrized by a finite Fourier selies, then
n rnuSt be a ball. Show that the same is true if an can be parametrized by
an infinite Fourier series. (Suggested by N.Garofalo, originally by Pompeiu.)

Problem 9: Consider the Cauchy-problem

Ut = (cp(u)u%(l + u~)-1/2):t = 1jJ(u, tLz)z) for x E IR , t > 0 '~'.".

u(x,O) = 'UQ(x).for x E Ul, with smooth Uo and 1/1. It is known thai;- for
sufficiently steep initial data solutions ca.n develop discontinuities in finite
time. Approximate by 1/Je(u,p) = 1jJ(u,p) +€p. Show that the approximate"
solutions Ue satisfy: u4Z : IR ~ m:+- --+ [-00, +00] are (loca.1ly) equicontin­
uous. This would imply that 'U behaves IHre a first order conservation law
Ut = cp(u)z near the shocks. (Suggested by M.Bertsch.) .

Problem 10: The equation Ut = cp(uz)z (with lIJ and t/J as drawn belaw) is
regularized by Ut = cp(uz )% + r'l/J(u%)z. Here r « 1 is a smwl parameter.
As in Problem 9 one knows that u can become discontinuous in finite time.
Give 8 constructive proof for this. (Suggested by M.Bertsch.)

Problem 11: Given D C IR? find the location and shape of A C D such
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that there exists 8 function u, harmonie in D\A, and satisfying u = 0 on
8D, u = 1 on 8A and 8u/fJn = Q on BA. As Q -+ 00, A becomes smwl.
Show that it approaches the shape of a. ball. (Suggested by M.Flucher.)

Problem 12: Consider the problem ßu-eu = 0 in the semi-infinit'e cylinder
S = w x IR, where w C ur-I is bounded and smooth,
a) under boundary condition u = 0 on 8w x mx

• Then it is known that
u(x,xn ) can only have the following two types of asymptotie behaviour as
X n ~ +00
i) u(x) = cz(x') exp{ v'X'i"xn } + 0(1) or
ii) ~(x) = UQ(x') + O(exp{-v'X'i"xn }).

Here z, A- satisfy 6z + AIZ = 0 in w, Z > 0 in w and Z = 0 on an, and c < 0;
while Uo solves

ß'U() - euo = 0 in w , Uo = 0 on GD ,

b) under boundary condition 8u/8v = 0 on 8w x m+.
Then u(x', xn ) can only have the. asymptotics
iii) u(x) = CXn + o(xn ) with c < 0, or
iv) u(x) = -21nxn + o(ln xn ).

Prove or disprove existence of solutions with behaviour i), iii), iv). What
can be aaid about asymptotics and existence on the infinite cylinder w x IR?
(Suggested by O.Oleinik.)

Problem 13: Consider the equation 6u ~ 'ulp-Iu = 0 in the semi-infinite
cylinder from problem 9, under Neumann boundary oonditions aU/GV = 0
on 8w x IR+. Then the following asymptotic representation ia known:

m

u(x) = ±K,,{xn + h)2/(l-,,) +L ~vi(x')e-~%l + o(e-~%n)
i=1

as Xn -+ 00, where h, Ai are constants, ~ ia the seoond eigenvalue from Prob­
lem 6 in D = w, m is the multiplicity of Y2, and v.(x'), i = 1, ... ,m are the
orthogonal eigenfunctions from the eigenspace to V2. Moreover either K p = 0

(
2l1+9)) 1(P-I)

or K" = c;;=t)'t .
How doea u(x',O) influence the behaviour of u so that Kp =0, K p :F 0 or
u(x) -+ ±oo 88 Xn --+ T < 01 (Suggested by O.Oleinik.)

Problem 14: Consider L(u)-Iul"-IU =Oin n, t = 00n8nn{x: lxi> N}.

18
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What is a behaviour of u(x) or lu(x)laslxl -+ oo? See J.I.Draz, O.A.Oleinik,
C.R.Acad.Paris 315 (1992),787-792, suggested by O.Oleinik.

Problem 15: Consider boundary va.lue problems with discontinuous coeffi­
eients

LI U = 0 in {ll , ~u = 0 in {l2

and suppose that {}l and {}2 look like this:

•

t·

,
I
;

t
J

I

•

What is the optimal regularity of u near tbe points marked with arrows.
(Suggested by O.Oleinik.)

Problem 16: Prove the isoperimetrie inequality (or a related Sobolev._.resp.
Poincare inequaJity) ':;;.~'.

na~n (In p(x)dx) (n-l)/n ~ 180 p(x)(n-l)/n81C'-1

where an ia the volume of the unit ball in ur, under a suitable assumption
regarding the weight p. For n = 2 this is known if log p is subhannonic
(Carleman). See also F.Schulz and V.Vera de Serio, Trans.Amer.Math.Soc
337 (1993). (Suggested by ·F.Schulz.)

Problem 17: Let D c IR:' be convex and 1 E C1{IR+) with j(O) > O· and
I' ;::: 0 (snd maybe I' :$ Al)' Let U E Cl(n) n G(n) be the minimal solution
of

-6u = I(u) u > 0 in D , u ~ 0 on 8D .

Show that.u is quasicoDcave. (Suggested by F.Brock.)

Problem 18: Let D c IRn be convex, 'l/J E GI.I(n) a ooncave obstacle in
the obstacle problem

minlIVv(x)12dx , K = {v E W~·2(D) Iv = 1/1 a.e. in D}
vEK

Prove or disprove that u ia quasiconcave. (Suggested by F.Brock.)
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Problem 19: Is Steiner-synunetrization continuoUB in W~.p(lR")? For n = 1
the answer ia positive (Goron), for n ~ 2 and Schwarz-symmetrization it is
negative (Almgren and Lieb). (Suggested by F.Brock)

Problem 20: Suppose there exists q E LOO(JK') and an "eigenfwtction"
t/J E LOO(O) solving -~1/J + q t/J = 0 in IR" and changing sign in J;Jr. Does
this imply that L = (-~ + q) has sorne negative spectrum, Le. there exists
<p E qo(Ill') with I IV~I~ +q~2dx < 01 'Tbe answer ia positive for n = 1,2,
hut open for n ~ 3. (Suggested by H.Berestycki.)

Problem 21: On travelling fronts for systems from combustion with Lewis
number :/= 1. Let w C IR"-1 and E = IR x w. Consider the system

-~T+ (e + a(y»l1I'/8Xl ='j(T)Y ,
-L-l~T + (e + a(y»8Y/8xl = -I(T)Y

(1)

(2) •
in the cylinder E under homogeneous Neumann conditions lJT/ IJv = 8Y/811 =
oon the lateral boundary IRx8w and under Dirichlet conditions T( -00, y) =
O,Y(-Oo,y) = 0; T(oo,y) = 1, Y(oo,y) = O. It is known that solutions exist
for constant Ct or (if L ia close to 1) for alowly va.rying Q. Open is a) if the
solutions for a == 0 and L # 1 can depend on y and b) what happens for
strongly oscillating Ct. (Suggested hy H.Berestycld.)

Problem 22: Let D C IR" he bounded" and suppose the functional F =
fD J{IVul)dx has a minimizer Wider u = 9 on 8D. Moreover let I" > 0,
J coercive. If 1'(0) = 0, then F is Frechetdifferentiable and u solves the
Euler equation div(/'(IVuI)Vu/IVul} = o. Suppose /'(0) > o. Then the
functional is not differentiable at functions with critical points.
a) What ia a meaningful definition of a solution?
b) Show that critical points of solutions to the (degenerate) Euler equa­
tion are not isolated hut are located along clrcles or lines. (Suggested by
G.Talenti.)

Berichterstatter: A. Wagner
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