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Tagungsbericht 16/1995

Algebraische Gruppen

23.04 bis 29.04.1995

Nach einem Zeitraum von vier Jahren fand in diesem Jahr erneut ei~e Tagung
über "Algebraische Gruppen" unter der Leitung von P. Slodowy (Hamburg), T.A.
Springer (Utrecht) und J. Tits (Paris) mit breiter internationaler Beteiligung statt.
Im Mittelpunkt der 22 ausgewählten Vorträge standen neuere Ergebnisse und En­
twicklungen aus den folgenden Bereichen:

- Strukturtheorie
_ Darstellungstheorie (klassisch, modular, p-adisch, Hecke-Algebren, Quan-

tengruppen, Tensoroperationen)
_ Algebraische Transformationsgruppen (Invarianten, homogene Räume, Ver-

vollständigungen) .
- Arithmetische und Zopfgruppen
- Kac-Moody-Algebren

Für eine detailliertere Beschreibung ziehe man die folgenden Vortragsauszüge zu
Rat"c.

. Typeset by A.N1S- '!EX
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H.H. ANDERSEN

Tilting modules and fusion rules

Let V be a finite dimensional vector spaee over an algebraically closed field k
of char(k) = p > O. Then the problem of decomposing Vl8lm , m ~ 1 into inde­
composable summands for SL(V} is wide open. So is the more general problem of
decoluposing tensor products of Weyl modules for a semisimple algebraic group G
over k.

To attack some aspeets of this problem we study tilting modules for G, Le. mod­
ules M for which hoth M and M· have Weyl filtrations. In the case when we
replace G by the corresponding quantum group Uq at a complex root of unity q we
point out that all injective Uq-modules are tilting. Hence by the Kazhdan-Lusztig
conjecture (which is a theorem when the order i of q is at least equal to the Coxeter
number) we know the characters of the tilting modules with highest weights away
from the i-strips adjacent to the walls of the dominant chamber.

In joint work with J. Paradowski we prove the following fusion rule: Let A, J.L
and v be weights of the fundamental dominant alcove. Then the number of times
the Weyl module V(v} appears as a direct summand in V(A) ® V(J.L} is

L (_l)l(w) dirn V(A)w.v-~'

wEWp

Here Wp (which should be Wl in the quantum case) denotes the affine Weyl group
attached to G (resp. Uq ).

A. BOREL

Rational curves on hornogeneous spaees

This is areport on joint work with F. Bien and J. Kollar.
An irredueible variety X aver an algebraieally elosed field is "quasi-eomplete"

(q.c.) if the k-algebra k[X] of regular functions reduees to the eonstants.
In the sequel X = G / H, where G is a connected affine algebraie group and H is

a closed eonnected algebraic sugroup. Then X is q.e. if and only if H is epimorphic
(in the sense of [BBD, i.e. if every morphism G -? G' is determined by its restrictioll
to H. A "rational curve" is here a smooth complete curve of genus 0, Le. a copy of
pI. The following eonditions imply obviously q.C.

(1) X is "rationally connected" (r.c.): given x, y EX, there exists a morphisnl
f: pI ~ X such that Im! 3 x,y.

(2) X is "generically rationally eonneeted" (g.r.c.): the above eondition is full­
filled for (x, y) in an open dense subset of X x X.

(3) X is "rationally chain connected" (r.c.c.): a ehain C == Ui=lCi of rational
curves is a curve eonsisting of rational curves such that Ci n Ci+1 is one
point (i = 1,2, ... , n - 1) and there are no other interseetions. X is r.e.c. if
given x, y EX, there exists a rnorphism ! : C -? X such that x E !(C1 )

and y E f(Cn ).
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Obviously (1) =} (2) =} (3). It can be proved that (2) Ir> (3) and that (2) Ir> (1)
in characteristic 0 and that there exists a unique sequence of subgroups

H = Ho C H1 C ... c Hn = K c G (*)

such that Bi/Bi-I" is r.c.c. (i = 1,2, ... ,n) and every morphism f : pI ---+ G/K is
constant.

Moreover, if Hf ::> Hand Hf / H is g.r.c. and F is a coherent G-sheaf on X,
then its direct image on G/ Hf is also coherent. In particular, if X is r.C.C. or more
generally if K = G in (*), then.H has property F in tbe sense of [BB], i.e. induction

. from H to G preserves finite dimensionality.
The proofs make essential use of foundational results on schemes of morphisms

of schemes, proved in EGA and in [K].
In many cases, which cover most of those considered in [BB], it is possible to

prove r.c.c. using orbits of suitableSL2 's. I gave aseries of examples where this
allows to prove g.r.c. or property F. In particular, if H is epimorphic and...contains
a maximal torus of C (assumed reductive), then H has property F.

The talk ended with a discussion of projective embeddings, open problems and
eonjeetures. Details will be published in [BBK].

[BH] Bien, Borei: C. R. Aead. Sei. Parist 315 (1992), 649 - 653.
[BBK] Bien, Borei, Kollar: Rationally eonneeted homogeneous spaces, to appear.

[K] Kollar, Rational curves on varieties, Ergebnisse der Mathematik und ihrer
Grenzgebiete, to appear.

M. BRION

Plethysm and symmetrie functions

Let G be a conoected semisimple algebraic group aver C. For a dominant weight
W of C, denote by Vw a simple G-module with highest weight w. In the case where
G = SL(V), we index dominant weights by partitions in at most dim(V) parts. The
simple SL(V)-module associated with the partition A will be denoted by S>.V (ex:
s(n)v = snv = n-th-symmetric power of V; S(lt ooo ,I)V = S(ln)V = AnV = n-th
alternating power).

The problem of plethysm asks for the description of thc G-module S>'Vw ' Even in
the sinlple case: Sffi(snv), there is 00 complete answer. It is conjeetured (Foulkes,
1950) that sm(snv) '-+ sn(smv) as a SL(V)-module, if n ~ m.

We present the following (partial) results:

(1) There is a eanonical equivariant map sn(smv) --. sm(snv) and this map
is surjective for n ~ m 2 dim(smv).

(2) The multiplicity of Vmw - x in S>. Vw is at most the multiplicity of the Sm­
nlodule [Al in SO(cm- 1 ® n)x' with cquality for X small with respect to
w. Here [A] denotes the silnplc Sm-module associated with A, a partition
of m; n is the Lie algebra of a maximal unipotent subgroup of G; ern-I
is the "natural" Sm-module; SO(cn- 1 ® n)x is the x-weight spaee in the
symmetrie algebra of Cm - 1 ® n.
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(3) The multiplicity of Ymnw- x in smynw is at most dirn so(S2n ffi S3n EB .. ')x
with equality if X is small with respect to m and n (a generalization of
Hermite reciprocity).

(4) For G = SL(2): there exist SL(2)-luodulcs M)..,p (0 :::; p :::; rn = size of A)

such that SA(snC2) ~ ®M)..,pfi9sm (sn-PC2 ) for all n. Moreover, M)..,p ~
p==O

M)..',m-l-p, where )..' is the conjugate partition of A.

R.W. CARTER

Canonical hases, reduced words, and Lusztig's piecewise linear"function

Areport was given on work done in collaboration with J.W. Cockerton. .-
Let U = U- ® UD ® U+ be the quantum group associated with a simple Lie •

algebra of simply-Iaced type. We consider the canonical basis B of U- introduced
by Kashiwara and Lusztig. The elements of B fall into "types" with one type for
each region of linearity of a certain piecewise-linear function R : RN -4 RN defined
by Lusztig, where N is tbe length of the langest element Wo in tbe Weyl group.

The regions of linearity of the function R may be determined from a graph r,
called the braid graph, defined in terms of reduced expressions for Wo. Each subset
S of r determines a region Cs in lRN on which the function R is linear. It is possible
for Cs to be empty - we say S is consistent if Cs is non-empty. It is also possible
for the linear functions on Cs, CS' to be the same - we write S ,...., S' when this
happens. Then the regions of linearity of R correspond to equivalence classes of
consistent subset of the braid graph.

In the case of non-simply-Iaced type the regions of linearity of R are in one-to-oue
correspondence with the a-stable regions of linearity. for a suitable simply-Iaced type
with graph automorphism a. The cases in which the number of regions is known
are as folIows.

Type:
Number of regions:

A4 As
144 6608

J. DENEF

Character sums associated to prehomogeneous vector spaces e
This is areport on joint work with A. Gyoja.
Let G be a connected complex reductive group, and p : G ~ GL(Y) a finite

dimensional rational representation. A tripie (G, p, Y) is called a prehomogeneous
vector space if V has an open G-orbit, say.Oo· Let 0 f:: f E C[V] be a relative
invariant with the character cjJ E Hom(G, CX

); f(gv) = cjJ(g)f(v) for all 9 E G
and v E V. Let pV : G ~ GL(YV

) be the dual of p. Then it is known that
(G, pv, VV) also has an open G-orbit, say O;{, and that there exists a relative
invariant 0 1= fV E C[VV] whose character is cjJ-l.

Roughly, the fundamental theorem of the theory of prehornogeneous vector
spaces due to M. Sato says that

Fourier transform of fS = fV-s x (some factors), for SEC. (1)
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The purpose of our work is to study a finite field analogue of (1) and to give
a completely explicit description of the Fourier transform assuming that the char­
acteristic of the base field IFq is large enough. Now IS, resp./v-s, is replaced by
x(/), resp. X-i (IV), and the factors involve GalJSs sums, the Bernstein polynomial
of land the parity of the split rank of the isotropy group at v v E VV (IFq ). (We
also express this parity in terms of the quadratic residue of the discriminant of the
Hessian of log IV (vV

).)

F. KNOP

Differentiable properties of the moment map

Let K be a connected, compact Lie group and M a Hamiltonian K-manifold·
with moment map J.L : M -+ e*. COO(M) carries the structure of a Poisson algebra.
We are concerned with the commutant of the K-invariants:

AC := {h E COO(M)I {I, h} = 0 for a11 ! E A:= coo(M)K}.

A and AC form a dual pair with common center C = An AC. It is known that a11
pull-hack functions J.L*cOO(e*) lie in Ac hut AC may be (slightly) larger. Let I) ~ e
be a Cartan subalgebra, W the Weyl group and 1)+ ~ 1)* a Weyl chamber. Then
we have a continous map:

CP+: M ~ e* ~ e*/K ~ l)*/W bi~ve l)~.

Theorem. There is a finite reflection subg'roup W Mol W such that C = cp+poo (I) *) W M •

The proof uses two ingredients: A comparison theorem by Tougeron, Bierstone­
Milman which reduces the problem to formal power series (Taylor series). The
second ingredient is the symplectic slice theorem by Weinstein, Marle which allows
to replace M by a certain real algebraic variety. The complexification M x <C turns

IR
out to be the cotangent bundle Ti for a complex algebraic variety on which the
complexified group G = K C acts. In this setting an analogous result was already
obtained by me in earlier work.

There are two applications:
- A criterion on M to carry a K-equivariant compatible Kähler structure.
- The determination of an important· subgroup of the automorphism group of
(M,J-L).

v. LAKSHMIBAI

Bases of Demazure modules and applications to singularities of Schubert varieties

Let G be a semisimple, simply connected algebraic group over an algebraica11y
closed field k. Let T be a maximal torus, and B a Borel subgroup B ::> T. Let W be
the Weyl group. For w E W, let X(w) (= BwB( mod B)) be the Schubert variety
in G/ B associated to eId. Let A be a dominant weight, and L>. the associated line
bundle on G/ B. Consider the projective embedding
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(if A is not regular, then we replace B by a suitable parabolic P>.). Let V(A) be the
Weyl Illodule (== HO(Gj B, L>.)V). Let e be a highest weight vector in V(A). For
w E W let ew == we, the extremal weight vector in V (A) of weight w (A). Let Vw

be thc B-submodule of V(A) generated by ew . Then IP(Vw ) is thc snlallcst linear
subspace of IP(V) containing X(w). We call V(w) the Demazure module associated
to 1V. We construct a basis B(A) in~exed by L-S paths of shape "x such that

(1) ß(A) consists of {De}, where D is either 1 or Fi<.nd ... Fi<:Jo

) , Fi being thc
root vectors in thc Chevalley basis;

(2) B(A) is Bruhat order compatible.

Applications to singularities: For a weight JL, let rn(JL) (resp. rnw (,l,») denote thc
multiplicity of JL in V(A) (resp. Vw )· Let T(w, Id) denote the tangent space to X(w)
at eId.

Theorem 1. T(w,Id) is spanned by {Fß Iß E R+, m(p - ß) == mw(p - ß)}.

Define deg Pw as the smallest r such that F/
1

nd ... Fi~~dpw == CPld, c E k·.

Theorem 2. rnldw· degpw == E m(wi' w)mldwi' where the summation runs over
all the Schubert divisors X(wd of X(w), and m(wi' w) is given by m(wi,10)
(A, ß'(), ßi being Wi == WSßi (ßi E R+ ).

G. LEHRER

Cellular Aigebras

Consider the following two problems: first, if G is a connected reductive group
and L is a Levi subgroup, both defined over Fq , describe an "additive decol11posi­
tion" of Rf.p, for p an appropriate (cuspidal) representation of of L F and Rf thc
ttLusztig induction" functor; second, let H be a subgroup of GL(V), V a vector
space; decompose (additively) v®n as H-module. Both problems involvc the con­
sideration of non-semisimple endomorphism algebras - thc first Hecke algebras and
the second (for H classical) the Brauer algebra. The purpose of cellular algebras is
to encapsulate such problems into standard problems of linear algebra. The defini­
tion is: An R-algebra A is cellular if it has a ttcell datum" (A, M, C, *), where A is

aposet, M("x) is a set for every A E A, C: II M("x)2 ---4 A is a map with irrlage an
>'EA ~

R-basis and * is an anti-involution satisfying (if C(S, T) :== C~,T for 5, T E M(A)) •

C~,T· == Cf.,s· The key axiom is: for every a E A, aC~,T == L ra(S',S)C~'IT
S'EM(>.)

modulo smaller elements (C~, ,T" J.t < "x). These axioms suffice to prove (if A is
finite and R is a field) a complete classification of the simple modules and give a
complete description of the block theory. There are Hcell modules" W("x) which
have t'invariant fonns" <P>.. If L).. == W("x)j Rad <P>., then

Theorem 1. The L>. i= 0 form a complete set of absolutely irreducible A-modules.

Theorem 2. If d>.,~ == [W(A) : L>.], then D == (d>,,~) is upper triangular and ij C
is the Cartan Matrix, then C == DtD.
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Theorem 3. A is semisimple if and only if (roughly) CP>. is non-degenerate JOT
each ,\ E A.

In this context we have

Theorem 4. Let Br(n, 0, R) be the Bmuer algebra with parameter 0 over R. The
irreducible modules are parametrized by {(t,;\) In - t E 2Z,;\ ~ t,'\ is p-regular, p =
char(R)} U {point} (ij 0 f:. 0). Their dimen.sions are detennined in terms 0/ those
0/ the Hecke algebras 0/ type A.

Theorem 5. There is a cellular structure on the cyclotomic Hecke algebras 0/
Ariki-K oike.

q-Schur algebras, Temperley Lieb and Jones algebras and Lusztig's U-quantum
group may be discussed in this context.

This is joint work with John Graham.

P. LITTELMANN

The path model of representations ~. -

. Let 9 be a semisimple Lie algebra over C, and let X be the weight lattice of g.
Denote by II the set of all piecewise linear paths 1] : [0, 1] --+ XIR such that 1](0) = 0
and 1](1) E X. For every simple root a we define operators ea:, Ia: E EndzZII, where
ZII is the free Z-module generated by II. Let II+ be the subset of paths such that
thc iInage is completely contained in the dominant WeyIchamber.

Let A c EndzZI1 be the algebra generated by these "root operators". The
lnodules An, n E II+, provide a very powerful combinatorial tool: .

(1) Set B 7r := An n 11, the set of paths in An. Then B7r is a Z-basis for A7r,
and B rr n n+ == {n}.

(2) If 1f, 17 E rr+ are such that 7r(I) = 1J(I), then the map An ---t A1J, an ..-.+ a1],
is an isoIllorphism.

(3) Let Char An = E eTl(l) for n E rr+. Then Char An = Char V>., where ,\ =
TJEB ff

11'"(1).
(4) Für 7T,1J E rr+ set An * A1J =< tr' *1]'I1r' E B 7r ,1J' E BTJ >, the span of the

concatenations of the paths in B1f and BTJ' Then this is an A-module, in
fact Atr * A1] = E911,A (n * 1J'), where the surn runs over all. 'f/' E B TJ , such
that tr * 1]' E rr+. Hence for ;\ == n(1), /-L == 1](1) one gets:

VA ® V~ ::: E9 Tl , V>'+l1'(l),

where the sum runs over all 1]' E B 11 such that 11'" * 1]' E n+.
(5) Für any reduced decomposition of Wo, there is a canonical way to associate

to B7r a basis {v1}l1J E B 7r } of V>.,'\ == 1[(1).

A. LUBOTZKY

Eigenvalues of the Laplacian. First Betti number
and the congruence subgroup problem

We present a new method to show non-vanishing of the first Betti number for
arithmetic hyperbolic manifolds. So we provc:
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Theorem 1. Let r be an arithmetic lattice in SO(n, 1) (i/ n = 7 assume r does
not come /rom /orms 0/ type 3 D 4 or 6D 4 , and i/ n = 3 and r comes from tLnits 0/

a quaternion algebra over a ntLmber field L, assume L has a stLbfield 0/ index 2).
Then r has a finite index congruence subgroup r o which can be mapped onto Z.

Corollary 2. f has negative answer to the congruence subgroup ~problem (as con­
jectured by Berre).

Corollary3. I/ n = 3, M 3 = r \ SO(3, 1)180(3) has a finite sheeted cover which
is Haken (as conjectured by Thurston).

Theorem 1 is not new. It follows from the accumulation of works of Millson,
Labesse-Schwermer, Li, Raghunathan-Venkataramana, and Li-Millson. OUf new
Inethod gives a unified approach whose main novelty is "property r" which is a
bound on the eigenvalues of the laplacian ci la Selberg's Theorem Al (f(m) \ IHr ) 2': k
for congruence subgroups of the modular group.

D. LUNA

Combinatorial invariants for spherical homogeneous spaces

Let G be a connected reductive group over <C and let B denote a Borel subgroup
of G. An algebraie G-variety X is called spherical if X is normal and if B has a
dense orbit in X. An algebraic subgroup H of G is called spherical if GIH is a
spherical variety.

The set ßc / H of "colors" of GIH is by definition the set of codimension 1
orbits of B in GIH. We will say that a spherical subgroup H of G is good if.
H == {s ENG (H), s acts triviallyon ßG/ H }. We will say that a spherical variety is
wonderful if X is complete, if G has only one closed orbit in X, if every irreducible
B-stable divisor in X which contains aG-orbit is G-stable, if X is smooth and if
the centre of G acts triviallyon X.

The following result has been proved by Brion-Pauer (Comment. '87) and Knop
(to appear in J. AMS): for every good subgroup H of G there exists an (open
G-)embedding GIH '-+ X, wit4 X wonderful, and this X is unique (up to isomor­
phism).

Using the geometry of this wonderful embedding of GIH, we defined some com­
binatorial invariants for every good spherical subgroup H of G. We gave some
properties of these invariants, mentioned some results concerning the classification ~

ofgood spherical subgroups, and discussed the example G = SL4(C). -

G. LUSZTIG

Classification of unipotent representations of simple p-adic groups

Let 9 be a split adjoint simple algebraic group over K, a non-archimedean Ioeal
field with residue field k,lkl = q. Let G be a simply conneeted almost simple
algebraic group over C of type dual to that Q. The unipotent representations
of gare those irreducible admissible representations V such that there exists a
parahoric subgroup P of g, with reductive quotient P (over k) and a unipotent
cuspidal representation p of P such that the restrietion Vip contains a nonzero
subspace on which P acts according with the representation p.
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Theorem. There is a natural one-to-one eorrespondence between the set 01 iso­
mOrPhism elasses 0/ unipotent representations 01 Q and the set 01 all tripies (s, y, v)
up to G -conjugaey, where s E G is semisimple, y E Lie G is nilpotent, Ad(s)y == qg,
and v is an irreducible representation 01 ZG(s, y)/Zc(s, y) on whieh the centre 0/
G aets trivially.

This is an extension of the Deligne-Langlands conjecture (connected with rep­
resentations of 9 with nonzero vectors fixed by an Iwahori subgroup, which was
proved by Kazhdan and me). The general case above provides further confirmation
for Langlands philosophy.

The proof consists in a geometrie realization of various affine Hecke algebras
with unequal parameters in the framework of charaeter sheaves and equivariant
homology. .

V.B. MEHTA

Invariants of 3 x 3 matrices. Frobenius-splitting
and moduli of veetor bundles in char p > 0

Let G == SL(3) with B, T and U as usual, with Lie algebras g, b, t and u. Let Zo
denote the vector space (g ® 9 ffi ... EI:) g) k-times, with the diagonal adjoint action
of G and let Ra he the ring of polynoIni3.1 functions on Zo. In joint work with T.
Ramadas, we prove the following:

Theorem 1. The ring 01 invariants (RO)G is F -split and C.M.

Theorem 2. The projective G.I. T. quotient P{ZO)//G is also F-split and C.M.

This has the following application. Let C be a non-singular projective curve and
SU(3) thc moduli space of semisimple vector bundles on C with trivial det. Then
SU(3) is C.M.

Thc results are proved using a conlbination of F-splitting and G.LT., and have
potential applications Verlinde's forrnulae in characteristic p > O. '.;!

YU.A. NERETIN

Extensions oe represcntations oe classical groups to representations of categories

O. Linear relations.. Let P C V EI:) W be a linear relation. Let Ker P :== P n V
and Indef P :== P n W. Let Dom P and !In P be the projections of P to V and
W rcspectively. The product of ·linear relations is the usual product of binary
correspondences.

1. Categories. The objects of the category CA are complex finite-dimensional
linear spaces. The space MorcA (V, W) consists of all linear relations P C V ffi W
and the formal element null = nullv,w. The product of null and any morphism
cquals null. Let P C V ffi Wand Q C W EB Y be linear relations. If

Ker Q n Indef P = 0, DOln Q + In} P == W,

then the product of Q and P is the llsual product of linear relations. In all other
cases QP == null. The objects of thc category B (resp. C, D) are odd dimen­
sional eomplex linear spaces provided with asymmetrie nondegenerate bilinear

9
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form (resp. complex linear spaees equipped with a skew-symmetric nondegenerate
linear form; even dimensional linear spaces equipped with asymmetrie bilinear
form). The morphisms in a11 cases are maximal isotropie subspaces in V ffi Wand
null. The definition of the product is the same as in the category CA.

2. Representations.

Theorem. a) Holomorphie projective 1'epresentations of the categories A, B, C, D
are completely redueible.
b) These representations are enumerated by the diagrams

A:

B:

C:

D:

where aj E Z+ and aj = 0 fo1' large j. Let ao: be the last nonzero label. If 11. 2::
Q - 1, then the representation 0/ the group K n = An, Rn, Cn , Dn eorresponding
to the representation (*) 0/ A, B, C, D is an irreducible representation with labels
(... , an-I, an)' I/ n < a - 1, then the representation of K n is zero-dimensional.

V.P. PLATONOV

Representations of Aut(F2) and braid groups

Let F2 be the free group ofrank 2, Aut(F2 ) be the automorphism group of F2 , and
B4 the braid group on four strings. We consider the general problem of description e
of a11 n-dimensional rerprese-ntations of Aut(F2 ) and B 4 over an arbitrary field K-.-
We give a "description of all n-dimensional representations of Aut(F2 ) for n ::; 4
which restrict to a given representation of F2 (There exists a natural connection
between Aut(F2 ) and B4 : if Z4 is the center of B4 , then B4 /Z4 f:.......+ Aut(F2)). In
"particular, we prove the following

Theorem. Let p : Aut(F2 ) ---+ GLn(K) be an n-dimensional representation. If
n ::; 4, then p(F2 ) is solvable.

Corollary. The group Aut(F2 ) has no faithful 4-dimensional representations.

We construct new classes of 3 and 4-dimensional representations of B 3 and B 4 .

It looks plausible that these representations will have new applications.
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G. PRASAD

Reoresentation theory of reduetive v-adie e:roups: theory of minimal K -types

This is areport on some joint work with Allen Moy. Let k be a non-arehimedean
Ioeal field and G a eonnected reduetive group defined over k. Let 9 = G(k) and
B = B(G) be the Bruhat-Tits building (enlarged building) of 9. Let S be a maximal
k-split torus of G and A = A(S) the apartment corresponding to S.

Dur (long term) goal is to classify irreducible admissible representations of 9 in
terms of their restrictions to suitable compact-open subgroups. For this purpose
for each x E B(9), we introduce a natural filtration Qx,r, T ~ 0, of the parahorie
subgroup Qx using the Bruhat-Tits theory. For T ~ 0, we let 9x,r+ = U Qx,s. Then

- s>r
9z,r/Qx,s, and so in partieular, Qz,r/Qx,r+, is abelian for 0 < T and T ~ ~s. We also
introduce filtration lattices gx,r in the Lie algebra 9 and g;,r in the dual g*. Let
{Ti} be the sequenee such that Qz,s = Qx,rä+l for Ti < S :::; Ti+l' Then the eharaeter
group of Qx,ri /Qx,ri+l for i > 0 is isomorphie to g;,-rä / g;,-ri-l and a eharacter of
the former is said to be nondegenerate if the eorresponding coset X +gx,-ri-l does
not eontain any nilpotent elements.

Definition (1) A depth zero minimal K-type is a cuspidal representation of
M = Qx/Qx,o+ infiated to Qx'

(2) An unrefined minimal K-type of depth r(> 0) is a nondegenerate charaeter
(I-dimensional representation) of Qx,r/Qx,r+ inflated to Qx,r'

We prove that any admissible representation (1f, V) of Q contains an unrefined
minimal K-type. Moreover, if T is the smallest non-negative real number such that
for some x E B, V eontains a nonzero vector fixed under Qx,r+, then any (unrefined)
minimal K-type eontained in V has depth r; r is a rational number and it is called
the depth of 1f.

Depth of a representation is preserved under parabolic induction and Jacquet
restriction. . .

We have also faund a complete description of irreducible absolutely euspidal
representations of depth zero generalizing Borel's results on representations which
contain a nonzero vector fixed under an Iwahori subgroup.

A. RAPINCHUK

Determination of the metaplectic kernel for algebraic groups over global fields

Let G be a simple, simply conneeted algebraic group over aglobai field K and S a
finite (possibIy empty) set of places of K. The metaplectie kernel M(S, G) is defined
to be the kernel of the restrietion map H~eas(G (A (S) )) -t H~bs(G(K) ), where
G(A(S)) is the group of S-adeles of G with its natural topology. In this definition,
H;"'eas (resp. H~bs) denotes the second measurable (resp. abstract) cohomology with
coeffieients in the one-dimensional torus I = IR/71 under trivial action. Observe
that in the main ease where S contains the set V! of archimedean places of K
(V~ = 0 if charK > 0), H~eas(C(A(S)))= H;ont(G(A(S))), the second continuous
cohomology. In any ease, tbe elements of M(S, C) are in ooe-to-one correspondence
with the equivalence classes of central topological extensions

1 -t I ----. E -+ C(A(S)) -+ 1
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which split over G(K), hence the obvious conneetion with the computation of the
congruence kernel for the S-arithmetic group G(O(S)) in case S ~ V~. On the
other hand, the case S ==0 is of importance for the theory of automorphie farms of
fractional weigbt. Primarily, these two applications stimulated the research towards
the precise determination of M(S, G). Tbe computation of M(S, G) for the split
groups was obtained by Moore and Matsumoto (1969). Their methods and results
were extended to the quasi-split case by Deodhar (1978). Using the machinery of al­
gebraic K-theory, Bak-Rehmann (1979-81) considered the case of isotropie elassical
groups of rank> 1. The final result for K-isotropic groups is due to Prasad­
Raghunathan (1983). The computation of M(S, G) for some K-anisotropic groups
was carried out by Rapinchuk (1984-85). Recently, in joint work with G. Prasad
we obtained the following practically eomplete description of M(S, G) for arbitrary
groups.

Theorem. Assume that if G is of type 2 An (n > 1), then S eontains V~. If there
exists a place Vo in S which is either non-arehimedean and G is K Vo -isotropie, or it
is real and the group G(Kvo) is not topologieally simply eonneeted, then the meta­
plectic kemel M(S, G) is trivial. Othenvise, M(S, G) is isomorphie to a subgroup
of {L(K), the dual group of the group f.J.(K) 0/ all roots 0/ unity in K, and M(0, G)
is isomorphie to a subgroup 0/ {L(K) 0/ index at most two.

One of the notabl~ eonsequences of this result (whieh is, in fact, an impor­
tant step of tbe proof) is the triviality of the weak metaplectic kernel Mv (G) =
Ker(H2 (G(V)) -+ H 2 (G(K)) (where G(V) == nvEv G(Kv )), for any finite set V
of places of K, under the assumption that if G is of type 2 An, then V eonsists
entirely of non-archimedean places. We used this result to give a uniform proof
of the eongruence subgroup property for the groups of points of G over semi-Iocal
subrings of K. To be more precise, let V be a finite set of plaees of K and Ov the
subring of K consisting of elements which are integral with respect to all places in
V..

Theorem. Suppose that G(K) has the standard deseription 0/ normal subgroups
(i.e. G(K) satisfies the Platonov-Margulis conjeeture) and that V contains alt non­
archimedean anisotropie places fOT G. Then the congruenee subgroup problem for
G (Ov) has a positive solution.

J. ROHLFS

Cohomology of arithmetic grOUPS and the S.teinberg representation

Let G/Q be a reductive connected group defined over Q with corresponding
symmetrie space X co ' Put X = X oo x G{Aj), where A! are the finite adeles over Q.
Let K f be an open and compact subgroup of G(A/ ) and put S(Kf) == G(Q) \XIK j

resp. S = G(Q) \ X. Let VKf resp. V be the sheaves on S{Kf) resp. S given by a
representation p : G(Q) -+ GL(V), diIIlQ V < 00. It is shown that

lim H*(S(K!), iiKf ) = H*(S, ii)
~

Kf

12
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as right G(Af )-modules. The same result holds for a11 smooth G(Af )-sheaves on
the Borel-Serre"compactification S of S. Moreover, it is shown that H*(S, \7) ~
H*(G(CQ), Vx), where Vx is the G(Q)-module of loca11y constant V-valued func­
tions on X. The cohomology with compaet support Hg (S, V) is identified with
Hi-l(G(Q), Homz(StG, Vx )), where l is the semisimple rank of G. Here Stc is the
Steinberg representation of G(Q). The cohomology H·(8S, V) of the boundary as
of S can be expressed as G(Q)-hypercohomology of a complex eonstructed out of the
complex of parabolic subgroups of G. A similar construction gives rise to a deereas­
ing filtration FiH·(S, V), where FlH*(S, V) is the image of H;(S, V) in H·(S, V).
The quotient F1H·(S, V)/FlH·(S, V) can be identified with the space of ghost
classes. A new non-trivial ghost class is constructed in H 2 (SL4 (Q), COO (SL4 (Af ))).
Finally, an algebraic eonstruetion of an "Eisenstein seetion" Eis· : H· (88, V) ---+

H·(S,p<; Hom(StG,Stb ® Vx)) is given. Here p: X -+ S is the projeetion, Std is
the Z-du~l of StG and plj iso the G(Q)-invariant direet image funetor.

G. ROUSSEAU ~.::.{~;,;:..

Real forms of Kae-Moocly .algebras . ~,~ .

A form over a field K C C of an indecomposable, infinite dimensional Kac­
Moody algebra g, is a Lie algebra 9K with an isomorphism gK ® C ~ 9.' So th~re is
an action of the Galois group r = Gal(CjK) on 9 and we define G K = er, where
G is the adjoint group of g.

As there are 2 conjugacy classes under G of Borel subalgebras of g, there are 2
eases:

(1) r mixes the 2 eonjugaey elasses: gK is ca11ed almost eompact.
(2) r stabilizes eaeh eonjugaey class: gK is called almost split.

In this last case many results ala Borel-Tits are known (see Back-Valente, Bardy­
Panse, Messaoud, Rousseau; Journal of Algebra 1995).

For other. results suppose now K = lR. and 9 symmetrizable: glR is given by a
conjugation u'. There exists a eompaet eonjugation w' eommuting with u' : u =
w'a' = u'w' is a (linear) involution.

If gIR is almost split, the eorrespondences glR f------4 U' +---+ aare one-to-one and
we get good classifications of them (see above artiele). If glR is almost compact,
then a is of first kind (it stabilizes the 2 conjugacy classes of Bo~el subalgebras),
and there is a map whieh is onto (but perhaps not one-to-one) (1 1-------+ gR.

Suppose now K = IR, 9 affine, ßIR almost compact. We know then a complete
list of first kind involutions, and the problem is to tell whether the corresponding
abnost compaet forms may be isomorphie.

The answer is known in the untwisted cases, and is negative in this ease. So the
above map is one-to-one in these cases.

The proof uses invariants of these forms, one of them is the rank of maximal
split toral subalgebras of these forms (this is an invariant, even if these algebras are
not conjugate under GIR ).
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w. SOERGEL

Representations oe restricted enveloping algebras:
Independence oe the characteristic

In this talk I reported on joint work with H.H. Andersen and- J.C. Jantzen.
For a fixed root system Rand a field k of finite characteristic we can form the

corresponding semisimple simply connected algebraic group G / k, its Lie algebra gk

and the restricted enveloping algebra Uk.

Theorem. There is a Z-algebra Bz,.free of finite rank over Z[i-lll ~ i < h] (h =
Coxe.ter number) such that for all k with char k > h

Bz ®z k is M orita-equivalent to the principal block 0 f Uk.

There is qD analogous interpretation of Bz ®zQ(VI) in terms of quantum groups
at VI.

A refinement of this theorem tells us that the decomposition matrices for re­
strieted representations of gk are (for ehar k » 0) independent of k and coineide
~ith their (known) quantum analoga, thereby proving Luzstig's modular eonjeettire
for ehar k » O. .

D.M. TESTERMAN

Al-type subgroups in exceptional algebraic groups

The work discussed below was done in collaboration with Ross Lawther of War­
wiek University.

We take as our starting point the following charaeteristic p analogue of the
J acobsen-Morozov theorem.

Theorem. (Testerman) Let G be a semisimple. algebraic group defined over an
algebraically closed field k 0/ characteristic p > O. Assume p to be a good prime for
G. Let u E G with .up = 1. Then there exists a closed connected subgroup X < G
with X ~ SL2(k) or PSL2(k) and u EX.

Thus, the map {C-classes of A1-subgroups of C} ~ {G-classes of elements of
order p} is onto. We consider here the question: Is it a bijection? If not, what can e
be said about the G-classesof A1-subgroups lying above a fixed unipotent element.
ofG?

Theorem. Let G have type G 2 , F4 , E 6 , E 7 , Es and assume p > 3,3,5,7,7, respec­
tively. Then there exists a complete classification 0/ the G -conjugacy classes of
closed connected subgroups X < G, X ~ SL2 (k) or PSL2(k). FOT each class of
subgroups the G -class 0/ its unipotent elements is identijied and Cc (X)O .is deter­
mined.

Corollary. Lie(Cc(X)O) = CLie(C) (X).

To X can be associated a labelIed Dynkin diagram; this encodes the set of weights
of a maximal torus of X acting on Lie(G). Liebeck and Seitz have shown that the
G-class of X is uniquely determined by its labelIed Dykin diagram. In general,
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there will be infinitely many non-conjugate Al-subgroups above a given unipotent
element; however, most of these arise from (ttwisted diagonal" embeddings of Al
in a direct product or from twisted tensor product embeddings of Al in a classical
subgroup of G. If we consider only Uuntwisted" embeddings, we get

Corollary. The map

{G-classes of untwisted AI-subgroups of G} ---t {G-classes of elements of order p}

is a bijection fOT the groups G2 , E 7 , Es, and for G == F4 , E 6 , there exists a unique
class of elements .of order p fOT which there are precisely 2 non-conjugate untwisted
Al -subgroups mapping ta this class, and this only for p == 7.

Corollary. Let u E G, uP == 1. Let'X be an untwisted Al -subgroup with u EX:
Then Gc(X)O is a maximal reductive subgroup 0/ GG(u)o.

E.B. VINBERG

Reductive algebraic semigroups,

The theory of algebraic semigroups v:as developed by Putcha and Reriiter in
the 80 'so Some basic theorems of this theory are presented in the first half of the
lecture. In -particular, let S be an algebraic ~emigroup with unit and G its group
of invertible elements. Suppose that G is reductive. Then any (G x G)-orbit in S
contains exactly one conjugacy class of idempotents. Any idempotent is conjugate
to an idempotent of T, where T· is a maximal torus of G. Two idempotents of T
are conjugate if they are equivalent with respect to the Weyl graupe

In the second half of the lecture, a cJassification of all reductive algebraic semi­
groups is given in terms of ,some geometrical data in tbe space of characters of T.
For any semisimple algebraic group Go, aremarkable semigroup S is distinguished
among all the semigroups having Go as the commutator subgroup of the group of
invertible elements. The "wonderful" completion of Go, constructed by DeConcini
and Procesi, can be described in terms of this semigroup.

Berichterstatter: G. Röhrle
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