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Tagungsbericht 7/1995
Qualitative Aspects of Partial Differential Equations
12. — 18.02.1995

Die Tagung fand unter Leitung von H.Berestycki (Paris), B.Kawohl (Kéln)
und G.Talenti (Florenz) statt. Leitmotiv war die Gestalt von Lésungen par-
tieller Differentialgleichungen. Inhaltliche und methodische Schwerpunkte

" lagen auf den drei Themen Rearrangement, neue Anwendungen der Moving

Plane Methode und Blow up Phinomene. Die hervorragende Atmosphére
des Instituts und eine Abendsitzung mit 22 offenen Problemen trugen zu
einem regen Austausch von Ideen bei.

ABSTRACTS:
James Serrin:

Asymptotic Stability and bloﬁ up of solutions of dissipative wave -

systems
We treat dissipative wave systems subject to the action of strongly nonlinear
potential energies. A typical example is

e — Du+ AL) | ue "2 2V(2) |u PP u 0 tx)elIxQ (1)
’ u(t, ) 0 (t,z)elx 80 (2)

where I = )LO, o0) and € is a bounded open set in IR". The values of u are
taken in IRV, N > 1, whilem,p > 1and AeC(I — RY*N),VeC(Q — R)).
The term V(z) | u |[P~2 u represents a restoring force if the + sign is used,
and an amplifying force for the — sign. Let the energy of a solution be
defined by E(u(t)) = ;‘( (I u(®) P + | Du |* £3V(z) | u [P)dz. Then for the

typical case (1)&(2) our results show, that all solutions u satisfy E(u(t)) — 0
as t — 0o, provided that

¢ m
2 < m < max(p, 2n 1 14| A(S) |

< n—2)’ 'wt—mo BT ds < oo
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and the + sign is used; while when the — sign appears all solutions u satis-
fying E(u(0)) < 0 blow up in finite time T provided

h(t)

TAQ =% = ™

max (2, m) <p 7min (C,
0

Here c is any positive constant, and (A(t)v,v) 2 h(t) | v |*.

Almut Burchard:
The Riesz Rearrangement Inequality

We determine the cases of equality in the Riesz Rearrangement inequality,
which says that for any functions f,g,h : JR® — IR (so that spherically
decreasing remangementa f*,9°, h* can be defined):

(5,00 = [ [ Fw)ate - y)hiz) dydz < I(f",g",h%)

This inequality has found applications in functional analysis (such as Young s,
the Sobolev, and the Hardy - Littlewood - Sobolev inequalities) and to varia-
tional problems of Mathematical Physics (shape of fluid bodies). It is closely
related to the Brunn - Minkowski and the isoperimetric inequalities.

The main result states, that for characteristic functions of measurable sets,
there are two cases. If the volume satisfies a certain size relation, then equal-
ity implies that (essentially) the sets must be already symmetric. If the
size relation is violated, then there are many cases of equality. Similarily, if
the distribution functions of two of the three functions are continuous, then
equality implies that f, g, h are (up to the symmetries of J) already symmet-
rically decreasing.

Giovanni Alessandri:

On Courant’s Nodal Domain Theorem

The Courant nodal domain theorem states, that if u is the n — th eigenfunc-
tion in the selfadjoint elliptic eigenvalue problem

—V-(AVu)+qu = Adpu in @, u=0 on 89 (1)
and the leading coefficients are Lipschitz continuous then:
# nodal domains of u £ N (2)
2
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My aim is to investigate the case when the prschitz condition is dropped or

relaxed. The results are:
(I) When n = 2 and A ¢ L then (2) continues to hold.
(II) When n >3, AeC*and N > 1 then (2) is replaced by

§ nodal domains of u < 2(N — 1).

Fred Weissler:
Exact Selfsimiliar Blow-Up for Semilinear Parabolic Equations with

Nonlinear Gradient Term
In a joint work with S.Tayachi we consider self - similar solutions of

By =0y -b| VY + |y P Y
where ¢ = ¥(t,z),ze R*,t <0,6>0,p> 1,9= p—z_f; More precisely

W(t,7) = (—t)v__—"fu(%),

where

u"+(1‘:—1-§)u'-b|u'|v-p_lu+|u|r-'u=o

We prove that for n = 1, there exist & > 0, po > 1 such thatif 0 < b < bp and
1 < p < po, then there is a regular solution u(r) such that u(r) > 0,4/(r) <0
for all r > 0 and lim,_. rity(r) = ¢ > 0. It follows that lim,_o- %(t,z) =

clzlﬁ.

Friedemann Brock: .

Continuous Steiner Symmetrisation and Applications to Problems
in the Calculus of Variations

For each function u : IR® — IR having the property that all level sets {u > c},
¢ > infu have a finite Lebesgue measure we construct a scale of functions
ut,0 < t < oo, which is a continuous homotopy between u and u* ( the

. Steiner symmetrisation of u ), i.e.:

P=u ; v*=vu _
t - u'  continuous in L5 (IR™) and

rightcontinuous in W P(IR") for 1 < p < co.
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We prove various integral inequalities which are ”continuous” analogues of
well known inequalities for Steiner symmetrisation.
As an application we show that smooth solutions of the semilinear problem:

-V -(Vu|Vulf?) =0 in Q
u > 0 in Q
u =0 in 80

with 2 = Q* bounded, f continuous in u, f(:,u) = f*(-,u) satisfies some
weak - local - kind of symmetry. .

Olga Oleijnik:

On Asymptotics of Solutions to Some Nonlinear Elliptic Equations
Many problems of Mathematical Physics lead to consider the asymptotic be-
haviour at infinity of solutions of semilinear second order elliptic equations in
unbounded domains and, in particular, in cylindrical domains. Questions of
this kind occur in problems of the theory of travelling waves, homogeneization
theory, stationary states, boundary layer theory, biology, flame propagation,
in probability theory (branching processes) and so on.

For equatlons of the form

Zl Bi(ai;(x)8u(z)) + 2 a;(z)9;u(z) - f(z,u) =

in the domain S = {z : ¥ ¢w,0 < 7, < oo} with the boundary condition
u=0o0no = {z:z’eaw,0<z,. < oo} or du/dv = 0 on o, where w

‘is a bounded smooth domain, 2 = (i, ...,Zn~1), ¥ i8 & conormal direction,

under some conditions on a;;,a; and f the asymptotlc behaviour for u(z) as
T, — 00 is given.

Two new approaches to investigate these problems are given (the method of
subsolutions and supersolutions and the method of mean value functions).

Michael Wiegner:
Blow Up of Solutions of Some Degenerate Parabolic Equations
We study the degenerate parabolic equation

u = wAu+uv™! on Qx(0,7)

u =0 on 80x(0,T)
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and u(z,0) = ¢(z). Here @ C IR® is a smoothly bounded domain, p > 1,
and 0 < ¢ < ¢(x)/dist(z,09) < c. If Ay < 1, where )\, denotes the first
eigenvalue of —A on § with Dirichlet conditions, we prove:

There is a unique solution, positive and smooth inside, with max (u(t,z))—
oo for t — Ty, and the lifespan Ty can be estimated by ¢;”c(n,p, Q) < To <
cPé(n,p, ). Some numerical calculations in the one dimensional symmet-
ric case (2 = (—a,a),a > J,zu; < 0 for all t) give hints, that the scaled

asymptotic profile w(z) = lime—z, u(t, )/u(0,t), which is easily seen to fulfill .
w(z) > cos(z), may be different from cos(z). '

Michel Chipot: .

Elliptic Equations Involving Critical Exponents and Nonlinear Neu-
mann Boundary Conditions

Let n > 3, H = {z = (21,...,Tn) : 71 > 0}, a,b constants. We describe all
the nonnegative solutions to ‘ : e

—Au = e in H; _ 1;
au - r

B o L
W bu in 6H %
where v = —e;. There are two types of solutions depending on a and b:
) u = a(z—2"P+6)""T where a>0
b . a
0 = ——— ﬁ = — ;-!'1
o no2% g n(n—2)a
1rn solutions depending on z, only

This is joint work with M.Fila (Bratislava), L.Shafrir (Metz).

Thomas Lachland-Robert: . -
Some Application of the Monotone Rearrangement to Elliptic Equa-
tions in Cylinders

We study the problem
~Au = f(@',u) on Q=(0,h)xw (1)
%’: = 0 on v{O,h}xw 2)
u = 0 on {0,h} x 08w (3)
5
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where h > 0,w C IR¥"! is a bounded domain, z = (z,,2’) € 2, and f is
superlinear and subcritical.

We prove, that if h > a critical value h*, then there exists a solution u of (1)
- (3) satisfying 81u < 0. (This implies, that there are many solutions if h is
large). .

We use the montone decreasing rearrangement in order to exhibit this solu-
tion. In the simple case f(z/,u) = a(z’)vP,a > 0, bounded and pe (1, %}:-)
an analysis of the equality [ | Du |*= [ | Du* |? suffice.

In the more general case we use the mountain pass theorem (f has to satisfy
the corresponding assumptions) and the continuity of the rearrangement in-
the H!— norm for a dense subset of H!.

Hans - Christoph Grunau:

Positive Solutions to Semilinear Poyharmonic Dirichlet Problems
Involving Critical Sobolev Exponent

We are concerned with the semiliniear polyharmonic model Dirichlet problem
(=A)v =X +v|v|*'in Band D |pp=0 for | a |< K — 1. Here K is
a positive integer, B is the unit ball in IR", n > 2K , s = 222K ig the critical
Sobolev exponent. Let Ak denote the first Dirichlet eigenvalue of (—A)¥ in
B. The existence of a positive radial solution v is shown for :

. Ae(0,Ak), if n>4K _
o Me(AAk), forsome Aed(n,K)e(0,Ax) if 2K+1<n>4K -1

The crucial point is to show the positivity of a solution v with the help of
" the positivity of Green’s function for (—A)¥ in balls

Vincenzo Ferone:

Convex Symmetrization , '

Let H(£) : IR® — IR be nonnegative, positively homogeneous of degree one
and convex such that the measure of the set {z : H(z) < 1} is equal to the
measure of the unit ball in IR". One can define the perimeter of a set E with
respect to H as

Pu(E) =sup{ [ divg : ¢ ¢ C(I™ IR"), H'(¢()) < 1}
E

where HO(z) sup,m)g' < z,€ > is the polar function of H. The following

6
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isoperimetric inequality can be proven: Py(E) > nlc'% | E 5=

where &, =| {¢ : H°(&) < 1} |. Using this inequality it is possible to show,
that for any nonnegative function compactly supported in IR™ such that
R}; H*(Vu)dz < oo, the following "generalized” Polya-Szegd principle holds:

H H (Vi
m/ (Vu)dz > R[ (Vi)dz

where i is the rearrangement of u such that its level sets are homothetic to
the set {¢£ : H°(£) < 1}. Using (1) one can also obtain comparison results
for solutions of the Dirichlet problem:

-V-@Vu)=f, ueW;Q)

where 2 C IR" is a bounded open set and a(£) satisfies (a(£),£) > H?(€)..
The above results are contained in-a joint paper with A.Alvino, P.L. Llons
and G.Trombetti. .

Neil Trudinger:

Symmetrization for Fully Nonlinear Elliptic Equations

We apply our isoperimetric inequalities for quermassintegrals on non-convex
domains to obtain symmetrization results for nonlinear operators of the form
Folu} = [D%u)m = sum of the m x m principle minors of the Hessian matrix
D?u, acting on m— admissable functions u e C2(§2), 2 C IR", i.e. functions
u satisfying [D?u + €]m > [D*t)m, V€ > 0, £ e S™. Here m = 1,...,7, the case
m = 1,m = n corresponding respectively to the Laplacian and the Monge

Ampere operators, being already well studied. Two examples of our results

are:
(1) If Fim[u] = ¥ 2 0 in Q, © m-admissable, u = 0 on 8Q, then u,_, > u°
in Bg, where u;,_, is the m — 1 - symmetrand of u as determined by the

_quermassintegral V,_n41, R = ( V,.-,,,,H(Q))n_-ém and ° is the solution

of the radial problem F,,[u°] = 1/:‘ in Bg, u® = 0 on Bk, %" is the spherical
rearrangement of .
2) In[u] == f{ F38udju > In[ug,_,), for all m - admissable % in 2, u = 0 on

89, where Fi(r) = 52 Fn(r).
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Congming Li:
Some Applications of the Method of Moving Planes

-1) Jointly with Wenxiong Chen, we seek metrics conformal to the standard
ones on S™ having prescribed Gaussian curvature in case n = 2 (the Niren-
berg Problem), or prescribed scalar curvature for n > 3 (the Kazdan-Warner
problem). There are well-known Kazdan-Warner and Bourguignon-Ezin nec-
essary conditions for a function R(z) to be the scalar curvature of some con-
formally related metric.
We show that, in all dimensions, if R(z) is rotationally symmetric and mono-
tone in the region where it is positive, then the problem has no solution at all.

. It follows that, on S, for a non-degenerate, rotationally symmetric function
R(0), a necessary and sufficient condition for the problem to have a solution
is that R’ changes signs in the region where it is positive. This condition,
however, is still not sufficient to guarantee the existence of a rotationally
symmetric solution. -We also consider similar necessary conditions for non-
symmetric functions.

2) 1 generalize and simplify the work of L. Caffarelli, B. Gidas and J. Spruck
about local asympototics of non—negatlve solutions to semilinear elliptic equa-
tions.

'3) Jointly with J. Bebernes and Y. Li, we studied the existence, uniqueness
and stability of the travelling front with exponetial decay to some combus-
tion problems.

T.A. Shaposhnikova:

Homogenization of Differential Operators in Partially Perforated

Domains

In the lecture we consider the problem of homogenization for the Laplace

operator in a partially perforated domain §2, in the case when the size of the
- holes is much smaller than the size of the cell. The boundary of the holes

are denoted by S, and the exterior boundary is denoted by I'.. We study the

following boundary value problems:

(I Au=f in Q,u=0 on 0,

(In Au=f in ﬂ,,? +bu,=0 on 8S¢, u,=0 on T .

(arn  Adu.=f in Qg,aau =0 on 8S¢, u.,=0 on [

Deutsche :
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We study the behaviour of u, when ¢ — 0 and for every case we obtained
estimates for u.—u, where u is a solution of a limit problem. We also consider

the corresponding spectral problems

Peter Laurence:

3-D MHD Equilibrium: The Inverse Problem

Both, the equations of ideal state MHD equilibria and inviscid, incompress-
ible, steady rotational flow, can be written as

Vxuxuy = Vp in Q
V-u =0 in

where in MHD, u is the magnetic field and in fluids the fluid velocity.

The physically relevant boundary condition is u-v = 0 on 89. Until recently
no solutions were known to exist in domains 2, that do not possess a symme-
try. In the case @ =T = a 3 - D torus, close to axissymmetry, we establish
the existence of such tori by solving an appropiate inverse problem.

Steven J. Cox:

The Design and Identification of Dissipatve Structures

With respect to the dissipative wave equation

Uge(Z, ) — uzz(z,t) + a(z)ue(z, t) =0 for 0<z<1

with fixed ends, we show, under the assumption that a ¢ BV(0,1), that the
rate at which energy decays coincides with the spectral abscissa of the gen-
erator of the associated semigroup.

We show that this decay rate assumes its (negative) minimum over those
a(z) whose total variation does not exceed a given constant. We show, that
a(z) = 7 is a weak local minimum and provide numerical evidence in support
of the conjecture that = is in fact the local minimizer. :

Steffen Heinze:

Wave Solutions for Reaction Diffusion Systems in Perforated Do-
mains

Consider a system of reaction - diffusion equations in the ¢ - periodicallly
perforated IR", with Neumann boundary conditions at the holes. Travelling

9
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waves in this domain satisfy
ks
u(t — %,z +ee) =ut,z) i=1,..,n

.where (k — 1,...,k,) is the direction and c is the unknown velocity of the
wave. As the period of the domain tends to zero the homogenized system
admits a nondegenerate wave solution. It is shown, that then the original
problem also admits a wave solution. Furthermore error estimates in powers
of € are given. This problem has applications, e.g. in combustion processes.

N

Vladimir Oliker: .
Some Results on Mean and Gauss Curvature Flow : ‘
We consider an evolution that starts as a flow of smooth nonparametric sur-

faces propagating in space with normal speed equal to mean curvature. The

boundaries of the surfaces are assumed to remain fixed. The domains over

which such flows are considered are not required to be "mean convex”. Con-

sequently, singularities may develop on the boundary. We show, that such
singularities will disappear in finite time and the solution will become smooth

up to the boundary. We also investigate the asymptotic behaviour of such

flows as t — oco. These results are obtained jointly with N.N. Uraltseva.

Martin Flucher:

Vortex Motion in Two Dimesional Hydrodynamics and The Core
Energy Method

We study the dynamics of point vortices in an inviscid, incompressible fluid
in a bounded container. This is a dynamical system of infinite kinetic en-
ergy. Still we can derive a finite integral of motion by means of the core
energy method. The resulting renormalized is a Hamiltonian reflecting the
interaction between different vortices via a special Green function and the
self interaction of each vortex with the boundary in terms of a Robin func-
tion (regular part of the Green function). A list of qualitative statements on
the dynamics of the vortex centers can be derived from conservation of the
Hamiltonian using results of [BF).

[FG] Flucher M., Gustafsson B.: Vortex motion in two dimensional hydro-
dynamics (in preparation) '

(BF] Bandle C., Flucher M.: Harmonic radius and concentration of energy,
hyperbolic radius and Liouville equation Au = expu and Au = uﬁ, (to

10
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appear in SIAM Review).

Bradley Willms:

An Isoperimetric Inequality for the Buckling of a Clamped Plate
This is joint work with H.F. Weinberger. We consider a homogeneous,
isotropc plate covering a smoothly bounded, plane domain, clamped on the
boundary D, under a uniform, compressive load proportional to A. At the
critical buckling load, A = A, is the least eigenvalue of the boundary value
problem

A% +AMAu =.0 in D
du

=% = 0 m» oD
where u(z, y) is the transverse displacement, and A is the Laplacian operator.
Let D* = unit disc. Then a conjecture of Polya and Szegd is that -e
Ay(D) > Ay(D*) VD suchthat |D|=|D"| .

They also showed, that u > 0 in D is a sufficient condition for the validity
of the conjecture in all dimensions. Following Courant & Hilbert we show
that a "naive” necessary condition for a minimum of A;(D) under domain
variation, is that Au |sp=c.

From this boundary condition it follows,that D is a ”Schiffer” domain, i.e. a
domain for which there exists a non constant solution V to

Av + A]U = 0 in D

Su .

W = 0 in 8D :‘
| v = X—lc in 8D kN
If D is not a disc, then the isoperimetric inequalities of Faber & Krahn of
Payne & Polya & Weinberger and of Payne & Weinberger are combined to
give the result, A,(D) > A,(D*). Existence of a minimizer follows locally in
IR™ from a theorem of Pironneau, and global existence for convex domains
in IR? is proved with an idea of B.Kawohl.

11
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Jerrold Bebernes:
Beyond Blow Up
Consider the Cauchy initial value problem

u—Au=(1-¢)f(u), zc¢IR*,t20,e >0 (1)
with u(z,0) = u(z) VZ 0, where ug is radially symmetric, decrasing and
uo = u(r) e C?, r =| | satisfies ug = 0, uj(r) < 0. For f(u) = expu or v,
p > 1, assume 1o is such that the associated (ignition) problem (e = 0):

uy — Au = f(u) (#5]

has finite blow up time T. Then the blow up set is (0,T') and the final time

blow up profile called a hot spot is precisely known. The question adressed
is to determine the behaviour of the solution Q(z,t) of (1), which exists on
IR x [0,00) and is bounded above by % for t > T. '

Michiel Bertsch:
Fourth Order Parabolic Equations
Consider the equations

wy = _wzzzz'*'(%)zz (1)
w = —(4Ug)e (nelRY) . 2

(1) describes interface fluctuation and w(z,t) has the properties of a proba-
bility density: w(z,t) 2> 0 and [ w(z,t)dz = 1 ( see Bleher, Lebowitz, Speer
in Comm. Pure Appl. Math, 1994).

(2) is a model for the dynamics of a thin liquid film on a horizontal solid sur-
face driven by surface tension. The lubrification approximation is assumed
to be valid and u stands for the thickness of the liquid film. Current values
fornaren=2andn=3.

We show that (1) and (2) possess nonnegative solutions (although the linear
equation U + Uszzzz = 0 does not preserve nonnegativity) and study their
positivity properties. Both equations exhibit nonuniqueness, and for (2) the
qualitative behaviour of the solution depends strongly on the value of n. As
a curiosity we observe, that in order to obtain strictly positive approximating
solutions; instead of regularizing the equations, we make (1) more singular

12
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and (2) more degenerate.
(1) is in preparation as joint work with R.Dal Passo {(Roma), while (2) is joint
work with E. Beretta (Roma) and R.Dal Passo and will appear in Archive

" Rat. Mech. Anal..

Nicola Garofalo:
Smoothing Effects and Monotonicity for Evolution Equations
Consxder the Allen - Cahn equation in IR™ x (0,00)

Au—u¢=u -u

Tt models the mot:on- of phase trans:tloﬁ layers by surface tension. Solutions

to (1) satisfy a monotonicity property which is, in fact, shared by solutions
of a large class of equations related to motion by mean curvature. Here is
the main result

Theorem: Let u be a smooth solution to ' -
Au—vu;, = F(u) in IR"x (0,00)
u(z,0) = uo(z), ) -

and suppose that F(u) > 0 for all we IR. If | Vo [’< 2F(uo) then for any
(z,t) e IR™ x (0,00) one has

| Vu(z, t) 2< 2F (u(z,t)).
Similiar monotonicity results hold for equations of the type
V- (@(| Vu [)Vu) - F(u) = u®(| Vu )

under general structural assumptions on $.
G.R. Burton:

Rearrangements and Vortices

Let © ¢ IR? be a bounded open set and suppose 82 is a smooth simple closed
curve. An ideal fluid, obeying the Euler equations in  with tangential veloc-
ity on 99, is studied. The vorticity, which is a vector field perpendicular to
IR?, may be represented by a scalar field £, and the kinetis energy E can be
expressed by E(£) = %‘{EK{, where K = (—A)~! (zero Dirichlet boundary

13
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conditions). The following variational problem is considered: Find critical
points of E subject to the constraint, that £ is a rearrangement of a pre-
scribed function &. Solutions with prescribed energy are shown to exist, and

_ to represent steady flows of the fluid.

Xu-Yan Chen:
Strong Unique Continuation and Local Asymptotics for Parabolic
Equations

Local behaviour of solutions of second order hnea.r parabolic equations near

zero points is investigated. The main results are:

(i) strong unique continuation theorem: a solution having a zero point of
infinite order vanishes identically;

(ii) a complete classification of local forms of asymptotics in terms of poyno-
mial solutions of the classical heat equation;

(iii) upper bound estimates for the Hausdorff dimension of nodal sets.
Applications include:

(iv) a complete long - term description of spatio - temporal structure for

bounded nonegative solutions of a nonlinear parabolic problem on a ball;
(v) the bang - bang principle and a description of oscillations for optimizers
in a control problem involving one - dimensional parabolic equations.

Wolfgang Reichel :

Symmetry for an Overdetermined Boundary Value Problem in Po-
tential Theory

We consider a bounded smooth domain Q C IR™ with a constant source dis-
tribution ¢ > 0 on 9. Let ¥ be the induced single layer potential. We prove
the following conjecture of P. Gruber: € is a ball if and only if ¥ is constant
in Q. As U satisfies the overdetemuned elliptic boundary value problem (v
is the outer unit normal) .

A¥Y = 0 in R*"-9Q,
av

% = —¢<0 on 89,
- ¥ = const. >0 on 89,

we can use the moving plane method of Alexandroff and Serrin to show the
radial symmetrey of  and ¥. In fact, the linear problem from potential

14
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radial symmetrey of £ and ¥. In fact, the linear problem from potential
theory turns out to be a very special case of a large class of nonlinear overde-
termined boundary value problems

Au+ f(u,| Vu]) = 0 in R"-9,
ou _ const. <0 on 99,
dv
u = const.>0 on 8%,

u =0 at o0

Under suitable hypotheses on f, the moving plane method is used again to
show, that all solutions and the underlying domain are radial.

Friedmar Schulz: )

Symmetrization with Respect to a Measure

The spherical symmetric rearrangement u* of a nonnegative measurable func-
tion u on IR™ with respect to a measure given by a nonhomogeneous density
distribution p was studied. Conditions on u were given, which guarantee that
u* is continuous or absoltely continuous on lines, i.e., Sobolev regular.
The energy inequality was proven in n = 2 dimensions by employing a Carle-
man type isoperimetric inequality if log p is subharmonic. The energy equal-
ity was settled, as well as the case of n > 2 dimensions considered, when it
was assumed, that p = Jh with a K— quasiconformal map h.

APPENDIX: OPEN PROBLEMS
Problem 1: Consider a capillary surface )

div—ﬂ-—:nu in Dc IR?
© 14 [Vul?

with prescribed contact angle

_yun_ =cosy on 8D
V1+|Vaf?

Let (D) = minu, B(D) = maxu. If D* is a disc of same area as D, show
a(D) 2 a(D*) and B(D) 2 B(D*)

15
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(Suggested by C.Bandle; from the last page of R-Finn’s book.)

Problem 2: Consider the P-function associated to Au+ Au = 0in D, i.e.
consider ¢ := |Vu|? + Au?. This function satisfies

Ag— VQ—QVdJ =0 in D, where Q= |Vu|?

If D c IR? is convex and ¢ = const on 8D, show that Q is quasiconcave.
This would lead to a proof of Schiffer’s (or the Pompeiu) problem. (Suggested
by B.Willms.)

Problem 3: Consider the variational problem min R(v) = [p dz/(1+|Vv|?)
over the following set A of admissible functions: A := {v € WL=(B) |0 <
v < M, v is concave}. Here D is a convex domain in IR". It is known that
a solution to this problem exists, and what it looks like if D is a ball in IR?
and if the solution is radial. Prove or disprove that for D = B,(0) c IR®
the solution is radial. (Suggested by B.Kawohl.)

Problem 4: Let D C IR? be convex and consider the solution u of u;— Ay =
0in D x IR*, under initial condition u(z,0) = 1 in D and boundary condition
u(z,t) = 0 on 8D. It is known that for every positive t the function » has
exactly one spatial maximum z,(t), the hot spot. Suppose that the hot spot
does not move in time. Does this imply some sort of symmetry of D? Partial
answers to this questions can be found in SIAM Reviews. (Suggested by
B.Kawohl, originally from M.Klamkin.)

Problem 5: Let D ¢ IR? and consider Au+ At = 0 in D, u = 0 on
8D. Can it happen, that a nodal surface {x € D | u(z) = 0} has positive
distance to 3D? The answer is negative (Alessandrini/Melas) if D is convex.
(Suggested by B.Kawohl, originally from L.Payne)

Problem 6: Let D C IR? and consider Au + vou = 0 in D, du/6n =0 on
8D. Here v, = 0 is the first eigenvalue. Show that |u| attains its maximum
only on 8D. (Suggested by B.Kawohl, originally from J.Rauch.)

Problem T: Consider the Monge-Ampere-type equation
det[D*u) = (—\u)® in QCIR® , u=0 on 9Q ,

where Q is uniformly convex. It is known that there exists a convex solution
u and a positive “eigenvalue” A such that u € C*(Q2) N C*'(}). Show
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that u € C=(%). The same problem can be posed for other curvature type
operators, namely Fin[D?s] = (~Au)™ with 1 £ m < n. (Suggested by
N.Trudinger.) )

Problem 8: Pompeiu’s problem: Characterize those sets 2 C IR® such that
(f € CUR?) and [,q) f(z)dz = 0 for every rigid motion o) implies f = 0.
This question is known to be equivalent to Schiffer’s conjecture: Consider

Au+du=0 in QCcIR? , Bu/dn=0 on 9Q ,

and suppose that in addition u = const on 6Q. Show that Q must be a
ball. There have been many attempts to prove this conjecture; a more recent
contribution states: If 89 can be parametrized by a finite Fourier series, then
€ must be a ball. Show that the same is true if 8Q can be parametrized by
an infinite Fourier series. (Suggested by N.Garofalo, originally by Pompeiu.)

Problem 9: Consider the Cauchy-problem o

ue = (p(W)us(1 +u3)"?), =y(u,uc).) for z€R , t>0

u(z,0) = uo(z) for z € IR, with smooth uo and ¥. It is known that for
sufficiently steep initial data solutions can develop discontinuities in finite

time. Approximate by ¥,(u,p) = ¥(u,p) + p. Show that the approximate

solutions u, satisfy: e, : IR —» IR* — [—00, +00] are (locally) equicontin-
wous. This would imply that u behaves like a first order conservation law
u; = @(u), near the shocks. (Suggested by M.Bertsch.)

Problem 10: The equation u; = @(u.). (with ¢ and % as drawn below) is
regularized by u, = @(us)z + T¥(uz).. Here 7 << 1 is a small parameter.
As in Problem 9 one knows that u can become discontinuous in finite time.
Give a constructive proof for this. (Suggested by M.Bertsch.) :

¥ g

Problem 11: Given D C IR? find the location and shape of A C D such
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that there exists a function u, harmonic in D\A, and satisfying u = 0 on
0D, u =1 0n @A and du/8n = Q on HA. As Q — o0, A becomes small.
Show that it approaches the shape of a ball. (Suggested by M.Flucher.)

Problem 12: Consider the problem Au—e® = 0 in the semi-infinite cylinder
S = w x IR, where w C IR*"! is bounded and smooth,

a) under boundary condition 4 = 0 on 8w x IR*. Then it is known that
u(z,T,) can only have the following two types of asymptotic behaviour as
Z, — +00

i) u(z) = cz(z) exp{VA1zn} + O(1) or

if) u(z) = uo(z') + O(exp{—vAiza}).

Here z, X satisfy Az + \iz=0inw, 2>0inw and z=0o0n 89, and ¢ < 0;
while ug solves

Ay -€e“=0 in w , w=0 on 8D ,

b) under boundary condition du/8v = 0 on fw x IR*.

Then u(z’, z,) can only have the asymptotics

iii) u(z) = cxn + o(x,) With ¢ < 0, or

iv) u(z) = —2Inz, + o(In z,).

Prove or disprove existence of solutions with behaviour i), iii), iv). What
can be said about asymptotics and ex:stenoe on the infinite cylinder w x IR?
(Suggested by 0.Oleinik.)

Problem 13: Consider the equation Au — Iul""u = 0 in the semi-infinite

cylinder from problem 9, under Neumann boundary conditions du/8v = 0
on 8w x IR*. Then the following asymptotic repmentatlon is known:

u(z) = £Kp(zn + h)/1P 4 Z Avi(2')e V™ 4 o(e~VPEn)
=1
as T, — 00, where h, A; are constants, v is the second eigenvalue from Prob-
lem 6 in D = w, m is the multiplicity of v, and v;(2’), i = 1,...,m are the
orthogonal eigenfunctions from the eigenspace to v;. Morewer enther K,=0
l(p—l)

or K, = (§#3)

How does u(z’,0) mﬂuence the behaviour of u so that K, = 0, K, # 0 or
u(z) — +oo as T, — T < 07 (Suggested by O.Oleinik.)

Problem 14: Consider L(u)—|ulP'u=0in 2, £ = 00n80N{z : |z| > N}.
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What is a behaviour of u(z) or |u(z)| as |z] — oo? See J.1.Draz, 0.A.Oleinik,
C.R.Acad.Paris 315 (1992), 787-792, suggested by 0.Oleinik.

Problem 15: Consider boundary value problems with discontinuous coeffi-

cients
Liu=0 in § , Lwu=0 in

and suppose that ©2; and €, look like this:

What is the optimal regularity of u near the points marked with arrows.
(Suggested by O.Oleinik.)

Problem 16: Prove the isoperimetric inequality (or a related Sobolev resp.
Poincare inequality) : v

nal/® ( /‘; p(z)dx).(n-l)/n < /m VRV :

where a, is the volume of the unit ball in IR, under a suitable assumption
regarding the weight p. For n = 2 this is known if logp is subharmonic
(Carleman). See also F.Schulz and V.Vera de Serio, Trans.Amer.Math.Soc

337 (1993). (Suggested by F.Schulz.)

Problem 17: Let D C IR be convex and f € C!(IR*) with £(0) > 0-and
f' >0 (and maybe f' < A;). Let u € C2(22) N C(R) be the minimal solution

of
-Au=f(u) u>0 in D , u=0 on oD

Show that u is quasiconcave. (Suggested by F.Brock.)

Problem 18: Let D C IR" be convex, 3 € C*!() a concave obstacle in
the obstacle problem

gg’r(l/ |Vu(z)]?dz , K ={veW}*D)|v=y¢ ae inD}
Prove or disprove that u is quasiconcave. (Suggested by F.Brock.)
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Problem 19: Is Steiner-symmetrization continuous in W}®(IR™)? Forn = 1
the answer is positive (Coron), for n > 2 and Schwarz-symmetrization it is
negative (Almgren and Lieb). (Suggested by F.Brock)

Problem 20: Suppose there exists ¢ € L®(/R") and an “eigenfunction”
1 € L>(N) solving —Ay + q ¥ = 0 in IR" and changing sign in IR". Does
this imply that L = (—A + ¢) has some negative spectrum, i.e. there exists
@ € CP(IR") with [ |Ve|? + gp?dr < 07 The answer is positive for n = 1,2,
but open for n > 3. (Suggested by H.Berestycki.)

Problem 21: On travelling fronts for systems from combustion with Lewis
number # 1. Let w C IR"! and T = IR x w. Consider the system

-AT + (c+ a(y))8T/0z: = [(T)Y , (1)
—L'AT + (c+ a(y))0Y/0z, = —f(T)Y @

in the cylinder X under homogeneous Neumann conditions 8T /8v = 8Y /v =
0 on the lateral boundary IR x 8w and under Dirichlet conditions T'(—00,y) =
0, Y(~o00,y) =0; T(co,y) =1, Y(00,y) = 0. It is known that solutions exist
for constant a or (if L is close to 1) for slowly varying a. Open is a) if the
solutions for a« = 0 and L # 1 can depend on y and b) what happens for
strongly oscillating a. (Suggested by H.Berestycki.)

Problem 22: Let D C IR™ be bounded and suppose the functional F =
Ip f(|Vu|)dz has a minimizer under u = g on 8D. Moreover let f” > 0,
f coercive. If f'(0) = 0, then F is Frechetdifferentiable and u solves the
Euler equation div(f'(|Vu|)Vu/|Vu|) = 0. Suppose f/(0) > 0. Then the
functional is not differentiable at functions with critical points.

a) What is a meaningful definition of a solution?

b) Show that critical points of solutions to the (degenerate) Euler equa-
tion are not isolated but are located along circles or lines. (Suggested by
G.Talenti.)

Berichterstatter: A. Wagner
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