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This yea.rs Oberwolfach meeting on MathematieaJ Logie was chaired by Walter Felscher
(Tübingen), Helmut Schwichtenberg (München) and Anne S. Troelstra (Amsterdam).
There were participants from 11 countries. The foeus was on proof theory, lambda caJculus
and eonstructive mathematics. Subfields like modal logic, provability logic, many valued
logie, type theory, intutitionism, linear logic and the interpretation of aspeets of traditional
mathematics in type theory were treated. Several talks dealt as weIl with the contributions
of mathematieallogic to computer science. Here problems-like the relationship between
proofs and programs, logical foundations of computer science and finding good syntax and
semantics for programming were discussed. This demonstrates that foundational questions
and applications are 'very elose in mathematical logic.
One highlight of the meeting was the first presentation of the proof theoretical analysis of
II~-CA by Michael Rathjen (currently at Stanford), a problem open for 20 years.
All participants enjoyed very much the excellent opportunities the insitute offered for
having private discussions, some more direetly focused on mathematical work, in which the
lmowledge from different areas was brought together, others more on the general direction
in which mathematicallogic is eurrently developing.
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Vortragsauszüge

Proof theory and nonclassical logics
Sergei N. Artemov

Ab3tract Propo3itional Operation3 over proof3 (APO) are defined as operations over proofs
that can be specified in arithmetic by propositional conditions and invariant with respect
to a choice of a proof predicate. We prove that APO admits a finite basis. It allows to give
a complete axiomatization for a logic with propositional formulas, formulas [t]A which
stands for "t ;'3 a prool 01 A» (t is a proof term, A is a formula), baolean connectivA
for farmulas and APO aver proof terms. The resulting Dynamic Logic 01 Proof3 (DLfl'!'
is a constructive variant of the modal logic S5. For example DLP enjoys the reflexivity
property

[t]A -+ A

which ia clearly missing in the traditional provability logie. The deeidability and the
arithmetical completeness of DLP are established.

Iterated local reflection vs. iterated consistency
Lev Beklemi3hev

For "natural enough" systems of ordinal notation we show that a-times iterated Ioeal
refleetion schema over a sufficiently strong arithmetic T proves the same n~-sentencesas
wQ-times iterated consistency. A eorollary is that the two hierarchies catch up modulo
relative interpretability exact1y at e-numbers.
We also derive the following "mixed" formulas: for all a 2:: 1 and all ß

(TQ)p =n~ Two ·(1+P)

(Tp y~ =n~ Tp+w o

where T Q stands for a times iterated loeal reflection over T, Tp stands for ß times iterated.
consistency, and =n~ denotes (provable in T) mutual n~ conservativity~

We show that "natural enough" ordinal notation systems do exist for every recursi.. ~~

ordinal. • \'

Constructive interpretations of inductive definitions
Ulrich B erger

A realizability interpretation of intuitioniatic positive inductive definitions ia sketched.
Since strict positiveness is not required tbe classieal theory can be embedded easily via a
negative translation. Hence also classical II2 theorems can be interpreted constructively
in the usual way. The intuitionistic theory ia interpreted via an extension of Kreisel's
modified realizability interpretation. Since non strict1y positive definitions are allowed the
realizing term language needs constructs going beyond Gödeis system T+ recursion over
we1lfounded tress (see e.g. Zuckers work in Troelstra's SLNM 344). The main problem is
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the constructive interpretation of the new term calculus, i.e. the definition of a reduction
relation whieh is on the one hand strang enough to prove the soundness theorem and on
the other hand strongly nonnalizing.

Logical foundations for formal speciflcations
Egon Börger

We demonstrate by two exampleshow Gurevich's nation of "evolving algebra" from 1988
can be used for transparent and f8.lsifiable specifications and analysis of complex computing
systems. The first example is the new correctness proof of Lamport '8 mutual exclu8ion
protocol "bakery" (joint work with Y. Gurevich, D. Rosenzweig). The second example ia
the theorem that pipelining is correct on RlSe machines (joint work with S. Mazzanti).

On Gentzen's consistency proofs for arithmetic
Wilfried Buchholz

We present a. modified version of Gentzen's first consistency proof for Peano-Arithmetic
PA [Math. Ann. 112 (1936)] and relate it to the standard cut-elimination procedure for
w-arithmetic. For ea.ch derivation d of PA (formulated in Tait's sequent calculus) and each
n E N the following objects are defined (by prim. recursion on the build-up of d):
• an expression tPn(d) which either describes some inference of w-arithmetic or is the

symbol *,
• a family of PA-derivations d[i]n (i E I) (with I determined by tPn(d)) such that

(1) (d) -J. •.• r(d[i]n) ... (i E I) . ~_E f k' d (d)
tPn -r * ==> r(d) 1S an Wlerence 0 In tPn

(e.g. if tPn(d) = (3xA, m) then 1= {O} and r(d[O]n) = red), A(m) ),
(2) tPn(d) = * => r(d[O]n) = red),
(3) on(d[i]n) < on(d) (Vi EI).

Here red) denotes the endsequent of d, and on(d) ia Gentzen's ordinal assignment from his
second consistency proof [Leipzig 1938] as presented in [Minte, A new reduction sequence
for arithmetic]. From (1),(2),(3) the consistency of PA follows immediately by transfinite
induction up to co.
Now let d 1-+ d OO be the canonical embedding of PA-derivations into w-arithmetic, and let
En be the standard cut-elimination operator which lowers the cut-rank of each derivation
in w-arithmetic down to n. Then the following holds:

(1) ' (d) 4 C' (dOO ) _ ••• En(d[i]~) ...
tPn r * =::} "n - red) ,

En(dOO
).

In the last part of the talk precise connections between Gentzen's first and second consis­
tency proof are established.

Formal topology and constructive mathematics
Thierry Coqu.and

We show how some techniques of loeal theory or formal topology (topology without points)
can be used in the proof-theoretical analysis of some non constructive proofs. We present
two examples:
• the existence of minimal invariant compact subspace of a compact space X, with

f : X --. X continuous.
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• the existence of non principal ultrafilters over N.

More about the intuitionistic continuum
Dirk van Dalen

In intuitionistic mathematics IR is indeoomposable, i.e. IR = A U B, An B i= 0 ~ IR =
A V IR. = B (Brouwer). This result is extended to QC (= x E IRlx ~ Q}) by using the
continuity principle, bar induction and Kripke's Schema. A further exploitation of the
above techniques + some intuitionistie topology yields the following: If A C IR is negative
and A = B + C, A located, B and C inhabited, then there is a p E IR, such that p has
positive distance to B and C.
As a corollary we get: If A is negative and dense in IR, then A is decomposable. ExamtA
A = QCc. One hence haB lots of connected and I-dimensional subsets of IR. ••

What is a model of Martin-Löf's type theory?
Peter Dybjer

We first introduce a notion of model of a basic framework of dependent types and call it
"category with families" ("ewf"). It is a variant of Cartmell's categories with attributes,
but has a more direct connection with the syntax of type theory. Then we show how to
define ewfs using Martin-Löf's type theory as a metalanguage. This interna! notion of ewf
is "relaxed", as opposed to strict, and hence has a coherenee problem. Finally, we show
how to solve the problem as a corollary of a normalization theorem.

Nested proof theory
Lev Gordeev

Various results in algebraic and/or computer science logic address the following problem:
How to formalize predicate logic (with or without equality) in the presence of n < 00

distinct variables by using only direct (cut-free) rules. of inference? The solution proposed
has the form of term-rewriting systems such that a formula A is said to be derivable
(provable) if there is a reduction chain starting with A and ending by T. The resulting
Ureduction calculi" RPCn (without equality) and RPCEn (with equality) can also be
addressed 88 suitable nested versions of cut-free sequent calculi with n distinct variables.
The corresponding nested cut elimination theorem is proved, which implies the equivalence
to the familiar modus-ponens formalizations. These techniques enable to provide e.g. _
negative solution to Proble~ 2.12 of [Henkin-Monk-Tarski: Cylindric Algebra I]. •

A Contraction free calculus for 54
Jörg Hudelmaier

Theorem proving in the modal logic 54 is notoriously difficult. This is due to the fact
that in ordinary sequent ealculi for this logic lengths of predeductions are not bounded in
terms of the length of their endsequent. Here we propose a calculus for which there is a
measure such that all premisses of all rules have smaller measure than their conclusions.
Thus lengths of predeductions are bounded by the measure of their endsequent and we
obtain a straight forward depth first proof search procedure.
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Standard parts of classical analysis where provable functionals have polynomial
growth relatively to the data
Ulrich Kohlenbach

To measure the growth of uniform bounds which are extractable from proofs in various
parts of analysis we introduce a hierarchy {GnAW)nEN of subsystems of PAw and determine
the impact of various analytical principles r on the growth (re1atively to GnAw +AC - qf).
We define a set r of analytical axioms which cover (re1atively to G2 Aw + AC - qf) large
parts of the usual analysis of continuouB functions and show that from a proof

(where Ao is quantifier-free, t is a closed term and AC- qf denotes the schema of quantifier­
free choice) one can extra.ct abound cP : \/u, k\/v :51' tuk3w ~o cPukAo, where <p is a
polynomial in uM := AxO.max{uO, ... ,ux) and k if n = 2 resp. elementary recursive in
tJ, M ,k if n = 3 (cPuk does not depend on v). Furthennore we determine the impact on the
growth of bounds caused by the use of single sequences of instances of principIes whieb
involve arithmeticaJ eomprehension aB the Bolzano-Weierstraß principle, the·~Arzela.Ascoli
lemma and others.

T AUT-decision procedures and their complexity
Horst Luckhardt (in cooperation with O. Kullmann)

We systematically develop methods deciding propositional tautology for DNF and coNP­
complete subclasses and establish complexity upper bounds for them with exponential
part 2cwom(F) where m(F) is one of the measures #{variables} , #{literalinstances},
#{clauses}, and Cl! varies between ft and 1. Combining these aspects differentiates
TAUT/SAT-complexity on DNF/CNF in anew way.

Modal logic, linear logic, optimal lambda reduction
Simone Martini

We presented systems of indexed sequents for several modal logics (K,D,T,4 and their
combinations), all formulated aB loeal modifications of the basic system for the logic KD. '
The systems enjoy cut-elimination (or normalization and confluence in their natural de­
duction formulation). When they are tailored to linear logic and interpreted in proof-nets,
the indexes have a natural interpretation in terms of box-depth. This interpretation sug­
gests an improvement on the current formulation of graph-rewriting systems for optimal
lambda-reduction Ca. 18. Le.vy-Lamping-Gonthier).

Cut-elimination for indexed systems of sequents
Grigori Mint"

Cut reductions are defined and proved to be sufficient for cut elimination in Kripke-style
formulation of modallogic in terms of indexed systems of sequents.

Zermelo-Fraekel algebras
Ieke Moerdijk (together with Ä. Joyal)

We extend the Lawvere-Tierney axioms for elementary toposes by axioms for a class of
'smali maps'. An internal (in a topos &) ZF-algebra ia defined a.s aposet L, equipped with
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a unary operation s : L -+ L, in which moreover all (smalI' suprema exist. The cumulative
hierarchy of sets (relative to &), as weH as various types of constructive ordinals, can
be described as ZF-algebras defined by generators and relations. This provides a uniform
approach to sheaf-, forcing- and realizability interpretations of set theory. A fuH description
will appear in our book "Algebraic Set Theory" (Cambridge University Press, 1995).

A Classical view of the intuitionistic continuu~
Joan Rand M03chovaki3

We extend Gödeis [1933] observation that intuitionistic number theory "is only apparently
narrower than the classical one, and in fact contains it", to second order intuitionistic
number theory ("analysis"). Let i,j, ... ; a, b, . .. ,h; O!, p, ... range over numbers, lawlike
sequences, and arbitrary choice sequences respectively. Let RLS(O!) == 'v'b['v'w(Seq(w)~
Seq(b(w))) :::> 3x O! E a(x) *b(a(x))] express "o! is lawless relative to R", where R is tl.
class of lawlike sequences. Using a set-theoretic hypothesis we build by ordinal induction
a countable well-ordered class (R, -<) of "lawlike sequences" which leads to a classical
realizability interpretation for a formal system S+[-<] extending Kleene and Vesley's [1965]
intuitionistic analysis, with Open Data and lawlike classical analysis included. .

The logic of functional recursion
Yanni3 N. Moschovaki3
The expressions of the Formal Language of Recursion FLR=FLR(T) are defined by the
following induction, where x, X, ... are individual variables, Pi, ... are functions variables
and the function(al) symbols f are from some specified signature (vocabulary) T:

Terms: A

Vax. or Term: V
'x-terms: O!

Expressions: E
:=

true I false (Booleans)
I if Athen B else C fi (Conditional)

I p(Vt , , Vn) (Function calts)
I f(Et , , En ) (Calls to primitives)

I Ao where {PI(it ) = At,··. ,Pn(in) = An}
(Recursion)
X IA
'x(i)A

xlAIO!

Ultimately we are interested in the terms of FLR, which in the intended interpretations
represent programs, while the remaining formal expressions are auxiliary. We consider te
classical semantics on this language. _
(1) Strict semanties. The structures are of the form (M, F), where M is an arbitrary set
and the interpretation F assigns to the function symbols in the signature monotone, partial
functionals on M to M, including the Booleans and astriet conditiona1; the individual
variables va:ry over M, and the function variables over partial funetions on M to M. Calls
are by strict composition.
This is the natural interpretation for ideal Ufunctional," side-effect-free programming like
pure LISP, and it is also used in the study of classical, abstract recursion.
(2) Continuous semanties. The structures are of the form (W, F), where W is a direeted,
complete poset, and F interprets the function symbols by continuous functionals on W,
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including fixed, discrete points 0 and 1 to denote the Booleans and a natural (strict) con­
ditional. The individual variables vary over W and the function variables over continuous
functions on W to W. Calls are by composition.

This is (perhaps) the most natural interpretation of FLR, from the mathematical point
of view, and it also gives a faithful, abstract expression of call-by-name interpretations of
programming languages. Neither (1) not (2) can be used, however, to model the natural
semantics for the most natural call-by-value programing languages, as they both validate
the identity

p(c) where {p(x) = p(c)} = .1;

while if estands for an act like ring the bell, then the program on the left will produce an
infinite string of ring3 in a call-by-value interpretation.

We introduce a new class of Iiftup structures of the form (M, W,], F), where M is a set
in which we interpret the individual variables; W is a complete poset, and we interpret
the function variables by functions p : Mn -+ W; F interprets the function by monotone
functionals from M to W (suitably defined); and the] = {]n}n is a sequence'of monotone,
liftup operation

]n : (Mn -+ W) -+ Mon(Wn -+ W)

which we use to interpret "composition" in the formal expressions of FLR. It can be shown
that liftup structures model faithfully most of the known interpretation of programming
languages.

The main result is that the class V 0/ lijtup valid FLR identities is decadable, and in fact
there i3 a 3imple, natural and 1t3e/ul aziomatization for V.

Toric desingularizations and proofs in many-valued logic
Daniele Mundici

Every formula c,o(Xl, ... ,xn ) of the infinite-valued calculus of Lukasiewicz has a DNF­
reduction aB a sum of Schauder hat formulas of some triangulation of the cube [0, l]n,
with rational vertices. The positive answer to the weak conjecture of Oda allows one to
connect any two DNF tautologies by a path whose deduction steps are the natural coun­
terparts of the blow up and blow down operations. Using the DeConcini-Proceri theorem
on elimination of points of indeterminacy, Panti gives a novel proof of the completeness of
the Lukasiewicz axioms. Conversely, in a joint paper with Aguzzoli, the author gives an
algorithmic procedure to desingularize every 3-dimensional toric variety, keeping aB small
as possible the Euler characteristic of the resUlting nonsingular variety.

D.M.: A con8tructive proof 0/ McNaughton theorem, JSL 59 (1994), 596-602.
D.M.: Luka8iewicz normal forms and toric de8ingularization3, Proc. Keele Lo'gic Coll.,
Oxford University Press.

G. Panti: A proo/ 0/ the completenes3 of the Luka3iewicz calculu3, JSL 60.
D. M., S. Aguzzoli: An algorithmic desingularization 0/ 9-dimensional toric varieties,
Tohoku MathematicaJ Journal 46 (1994) 557 - 572.
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Constructive Nonstandard Analysis
Eri1c Palmgren

We present two approaches to nonstandard analysis which are constructive in the strict
sense of E. Bishop. The first bing a constructivization of C. Schmieden and D. Langwitz'
infinitesimal calculus from 1958. Their idea was essentially to use reduced powers modulo
the ·Frechet filter rather than ultrapowers as in more modern, but nonconstructive ap­
proaches. We obtain nonstandard characterizations of Bome standard notions pertaining
to pointwise limits. The second approach is based on I. Moerdijk's topos of sheaves over
a natural site of filters. Here fuu transfer- and overspill principles are true. The nonstan­
dard characterization can here be extended to uniform notions (e.g. uniform continuity).
However in both approaches a counterpart to the standard part map ia lacking.

Pure proof theory - aims, methods aod results
Wolfram Pohlers

Pursuing Hilbert 's program of consistency proofs we introduce the notion of partial models
for axiom system within the constructible hierarchy. It is shown how this approach is
connected to Gentzen's original work. After outlining the basic methods we give a list of
results obtained by ordinal analyses in the spirit of the outlined program.

Ordinal analysis of II~ comprehension
Michael Rathjen

We provide ordinal analyses of II~-comprehensionand theories which can be reduced to
iterated ni-comprehension, like Ei dependent choices.
The analyses employ cut elimination in infinitary calculi of ramified set theory endowed
with a transfinite hierarchy of reflection rules. The reflection rules that hold good for
patticula.r ordinals in the calculus are supposed to mirror their degree of stability.
The case of first order reflection roles was dealt with in M. Rathjen, "Praof theory of
reflection", APAL 68 (1994) 181 - 224.

Proof-nets, Geo~etry of Interaction and L-calculus
Laurent Regnier

Proof nets (short PN) are a graphical syntax for proof in linear logic enjoying astrang
topological property. This, together with the natural duality of linear logic (A.L) and the
decomposition of structural rules into logical conneetives (!, ?) makes PN a very use4t
tool for studying normaJization processes, especially ß-reduction.
However, as for ß-reduction, the cut-elimination procedure in PN is far from being local
and asynchronous. An attempt ta fix these defects maybe to switch from ß-reduction
(cut-elimination) to some new operational semantics: the geometry 0/ interaction (GoI).
In GoI, the computation of the normal form ia replaced by the computation of the regular
paths in the term; regular paths are defined by the dynamic algebra A·. From this one may
define a new reduction: virtual reduction which is a particular protocol for computing reg­
ular paths. Also regular paths are easily shown identical to consistent paths, the invariant
of Lamping's sharing reduction. Both reductions are local and aaynchronous, achieving
the cla.imed goal.
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Lambda calculus and intuitionistic linear logic'
Simona Ronchi della Rocca

The intuitionistic fragment of linear logie, invented by Girard, can be seen as a model for
a computational environment with an explicit control of resourees management, since the
use of structural rules is explicitly controlled by a modal operator.
A language is proposed for reasoning about this kind of computation. The relation between
the language and the logie is established by the Curry-Howard isomorphism ("formulae­
aB-types" principle). Namely, terms of the language codify proofs in a logical system (in
natural deduction style) equivalent (w.r.t. provable formulaB) to the intuitionistic fragment
of linear logic. The natural decluction system is designed in such a way that the resulting
la.nguage has a very simple syntax, reduction rules which are extensions of the classical
beta-rule, and in particular 00 commuting cooversions are neecled.

Applications of linear logic to the proof theory of classical logic
Harold A. J. M. Schellinz

We introduce a deterministic normalization scheme (tq-reduction) for sequent calculus for
2nd order classicallogic in a slightly extended language (LKttJ). The set of LKttJ-proofs
C8Jl be mapped in a canonical way to a subset D(LKttJ) of derivations in 2nd order classical
linear logic., closed under reductions in linear logic; moreover, the tq-reduction of an LKttJ­
proof 1r corresponds to the normalization of the proofnet-representation of D(Tr).
This method of modal interpretation of sequent calculus proo/3 in linear logic provides a
generally applicable mechanism for proving strong normalization of tq-like reductions in
most of the standard sequent caleulus formulations for (2nd order) classical, intuitionistic
and modal logics. It also enables us to give alternative proofs of strong normalization
for several of the different "constructive" proof-systems for elassicallogic that have been
proposed over the past five years.

Strict functionals for termination proofs
Helmut Schwichtenberg (joint work with Jaco van de Pol)

A semantical method to prove termination of higher order rewrite systems (HRS) ia pre­
sented. Its main tool is the notion of a strict functional, which is a variant of Gandy's
notion of a hereditarily monotonie functional. The main advantage of the method is that
it makes it possible to transfer ones intuitions about why an HRS should be terminating
into a proof: one has to find a "striet" interpretation of the constants involved in such a
way that the left hand side of any rewrite rule gets a bigger value than the right hand side.
The applicability of the method is demonstrated in three examples: (1) An HRS involving
map and append; (2) The usual rules for the higher order primitive recursion operators in
Gödel's T; (3) Derivation terms for natural deduetion systems. We prove termination of
the rules for ß-conversion and permutative conversion for logieal rules including introduc­
tion and eliminationrules for the existential quantifier. This has already been proved by
Prawitz; however, our proof seems to be more perspieuous.
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A transparent version of a well-ordering proof for Martin-Löf's type theory
Anton G. Setzer

In his thesis, the author proved that Martin-Löf's type theory with W-type and one Uni­
verse· has proof theoretical strength 1"'01 (l'll+w+)!' In this proof we will present a new sim­
plified version of the weIl ordering proof, by which we get a lower bound for the strength,
in which we avoid the use of fundamental sequenees and all the technical proofs needed to
prove properties about them. Instead we will directly formalize the sets CJ(a), used for
the definition of the collapsing function, in MLT. This version ia more transparent, since
it is very elose to the set theoretic definition of the ordinal funetions.

Wissenslogik: Wisser und Mitwisser
Ernst Specker _

Es wird gezeigt, daß in der Wiasenslogik S~n) - d.h. der Logik mit n Wissensoperatore.
Ki und den Axiomen der Modallogik Sr; - aus Xi +-+ KjXi(j =F i), KiXi +-+ KjKiXi
(i = 1, ... , n) folgt

K 1 K 2 K 3 ••• Kn(Xl V ... V X n) -+ K1X1 V K 2 X 2 V ... V KnXn

Anwendung auf das Paradoxon des unerwarteten Ereignisses.

A transformation of propositional Prolog programs into classical logic
Robert F. Stärk

We tra.nsform a propositional Prolog program into a set of propositional formulas for which
Prolog, using its depth-first left-to-right search, ia sound and eomplete. This means that
a goal succeeds in Prolog if and only if it f6110ws from the tra.nsformed program in clas­
sicaJ. propositional logic. The transformation ia formulated in an extended language with
syntactie operators for suceess, failure and termination. The obvious generalization to
predicate logic leads to a first-order theory for which Prolog ia still sound but unfortu­
nately not complete. If one changes, however, the definition of the termination operator
then one obtains a theory that allows to prove termination of arbitrary non-fioundering
goals under Prolog. The new theory ia ca.11ed the i-completion of a Prolog program. The
change of the termination operator is justified by the fact that for most programs used in
practice the computations terminate independently of the order of the clauses in the pro­
gram. By adding suitable induction principles to the i-completion one obtains a framework
for verifying pure Prolog programs. Verification of Prolog programs here means provin~
termination and proving equivalence of predicates. •

Polynomial time operations in applicative theories
Thomas Strahm

Theories with self-application provide an elementary framework for many activities in
(the foundations of) mathematics and computer science. They were first introduced by
Feferman as a basis for his systems cf explicit mathematics, e.g., the theory T0; these
theories are broadly discuBsed in the literature from a proof-theoretic and model-theoretic
p.oint of view.

It is the aim of the present work to propose a first order theory PTO of operations and
binary words, which allows fuU self-application and whose provably total functions on
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W = {O,l}* are exact1y the polynomial time computable functions. In spite of its pro~f­

theoretic weakness, PTO has an enormous expressive power due to the presence of fuB
(partial) combinatory logic, i.e. there are terms for every partial recursive function. The
formulation of PTQ is very much akin to well-known theories of operations and numbers,
namely PTO can be viewed aB the polynomial time analogue of the theory BON plus set
induction of Feferman and Jäger.

The proof of the fact that PTO captures exact1y polynomial time is very much in the spirit
of reductive proof theory. More precisely, we show that PTO contains Ferreira's system of
polynomial time computable arithmetic PTCA via a natural embedding. Furthermore, PTO
is reducible to the theory PTCA++(BCP), where PTCA+ denotes the extension of PTCA by
NP induction and (BCP) is the collection principle for bounded formulas. PTCA++(BCP) is
known to be a rrg conservative extension of PTCA by the work of Buss, Cantini, or Ferreira.

Forcing in Bounded Arithmetic
. Gai3i Takeuti (joint work with M. YaJumoto)

We present boolean valued - forcing theory on a countable nonstandard model of the true
arithmetic, more precisely on the cut which is a model of 52. The~ we discu~s the relation
between the natures of its generic model and the P = NP problem.

The Heyting algebra of Heyting's arithmetic is not recursive
Albert ViJJer

This lecture reports work together with Dick de Jongh. We show that an extension of
H A, called HA· has the following property: every prime, RE Heyting Algebra can be
embedded in the Heyting Algebra of HA*. The method of proof is an adaptation of a
proof due to Shavrukov, which was simlified by Zambe1la. From earlier results of de Jongh
it follows that a Heyting Algebra on 2 generators exists, which is prime and non-recursive.
Combining the two above results, the theorem claimed in the title easily follows

Logic of primitive recursion (LPR)
Stan S. Wainer

This is areport on some joint work with W. Sieg (Carnigie Mellon). An attempt is
made, to analyze. the structural relationships between primitive recursive programs (over
N) and their inductive termination proofs, where the proofs are formalized in a "sub-linear"
sequent calculus without Contraction or Weakening, and without Exchange. Programs are
introduced as relational sequents, ordered in such a. way that values are passed from left­
to-right. Thus e.g.

axiomatizes the composition f3(X) = f2(X,fo(x),fl(X,fo(x))).
The lack of Exchange necessitates two Cut-rules - one cutting away the left-most premise
and another cutting a formula. within context (called cvc, "call-by-value" cut). Basic
Induction ia the rule: I- B(O), and B(z) l- B(z + 1) ~I- B(z) without any aide formulas,
and one inductive call on B(z).
Theorem (1) Primitive Recursive == LPR(3)-verifiable.
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(2) Primitive Recursive with Parameter Substitution == LPR(V3)-verifyable.
(3) Tail-Primitive Recursive == (LPR(V3) - (cvc) )-verifiable.
Allowing side-formulas in the Induction rule, and multiple induetive ealls, leads beyond
the "boundaries" of primitive recursion.

Subrecursive hierarchies in logic and computer science
Andreas Weiermann

We present the Buchholz, Cichon and Weiermann 1994 approach tosubreeursive hierar­
chies. As results of this theory we obtain: a uniform loeal predieativity style characteriza­
tion of the provably reeursive funetions of PA, PA +T J( -< r), K PI, K Pi, K PM, . .. , an
optimal subreeursive bound for Higman's lemma and Kruskal's theorem, a strong gener- \:
alizatioD of the Girard Wainer hierarchy comparison theorem, a general bounding result
for derivation lengths of terminating rewrite systems in terms of the slow growing hierar-e
ehy of ordinallevel determined by the ordertype of the termination ordering, a proof of
Cichon's eonjeeture on the derivation lengths of rewrite systems which model parameter
reeursion and unnested multiple recursioD, an illuminating proof of same classical results of
Peter on primitive reeursive functions, a solution of eichon's problem on the relationship
of the hydra battle rew~ite system and the Howard Bachmann ordinal, a term rewriting
chara.cterization of several subelasses of the ordinal reeursive functions.

Generalizing proofs in monadic languages
Piotr Wojtylak (joint wor1c with Matthias Baaz)

Suppose that 1T is a formal proof of a theorem A, ean we construct from 1T a proof of
another (similar or more general theorem)?
1. We deal with generalizing short proofs with deep terms and let us distinguish between
a) generalization of proofs: from a proof of A(t) to a proof of A(s) preserving the logieal

form of the proof;
b) generalization of theorems: from a proof of A(t) to a proof of (more or less) VxA(x).
Generalization of proofs leads to a relation between distribution of terms in proofs of a
given logieal form and solutions of sets of linear diophantine equations. Generalization of
theorem ean be achieved by several methods used in literature: by reflection prineiple, cut
elimination and operating with blocks of like quantifiers instead of one quantifier at each
step.

_Berichterstatter: Anton Setzer.
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