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Zu dieser Tagung unter der gemeinsamen Leitung von Dietrich Stoyan (TU Bergakademie
Freiberg) und Hans-Georg Müller (University of California) trafen sich Spezialisten der
Stochastik und der mathematischen Statistik aus verschiedenen Ländern mit einem brei­
ten Spektrum an Interessen, wobei das Hauptinteresse den Fragen der rä.umliche Stati­
stik, der räumlichen Datenanalyse (statistische Bildverarbeitung) sowie Problemen der
stochastischen Geometrie galt. .

Diese Themenkreise erfuhren in den letzten zehn Jahren eine enorme Entwicklung, die
durch Erfordernisse aus verschiedenartigen Anwendungsgebieten beschleunigt und teil­
weise bestimmt wurde. Der teils gut ausgebaute mathematische Apparat (z.B. Punkt­
prozesse, zufällige abgeschlossene Mengen, Integralgeometrie) mußte und muß dabei weiter
verfeinert werden, und gerade Verfahren aus der "klassischen" Statistik sind bei räumlichen
(ebenen) Problemen erheblich zu modifizieren und führen auf neue, zum Teil recht kom­
plizierte theoretische Fragestellungen. Eine derartige fruchtbringende Wechselwirkung
zeigte sich in den außerordentlich regen Diskussionen nach den Vorträgen und in den vor­
tragsfreien Zeiten. Neben Vorträgen zu einigen anderen Fragen der Statistik (wie Bayes­
sehe Verfahren und Change-Points Problemen) waren wichtige Themen dieser Tagung:

• Modelle, Statistik und Stereologie von zufälligen abgeschlossenen Mengen, insbeson-
dere bei Booleschen Modellen und zufälligen Mosaiken,

• Räumliche Markov-Modelle - deren Statistik und Simulation,

• Probleme der statistisc~enGestaltsanalyse,

• Grenzwertsä.tze für Funktionale von räumlichen und abhängigen Größen,

• (Markierte) Punktprozeßmodelle und Bildverabeitung,

• Kaplan-Meier Schätzer und dessen Verallgemeinerungen

• Survival Analysis und Analyse ein-und mehrdimensionale Zeitreihen

Insgesamt hatte die Tagung 37 Teineh~er, die 31 Vorträge hielten. Ein Abend war dem
gegenseitigen Vorstellen gewidmet, was mit einer gelungenen musikalischen Umrahmung
(getragen von Herrn Mammitzsch und Herrn Schmitt) verbunden wurde.
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Vortragsausszüge - Abstracts
V. Benes
Total projections of random surfaces

For a given stationary random surface proeess in lRd we define the projeetion measure by
means of its weights (normal orientations). We derive characteristics of the random pro­
jection measure including intensity, weight distribution, pair correlation function, Palm
distribution. In connection with the formula for the pair correlation function the two­
point weight distribution is studied and the inversion of the two-fold eosine transform
is derived. Finally, the varianee of the projeetion measure is evaluated explieitly for an
anisotropie Poisson process. An applieation for the eomputation of varianees of stereo-_
logieal estimators of surface intensity is given. ..

J. Chadreuf
Modelling random surfaces with Boolean randon functions

A non-parametric estimation proeedure for Boolean random funetions having a half-sphere
as primary grain is proposed when a non-stationarity is present. It is assumed that this
non-stationarity depends only on one known direction and that 00 longe range trend is
present. We assume also that a multiplieative decomposition of the intensity function
between a spatial term and a mean intensity term exists. The method is applied to a case
study in soil science.

S.N. Chiu
Estimators of distance distributions for spatial point patterns: Hanisch' vis
Kaplan-Meier

Statistieal estimators of the empty space function for spatial point patterns are compared.
. It is shown that a Hanisch type estimator is closely eonnected with a Kaplan-Meier type
estimator.introdueed by Baddeley and Gill (1993,1994). Corresponding density estimators
can be interpreted as minus-sampling estimators. For practieal use the Hanisch type
estimator is reeommended.

N. Cressie
Spatial statistical analysis with partially ordered Markov models •

Consider the spatial process {Z(u) : u E D}, where D = {St, ... , sn} is a finite set o~
spatiallocations in IRd• It is easy to see that (D, <), a partially ordered set equipped with
the partial order <, is a one-to-one correspondence with a minimal directed acyclic graph.
We define a partially ordered Markov model (POMM) as having the property that:
The conditional probability of Z(8i), given Z(.) at all sites s· < Si and Z(.) at all sites
unrelated to 8i =
The conditional probability Z(8i), given Z(.) at only the adjacent lower neighbours of Si,

for all Si that are not minimal elements of (D, <).
It is shown that the joint probability of {Z(u) : u E D} can be written ·in closed produet
form and that {Z(u) : u E D} is a Markov random field with neighbours generated from
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the adjacent lower neighbourhood sets of (D, <). It is also seen that POMM's can be
generated hy imposing a partieular loeal Markov property on the (finite) directed acyclic
graph obtained from (D, <) ; the latter construetion is due to Lauritzen & Spiegelhalt~r

(1988, J.Royal Statist. Soe. B). Our results give formulas for the likelihood-based infer­
ence on unknown POMM parameter and for fast simulation. We have used the POMM's
in image texture analysis, Baysian hierarchieal modeling, and spatio-temporal statistcal
analysis.

I. Dryden
Statistical shape analysis

Statistical shape analysis has a wide variety of applications, for example in image analysis,
medieal imaging, computer vision, arehaeology, biology and geography. With increasingly
large amounts of image data being routinely eollected the automatie interpretation of such
images becomes very important. Tasks such as object recognition by a robot, loeation of
defects in fa.ctory goods, and disease diagnosis from museIe ~iopsies would all involve the
use of shape analysis. The shape of an object eonsists all of its geometrical properties
that are invariant under translation, sealing and rotation - and statistieal shape analysis
eoncerns models and methods for inference where this invariance is taken~into account.
Probability distributions for shape will be explored and these will be used f~r practical in­
ference. Many methods for analyzing the size and shape of landmark data are in principle
as straightforward for 3-D data as for 2-D data. For example, Procrustes aD:a.lysis provides
a general framework for shape analysis in rn-dimensions. Alternatively, piocedures such
as edge superimposition are also easily generalized. However, the geometry of the shape
space for 3-D data is complicated and distributions for 3-D shape are not easily obtained.
These issues will be explored in some biological datasets.

T. Gasser
.Estimating shift functions by dynamic time warping

Dur interest in shift functions comes from tbe analysis of sampies of curves (K~eip &
Gasser, Ann. Statist., 1992). In structural analysis we try to align individual functions
to an average dynamie via smooth strictly monotone shift functions. The latter have
been determined on a discrete grid by common features in the curves (such as extrema,
inflection points) followed by strictly monotone interpolation. Dynamic time warping has
heen developed for speeeh analysis and consists in minimizing a cost function, without
" features" . We can show that an appropriately modified cost funetion deterrnines the
"right"shift function. Further, expressions for bias and. varianee can be derived.

F. Götze
Rates of convergence in functional limit theorems and lattice point problems

We eonsider the distribution of quadratic forms Qn = EI<i<j<n aijXiXj in Li.d. r.v.'s
. XI, , X n • It can be approximated by the distribution of Cfn =LI<i<j<n aij}i}j , where

lti, ,Yn are i.i.d. normal r.v.'s whieb have zero mean and varian-ce f similarly as tbe
X's. Assuming EJX1 J3 < 00 we prove

sup IIF{Qn < x} lP{Gn < xli = O(in) ,
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where In = maX1~i~n Ei=1 laiil·
If the sixth largest eigenvalue of (aii )i,i=1,...,n is bounded away from zero as n -+ 00, we
prove this approximation up to an errar O(maXl~i~nEi=l la1j l).

For arbitrary ellipsoids E in lRk the following lattice point approximation result holds:

1# (Zk n rE) - Volk(r E)I = O(rk
-

2
) as r -+ 00 ,

provided that k ~ 9. The constants depends on k and the eigenvalues of E only.

M.B. Hansen
Estimators for range of vision

Imagine yourself standing in a forest, what is the range of vision in a particular direction? _
This distance distribution, usually denoted the linear eontaet d.istribution funetion is of.
interest in many spatial statistical applications. It enables e.g. estimation of: (i) preferred
alignment of sets, (ii) parameters of specified spatial models, and (iii) the star volume.
In the talk we will foeus on regularity properties of the distribution funeion and discuss
estimation by means of the redueed sampie and the reeently introdueed Hanisch "and
Kaplan-Meier estimators. Finally we take a look at an application to images of protein
network in yoghurt.

L. Heinrich
Central limit theorems for the empirical K-function of a homogeneous Poisson
process in lRd

The statistical seeond-order analysis of a stat.ionary (isotropie) point process \11 = Ei>l'<5Xi

in lRd is mainly based on the estimation of the so-called K-funetion -

K(r) :=..\ E[\I1(Br (o) \ {o}I\I1({o}) > 0] ,0 ~ T ~ R < 00

where the intensity ..\ = IE\I1([O, 1)°) is known or estimatd by 'l1(An )/IAn l from a rectan­
gular or circular sampling region An expanding in all direetions. In ease of a stationary
Poisson process we have K(r) = ..\2wdrd, where Wd denotes the volume of the unit ball
B1(0). There are several (asymptotieally) unbiased estimators of K(r),· e.g.

Kn(r) = IAnl-1 E IAn (Xi)'1I(Br (Xi ) \ {Xi})

For these empirical K-funetions we prove Berry-Esseen bounds of order IA~I-1/2, Edgee
worth expansions in tbe integral and loeal CLT and large deviation relations in so-ealled
Linnik zones [0, IAn 1

1
/

6 1ogQ (Anll for some Q > O. A functionallimit theorem provides the
limiting distribution of the scaled maximal deviation

ß n := «(Anl/A)1/2 sup IKn{r) - ;\2wdr
dl

O~r~R

whieh is equal to limn_ oo lP(~n ~ x) =
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where L := 2~wdJr1/(1 + 2~wdRd). This enables us to construct a goodness-of-fit test
for checking the Poisson hypothesis on a given point field. The corresponding problem,
when the intensity is estimated, leads to a slightly different result. Most of the presented
results remains valid with obvious changes fot Poisson cluster processes with uniformly
bounded clusters.

E.B. Vedel-Jensen
A simpler proof of the Blaschke-Petkantschin formula

Tbe Blaschke-Petkantschin formula is a formula in integral geome~ry, giving a geometrie
measure decomposition of a q-fold product of Hausdorff measures. In this talk, I present a
new and simpler proaf of this formula, which avoids a product version of the coarea formula
and makes extensive use of multilinear algebra. The proo! is based on induction. In. the
classical version of this formula, the special case of decomposition of a q-fold product
of Lebesque measures is considered. The special case q == 1 is polar decomposition of
Lebesgue measure while the induction step q - 1 -+ q involves in addition to the induction
assumption the commuting relation dL;(q_l)dL;_l = dL:_ 1 dL;. This type of induction
cannot be used in the general case where Hausdorff measures are considered, hut still an
inductive proof is possible. In the talk I illustrate this by proving the case"where one set
is involved by induction on p and r of the subsets .c;(f') involved.

H.R. Künsch
Hidden Markov ra"ndom fields

We show that we can ~stimate the law of a stationary random field witb finite state space
by using the sieve of hidden Markov random fields, i.e. of many one-to-one functions
of nearest neighbour Markov fields on a larger state space. The cardinality of this state
ßpace is the regularization parameter of the sieve. It has to increase together with the
observation window at a suitable rate. We also discuss an algorithm for maximum like­
lihood estimation of the parameters of a hidden Markov random field. It uses Markov
chain Mante Carlo and convex majorization of minus log-likelihood. -.\:_::

M.-C. von Lieshout (joint work with A. Baddaley)

A non-parametric measure of interaction in spatial point patterns

Tbe stength and range of interpoint inter~tions in a spatial point process can be quan­
tified by a function J = (1 - G)/(l - F), where G is the nearest-neighhour distance
distribution function and F the empty space function of the process. J( r) is identically
equal to 1 for a Poisson process; values of J(r) smaller or larger than 1 indicate clustering
or regularity, respectively. We show that, for a large class of point processes, J(r) is con­
stant for distances' r greater than tbe range of spatial interaction. Hence, both the range
and type of interaction cao be inferred from J without parametric model assumptions.
We show that the J -function of the superposition of independent point processes is a
weighted SUffi of those of the components. This property cao be used to study interactions
in multivariate point patterns.

5

                                   
                                                                                                       ©



I. Molchanov (joint work with L. Heinrich)

Limit theorems rar random measures associated with germ-grain models

We consider germ-grain models with i.i.d. compact" (convex) grains and define a dass
of stationary randorn measures associated with them. These measures are determined
by the "visible" parts of the shifted grains, for example, by their exposed boundaries.
The intensity and higher-order moment measures of these random measures are explicitly
calculated and the corresonding ergodic theorem is proved. Assuming that the underlying
stationary point process is absolutely regular or ß- mixing with sorne polynomial mixing
rate (which is automatically satisfied for Poisson processes), a corresponding CLT for the
empirical intensity is proved and its asymptotic variance could be obtained in a closed
form. It turns out that in the special case of a Boolean model the assupmtions to hold
the CLT coincide with those ensuring the finiteness of the variance, i.e. they ,are actuall~
optimal. The class of associated random measures under consideration comprises, in
particular, the positive extensions of the Minkowski measures. The derived limit theorems
are applied to find the approximate distributions of estimators for parameters in statiot;lary
Boolean .models.

J. M~ller

Markov chain Monte Carlo methods and spatial point processes

The objective in this talk is both to review those Markov chain Monte Carlo methods,
which are used for finite point processes with either a fixed or a random number of
points, and to discuss the problem of modelling spatial point processes which exhibit
regular or clustered patterns. We consider a general set-up which covers ordinary spatial
point processes and marked point processes as used in spatial statistics and stochastic
geometry. First we study general Metropolis-Hastings type algorithms and compare these
with the usual birth-death process techniques. The algorithms are used in a discussion on
the effect of conditioning on the number of observed points when performing likelihood
inference for the interaction structure of the model. Secondly, we discuss some practical
aspects of using the algorithms in cases where different types of Markov point processes
are used as models for either regular or c1ustered platterns. Especially, in the case of
clustering, it is demonstrated that the usual Gibbsian point processes or Ripley and Kelly
(1977) Markov point processes do not provide very flexible and satisfactory models and
most algorithms become very ineflicient. However, the larger class of nearest-neighbour
Markov point processes introduced in Baddeley and Mßller (1989) may provide niuce
better models which in turn are feasible for simulation. We illustate this by a particular
example of a nearest-neighbour Markov model for a disc process which can clustered as
weH as regular patterns.

L. Muche
Distributional properties of the Poisson Voronoi tessellation

For the Voronoi tessellation generated by a" stationary Poisson point process in lRd a
method for the determination of contact distributions is given. In particular, a tractable
form of the spherical and linear contact distribution function of the planar and spatial
Poisson Voronoi tessellation and the spherical contact distribution function of a planar
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section through a spatial Poisson Voronoi tessellation (being neither a planar Poisson
Voronoi nor a another planar Voronoi tessellation) is obtained. By means of the linear
contact distribution function an expression for the chord length distribution function
in terms of double integrals is derived. Further results are proved by combining the
distributional properties of tbe generating Poisson process and a well-known formula of
R.E. Miles describing the configuration of points around the neighbourhood of the typical
vertex in a Poisson Voronoi tessellation. This enables us to determine the distribution
function of tbe angles around the typical vertex and the distribution function of the typical
edge length. Planar sections through a higher-dimensional Poisson-Voronoi tessellations
and tbe paircorrelation function of tbe point process of vertices are also discussed in some
detail.

w. Nagel
Estimation of the Euler-Poincare characteristic from pairs of parallel sections

Consider a standard model of stochastic geonietry - a stationary random closed set
(RACS) in lRd, e.g. a Boolean model, having the property that a.s. t~.~. intersection
with any compact convex set is a finite union of convex compact set. For- this model the
intensity Xv of tbe Euler-Poincare characteristic (briefly EPC) can be defined as the mean
EPC per unit volume.
A stereologieal problem cons~~ts in estimating Xv from observations from lower-dimensional
sections. DeHoff and Gundersen' have suggested heuristic methods wbich are based on a
pair of parallel (hyperplane) sections - the so-ealed disector - 'and which are derived from
Hadwiger's inductive definition of tbe EPC. As our main result we present an estimator
for Xv and give conditions ensuring its unbiasedness.

Y.Ogata
Period-age-cohort decomposition of incidence rate from incompletely detected
retrospective data

A statistical point-process model is introduced to decompose an intensity,"-,~etrospective

incidence data on (time,age)-coordinates into three risk factors of period, äge and cohort,
taking missing incidence into consideration. For the objective decomposition a Bayesian
estimation method with a smooth prior is applied. Analysis of onset data of diabetes in
a Ioeal district is carried out. We examine the goodness-of~fit in comparison with other
types of smoothed intensity models of tbe (time,age)-coordinate.

A. Penttinen
Markov chain Monte Carlo method in Bayesian and and likelihood inference
for Gibbsian point processes

The first problem consists in practical aspects in modelling spatial point patterns. In their
statistical anaysis the data, usually a point map, is given. The quality of such a data set is
discussed and same suggestions are made for statistical modelling in connection of Gibbs
point processes. Especially, models with measurement errors are considered.
The second problem is an algorithmic one. Various possibilities to create MCMM algo­
rithms for solving maximum likelihood equations in connection of Gibbs point processes
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are suggested.
The third part gives a short outline for estimation of pair potential function using Bayesian
approach. The method suggested is a "semiparametric" one.

G. Roussas
Estimation under dependence

Let Yni , i = 1, ... , n, observables taken at points Xni, selected at will be tbe experimenter
from the interval [0,1], and suppose that the Yni '5 are related to xni's through the re­
lationship Yni = g(xnil + cni. Here 9 is an unknown real-valued continuous function on
[0,1], and the errors Cni, i = 1, ... , n, satsify the requirement (ent, ... , Cnn) = (et, . .. , en)
in distribution for each n ~ 1; (et), t = 0, ±1, ±2, ... , is a stationary general linear time
series with lE{o =°and Var(eo) = u2 E (0, (0). The problem is that of estimating g(x)A
for each x E [0,1]. The proposed estimate is 9n(X) = E?=t Wni(X)Yni, where theweightsWJ
Wni are subject to certain "regularity" conditions. If the {- process is also strong mixing,
then, under same additional assumptions, it is shown that, as n --+ 00 :

Egn(X) ---+ g(x) , gn(x)~ g(x) , (un(x»-t (9n(X) - JEgn(x» ~ N(O, 1) ,

where (O'n(X»2 = Var(9n(X)) .

If the e- process is not strong mixing, then the asymptotic normality above still holds,
under suitable conditions..
Now let Xl, ... ,Xn be random variables which are positive (negative) quadrant depen­
dent, coming from a stationary sequence, and having (marginal) distribution function
(briefly dJ.) Fand probability density function f. F may be estimated by the empirieal
dJ. Fn and also by a smooth kernel-type estimate FR. For n ~ 1"and each real t, define
i(n) = i(n, t) by :

i(n) := {min{k ~ 1 : MSE(Fk(t» ~ MSE(FR(t»)} ,

where MSE(Fk(t» is the mean squared error of FIc(t). Under suitable. regularity con­
ditions, it is seen that the optimal (in the MSE sense) bandwidth hn is the same as
that in the independent identically distributed case. Next, limsuPn_oo i(n)/n $ 1 and
limn _ oo i(n)/n = 1 iff n[lEFn(t) - F(t)]2 -+ O. If, however, n[lEFn(t) - F(t)]h;;-t -+ 0, then
[i(n) ~ n]h;t tends to a finite constaut 9(t) t:. O. Should this constant be positive (which
happens for a suitable choice of the kernel), then i(n) is substantially bigger than n, ·an_
in fact, i(n) - n -+ 00. In this sense, FR is deficient as it compares to Fn . . •

M. Rudemo
Point process analysis with image data

Three examples of analysis of marked point processes from image data are discussed. In
[3] we estimate loeal weed densities from photos of small rectangles suitable sampled from
a field - each photo covering a ground area of the order 15 x 22cm2 • From such a colouT
image of crap and weed plants against a soil background dijoint segments eorresponding
to green parts of the image are eonstructed. This set of segments, viewed as a marked
point process~ is used to estimate the density of the weed plants. The main problem in
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obtaining good etimates are caused by the edge effects, partial cover of weed plants by
crop and overlapping weed plants.

In the se~ond example, a digitized aerial photo of a plot of an even-aged stand of tbe Nor­
way spruee is smoothed by a two-dimensional kernei, for instance an isotropie Gaussian
kernel. The stern number per hectar in 6 differently managed subplots (varying thin­
ning degrees) is estimated from the number of maxima of the smoothed image. For the
eruciaI bandwidth estimation problem an iterative method based on analyses at several
resolutions for each subplot is suggested in [1].

The third example [2] covers a sequence of weather radar intensity images. Each image
is modelIed as a mixture of two-dimensional Gaussian distributions corresponding to rain
cells. A Kaiman filter is used to track the evolution in time of the rain cells. The filter is
tested for its ability to track tbe rain eells in tbe presence of astrang rotational component
of motion.

[1] Dralle, K. & Ruderno, M. (1995) Stern number estimation bykernel smoothing of
ae~iaI photos.· Manuscript under preparation.

[2] Larsen, M. (1995) A KaIman filter for tracking rain cells. To appe~.)n Proc. 9th
Scand. Gonl. Image Analysis, Uppsala, June 1995. :', ..

[3] Ruderno, M., Sevestre, S. & Andreasen, C. (1995) Marked point process.models crop­
weed images. To appear in Proc. 9th Scand. Gonf. Image Analysis, Uppsa~a, June 1995.

F.J. Samaniego (joint work with 'Nieth)

On the efficacy of Baysesian estimation in nonidentifiable models, with appli­
cations to medical screening tests and competing risks problems;.:

While classical estimation approaches are inapplicable in the presence of nonidentifiabil­
ity, Bayes estimations are feasible and interpretable in many such ,problems. Through
examination of a simple prototype - tbe estimation of the pair (PI, P2) from a binomial
observation X - B(n, Pt +P2) - a template is suggested for the evaluation of the efficacy
of Bayesian estimators of nonidentifiable parameters. The class of prior nirlchlet distri­
butions for whicb tbe limiting Bayes estimator (n --+ (0) improves on the prior estimator
under squared error loss is characterized. In competing risks, the limiting Bayes estimator
of the multiple decrement function is obtained and its efficacy is examined in similar ways.
Among tbe results obtained is that tbe limiting Bayes estimator of the maximal survival
probability based on the prior Dirichlet process with multivariate exponential mean is
uniformly superior to the prior estimate when the true multiple decrement function is
mul_tivariate exponential.

I. Saxl .
Boolean cluster models: Spherical contact distances and induced tessellations

A Boolean cluster model X is the union set of a stationary Poisson process in the space
Z of a11 finite subsets of IRd. Three particular eases .are treated in detail:
(i) deterministic clusters, Le. Z = {Zt, ... , Zm} is a fixed m- tuple of points,
(ii) Poisson clusters, i.e. Z C BR (globular or Matern cluster) or Z C 8BR (spherical
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cluster), where BR is the d-ball of radius R centred in the origin and the number of
cluster members is Poisson distributed with mean 711,
(iii) Binomial (globular and spherical) clusters as in (ii) with fixed m = m.
First, the "size" of the clusters EVd(convZ) is discussed, then the mean dilation tPz(r) :=
E( Z E9 Br ) is computed and the spherical contact distribution function of X

Hx(r) := P(X n Br ~ 0) = 1 - exp{-,\t/Jz(r)} , r > 0 ,

is investigated for all the above mentioned cases, especially with respect to variable R > O.
In the second part, the effect of tbe cluster parameters R, m on the distribution ofcell
area in the Voronoi tessellation generated by point clusters cf the type (i) is examined.

M. Schmitt e
Inference of the Boolean model: A new formula for the Choquet capacity of
the primary grain

We analyse the foolowing points concerning the inference of the Boolean model (= union
of randomly distributed independent grains):
(i) which parameters can actually be inferred in the stationary and non-stationary case
(ii) we experimentally compare three different estimators oI the intensity (Steiner - Weil
- Schmitt). In the convex case, Weil's estimator turns out to be the mostaccurC!-te.
(iii) we present two new formulae for estimating the density in the non-stationary case
and the Choquet capacity of the primary grain (provided it is ~niformly bounded).

(The discussion after the presentation has shown that a co~tinua.tion of Weil's and Schmitt's
estimators can be used to estimate the mean number of connected components.. cf the pri­
mary grain.)

K.S. Song
Change - points problem

In this talk, the problem of computing the exactvalue of the asymptotic efficiency of max­
imum likelihood estimators of a discontinuous signal in Gaussian white noise is considered.
A method bas~d on constructing difference equations for the appropriate moments is pre­
sented and used to obtain the exact variance of the Pitman estimator. Other related
unsolved problems are also discussed..

U. Stadtmüller
Spatial smoothing of geographically aggregated data with application to the
construction of incidence maps

The starting point of this investigation is tbe commonly encountered situation in spatial
statistics where the data like counts of indices of a certain desease are only available in
geographically aggregated form. We develop a fairly general model for this situation to
propose a smoothing method to recover the unknown smooth spatial function which is
assumed to generate the observations. In the case of count data, the target function is
tbe intensity function, conditionally to the total number of observations. Our proposed
method is based on a modified version of the locally weighted least square methode It
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\

uses the shape and size of tbe aggregation areas and avoids the arbitrariness of selecting
a point in each area to which the data are attached. We derive asymptotic properties of
the method and propose same numerical procedures for calculating the estimates.

M.L. Stein
Fixed domain asymptotics for spatial periodograms

The periodogram for a spatial process observsd on a lattice is often used to estimate
the spectral density. The bases for such estimators are two asymptotic properties that
periodograms commonly possess:first, that tbe periodogram at a particular frequency
is approximately unbiased for tbe spectral density , and second, tbe correlation of the
periodogram at distinct frequenci~s is approximately zero. For spatial data, it is often
appropriate to use fixed domain asymptotics in whieh the observations get increasingly
dense in some fixed region as their number increases. Using fixed domain asymptotics,
this work shows that standard asymptotic results for periodograms do not apply and that
using the periodogram· of the raw data ean yield highly misleading results. However, by
appropriately filtering the data before computing tbe periodogram, it is possible to obtain
results similar to tbe standard asymptotie results for spatial periodogram.~~~..

D. Stoyan
Set-valued means of sampIes of particles ..

The aim is to determine set-valued means for sampies of objects such as powder-partieles
or sand grains without respeet to their loeation and orientation. The idea is to translate
the coresponding compact sets K}, ... , K n C IR2 tothe origin and to rotate them so that
they are "elose together" and then to use appropriate definitions of means for random
compaet sets to the new sampie. This method eao be justified mathematieally by de­
scribing the K i by functions (indicator, support or others) and by considering them as
elements of a suitable Hilbert space on whieh a group is acting.

w. Stute
The statistical analysis of Kaplan-Meier integrals

Let Fn denote the Kaplan-Meier estimator compute from a sampie of possibly censored
data, and let e.p be a given function. In this paper some of the most important properties
of tbe Kaplan-Meier integral JrpdFn are reviewed. The SLLN, tbe CLT, the bias and the
Jackknife. Since Kaplan-Meier integrals eonstitute the leading term of more eomplicated
statistical functionals od Fn these results may be viewed a.s the cornerstones for a.nalyzing
right-eensored data.

A. Tsybakov
Nonparametrie estimation of level sets

Let f(x) be a probability density on RN, and let Xl' ... ' Xn be a sampie from f(x).
Consider the problem of estimation of the level set G := {x : f(x} ;::- A}, where A ~ 0 is
the level. It is assumed that G belongs to a class of subsets of RN (for example, convex
sets, ~r sets with smooth boundaries and star-shaped structure). Tbe estimates of Gare
constructed, based on the ma.ximization of Ioeal empirieal excess mass. It is shown that

11

                                   
                                                                                                       ©



under the appropriate choice of parameters of the estimates they achieve optimal rates of
convergence, and these rates are explicitly given. An interesting consequence is that the
zero-level sets, i.e. the support, of the density f{x) can be estimated better than the sets
of level ..\ > o.

J.-L. Wang
Is there a deceleration in mortality?

When data were observed periodically or discreteIy, it is customary to use lifetable or
some smooth version of it to estimate the mortality rate (ar hazard rate). However, such
methods may induce bias to the oidest segment of the population, the so-called oidest-
old group. We discuss this effect and suggest a transformation to correct such bias. A
revised Iocally weighted least squares method is proposed as the smoothing method for~
the transformed lifetable estimate. The method is illustrated on arecent data set to check.
the Gopertz Iaw of mortality and whether there is a deceieration in aging or not at oider
ages.

w. Weil
Mean bodies of particle processes and Boolean, models

For a stationary point process X of conves bodies, a mean particle M(X) is defined by
the support function

h(M(X),.) := I f h{K, .)dPo(K)
Jf(o

where i is the intensity and Po tbe distribution of the typical grain (being a probability
measure on the set A,o of bodies with Steiner point at 0). If h(K,.) is replaced by the
surface area measure S(K, .), in the same manner the Blaschke body B(X) is obtained.
Several equivalent descriptions of these mean bodies are given, reiated to tbe problem to
estimate a mean particle of X from a bounded sampling window or from a Tandom section
X n E , where E is a plane. .
In particular, it is shown that IEEM(XnE) = M 2(B(X)), where M2 is a known transform,
which can be inverted.. This allows the estimation of B(X) from planar sections X n E.

12

                                   
                                                                                                       ©



I.!

BeneS, v.
Chadreuf, J.
Chiu, S.N.
Cressie, N.
Dryden, I.
Gasser, T.
Götze, F.
Grabarnik, P.
Gürler, Ü.
Hansen, M.B.
Heinrich, L.
Künsch, H.R.
Lieshout, M.-C. van
Mammitzsch, V.
Molchanov, I.
M011er, J.
Muche, L.
Müller, H.-G.
Ogata, Y.
Nagel, w.
P~ewitt, K.
Reiß, R.-D.
Roussas, G.G.
Ruderno, M.
Penttinen, A.
Sax1, I.
Schmitt, M.
Song, K.S.
Stadtmüller, u.
Stein, M.L.
Stoyan, D.
Stute, W.
Tsybakov, A.
Vedel-Jensen, E.B.
Wang, J.-L.
Weil,W.
Ziezold, H.'

E-mail Adressen der Teilnehmer

benesv@fsik"cvut.cz
joel@avignon.inraJr
chiu@mathe.tu-freiberg.d400.de

ncressie@iastate.edu
iand@ansta.leeds.ac.uk
tgasser@ifspm.unizh.ch
goetze@mathematik.uni-bielefeld.de

pavel@avignon.inraJr

ulku@bilkent.edu.fr
martin@dina.kvl.dk
heinrich@mathe.tu-freiberg.d400.de

kuensch@stat.math.ethz.ch

mnl@stats.warwicka.c.uk
mammit@mathematik.uni-marburg.de

ilia@cwLnl
jesper@mi.aau.dk
muche@mathe.tu-freiberg.d400.de

mueller@wald.ucdavis.edu

ogata@sunyo.ism.ac.jp
nagel@minet.uni-jena.de
prewitt@math.la.asu.edu
reiss.hrz.uni-siegen.d400.de

ggroussas@ucdavis.edu
mats@dina.kvl.dk
penttinen@jylk.jyu.fi
benesv@fsik.cvut.cZ
mschmitt@cg.ensmp.fr

kssong@stat. tamu.edu
stamue@mathematik.uni-ulm.de

stein@galton.uchicago.edu
stoyan@mathe.tu-freiberg.d400.de

winfried.stute@math.uni-giessen.de

no e-mail address submitted

eva@mi.aau.dk
wang@wald.ucdavis.edu
wei}@ma2geo.mathematik.uni-karlsruhe.de

ziezold@mathemtik.uni-kassel.de

Berichterstatter: Lothar Heinrich

13

                                   
                                                                                                       ©



Tagungsteilnehmer

Dr. Viktor Benes
Dept. of Math. and Constructive
Geometry, Fac. of Engineering
Czech. Technical University
Karlovo name 13

12135 Praha 2
CZECH REPUBLIC

Dr. Joel Chadoeuf
INRA
Biometrie
Domaine Saint Paul
site Agroparc

F-84914 Avignon Cedex 9

Prof.Dr. Sung Nok Chiu
Fakultät für Math. und Informatik
Institut für stochastik
TU Bergakademie Freiberg

09596 Freiberg

Prof.Dr. Noel eressie
Department of statistics
Iowa State University
102 E.Snedecor Hall

Ames , IA 50011-1210
USA

Dr. Ian Dryden
Department of Statistics
University of Leeds

GB-Leeds LS2 9JT

- 14 -

Prof.Dr. Theo Gasser
Department of Biostatistics ISPM
University of Zürich
Sumatrastr. 30

C8-8006 Zürich

Prof.Dr. Friedrich Götze
Fakultät für Mathematik
Universität Bielefeld
Postfach 100131

33501 Bielefeld

Dr. Pavel Grabarnik
Ecophysiology and Horticulture Unit
INRA Domaine st. Paul,
B.P. 91

P-84143 Montfavet Cedex

Dr. Ölkü Gürler
Dept. of Industrial Engineering
Bilkent University

06533 Bilkent-Ankara
TURKEY

Martin Hansen
Department of Mathematics
The Royal Veterinary & Agricultural
University

DK-1871 Frederiksberg C

                                   
                                                                                                       ©



Dr. Lothar Heinrich

Fakultät für Math. und Informatik·

Institut für stochastik

TU Bergakademie Freiberg

09596 Freiberg

Dr. Edgar Kublin

Forstl. Versuchs- u. Forschungs­

anstalt
Abt. Biometrie und Informatik

Wohnhaldestr. 4

19100 Freiburg

Prof.Dr. Hans Rudolf Künsch

Seminar f •. Statistik

ETH-Zentrum
Sonneggstr. 33

CH-8092 Zürich

Dr. Marie-Colette van Lieshout

Department of Statistics

University of Warwick

GB-Coventry CV4 7AL

Prof.Dr. Volker Mammitzsch

Fachbereich Mathematik

Universität Marburg

35032 Marburg

- 15 -

Dr. Jesper Moeller

Afd. for Teoretisk Statistik

Matematisk Institut

Aarhus Universitet

Ny MUnkegade

DK-8000 AarhuB C

Dr. Ilya S. Molchanov

Centrum voor Wiskunde en

Informatica
Department SS
Kruislaan 413

NL-I098 SJ Amsterdam.

Dr. Lut z Muche
Fakultät für Math. und Informatik

Institut für stochastik

TU Bergakademie Freiberg

09596 Freiberg

Prof.Dr. Hans-Georg Müller

Department of Statistics

University of California

469 Kerr Hall

Davis , CA 95616
USA

Dr. Werner Nagel

Fakultät für Mathematik und

Informatik
Friedrich-Schiller-Universität·

Leutragraben 1

07743 Jena

                                   
                                                                                                       ©



Prof.Dr. Yoshihiko Ogata
Institute of Statistical
Mathematics
4-6-7 Minami Azabu, Minato-ku

Tokyo 106
JAPAN

Prof.Dr. Antti Penttinen
Department of Statistics
university of Jyväskylä

SF-40100 Jyväskylä 10

Dr. Kathy Prewitt
Department of Mathematics
Arizona State University

Prof.Dr. Mats Ruderno
Dept. of Math. and Physics
Agricultural University
Thorvaldsensvej 40

DK-1871 Copenhagen

Prof. Dr. Francisco J. samaniego_
Department of Statistics ~
University of California
469 Kerr Hall

Davis , CA 95616
USA

Prof.Dr. Ivan Saxl
Institute of MathematicB of the
CSAV
Zitna 25

Tampe
USA

AZ 85287-1804
115 67 Praha 1
CZECH REPUBLIC

Prof.Dr. Rolf-Dieter Reiß
Fachbereich 6 Mathematik
Universität/Gesamthochschule Siegen

57068 Siegen

Prof.Dr. George Roussas
Division of Statistics
University of California
469 Kerr Hall

Davis , CA 95616-8705
USA

- 16 -

Dr. Michel Schmitt
Centre de Geostatistique
Ecale des Hinea
35, rue St. Hanore

F-7730S Fontainebleau Cedex

Dr. Kaisheng Song
Department of Statistics
Texas A & M University

college Station , TX 77843
USA

                                   
                                                                                                       ©



\

I

~

Prof.Dr. Ulrich Stadtmüller

Abteilung für Mathematik 111

Universität Ulm

89069 Ulm

Prof.Dr. Michael Stein

Department of statiatics

The University of Chicago

5734 Univeraity Avenue

Chicago , IL 60637
USA

Prof.Dr. Dietrich Stoyan

Fachbereich Mathematik

Bergakademie Freiberg

09596 Freiberg

Prof.Dr. Winfried Stute

Mathematisches Institut

Universität Giessen

Arndtstr. 2

35392 Gießen

Prof.Dr. Alexander B. Tsybakov

Univeraite Paris VI

Lab. de stat. Theorique et Appl.

4 Pl. Jussieu, B.P. 158

F-75252 Paris Cedex

- 17 -

Prof.Dr. Eva B. Vedel-Jensen

Afd. for Teoretisk Statistik

Matematisk Institut

Aarhus Universitet

Ny Munkegade

DK-8000 Aarhus C

Prof.Dr. Jane-Ling Wang

Division of Statistics

University of California

469 Kerr Hall

Davis , CA 95616-8705-·'

USA

Prof.Dr. wolfgang Weil

Mathematisches Institut 11

Universität Karlsruhe

76128 Karlsruhe

Prof.Dr. Herbert Ziezold

FB 17 - Mathematik/Info~atik ­

Universität Kassel

34109 Kassel

                                   
                                                                                                       ©



                                   
                                                                                                       ©


