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The meeting was organised by W. Hackbusch (Kiel), P. Hemker (CWI Amster­
dam) , and G. Wittum (Stuttgart). During the 5 days of the conference, 28 talks
were given, 42 scientists from Germany (#25), USA (#8), Netherlands (#5), Austria

. (#1), Belgium (#1), Czech(#l), and France (#1) participated. The Cf"ntre of inter­
est were new developments in multigrid methods and related subjects. To sketch the
fields of subjects, the following keywords are given:

aposteriori error estimates,
algebraic multi-grid,
cascadic multi-grid,
coarsening,
convection-diffusion equation,
domain decomposition - Schwarz method,
frequency decomposition multi-grid,
frequency filtering,
Navier-Stokes equation,
parallelisatiori ,
plane smoother,
mg far integral equations,
multilevel extrapolation,
nonconforming / nonnested multi-grid.

The organisers and participants thank the 'Mathematischem Forschungsinstitut
Oberwolfach' to make the conference possible in the usual comforlable and inspiring
setting. The abstracts follow in the order as the lectures are given.
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Monday, lVlay 1, :Nlorning Session

P. Wesseling, C. Vuik, S. Zeng:

MULTIGRID SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS IN GENERAL COORDINATES

Implicit time discretization of the incompressible Navier-Stokes equations on stag­
gered grids in general coordinates with central discretization of the convection terms
leads, with the pressure correction method, to iarge algebraic systems for the velocity
and pressure unknowns. We apply (combinations of) multigrid and Krylov subspace
methods with ILU and line-Jacobi preconditioning. The aim is to have efficiency and
robustness on highly distorted computational grids, and concurrent processing po­
tential. It is found that for the momentum equations GMRES/ILU is most suitable,
whereas for the pressure multigrid with ILU smoothing, accelerated by GCR (gener­
alized conjugate residuals) is best. GCR acceleration of a given method is found to
be never detrimental, and often beneficial.

K. Oosterlee:

A GMRES-BASED PLANE SMOOTHER IN MULTIGRID TO SOLVE THREE­
DIMENSIONAL ANISOTROPIC FLUID FLOW PROBLEMS

For a discretization of the three-dimensional steady incompressible Navier-Stokes
equations a solution method is presented for solving flow problems on stretched grids.
The discretization is a vertex-centered finite volume discretization with a flux split-
ting approach for the convective terms. Second order accuracy is obtained with defect
correction. The solution method used is multigrid, for which aplane smoother ia pre- ..
sented for obtaining goodconvergence in flowdomains. with severely stretched grids. _.,
A matrix is set up in a plane, which is solved iteratively with a preconditioned GM-
RES methode A stop criterion for GMRES is investigated which reduces the nurnber
of inner iterations compared to an 'exact' plane solver without affecting the multigrid
convergence rates. It is found that the algorithm is very efficient for stretched Poisson
problems. The algorithm produced good results, when the GMRES plane solver was
stopped after the initial residuals are diminished by a factor of 10. For the method
with the plane smoother similar wall-clock times are obtained as for an alternating
line smoother, while the convergence with the line smoother was not satisfactory for
the Poisson problem considered. For grid stretching in one direction for incompress-
ible model flow problems the plane smoother was beneficial for cell 8spect ratios of
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more than factor 50 for several ftow problems at different Reynolds nmnbers. Here,
the defect correction algorithm with the GMRES plane solver produced identical re­
sults as an texact' plane salver, when the GMRES iterations were stopped after the
initial residuals were diminished by a factor of 100.

MULTIGRID METHODS FOR NAVIER-STOK"ES EQUATIONS COUPLED TO
k-E TURBULENCE EQUATIONS IN COMPRESSIBLE TRANSITIONAL
FLOWS

"The equations describing compressible transitional flow are first discussed. 'These
consist of a laminar set of Navier-Stokes equations coupled by source terms to a
turbulent set of Navier-Stokes equations. The turbulent set includes two turbulence
equations ( k-c:). The cOllpling source terms express the interaction between turbu­
lent and laminar parts in the fiow field. These terms depend on gradients of the
intermitt.ency factor. The factor itself is described by a convection-diffusion-source
equation. In two dimensions, a set of 11 coupled equations ( 4 laminar + 6 turbulent
+ 1 intermittency ) is obtained. The dynarnics of the set are very much governed by
the source terms. The set is solved in a partially decoupled way in the sense that a
multigrid m~thod is applied to t.he laminar and the turbulent set separately while the
interactive source terms are updated in an outer cycle. In the turbulent part of the
flow equations, the source terms in the k-e equations are included in the multigrid
procedllre.

Several effects cause bad multigrid performance: the destruction of the smoothing
by the action of the source terms in the k-e equations, the convective stiffness of the
equations due to very low convective velocities compared to the acoustic velocity near
walls and t.he diffusive stiffness due to the practical impossibility to use a sufficiently
refined grid near walls causing the diffusive terms to be almast negligible with respect
to the acoustic terms.

D. Hänel:

COMPUTATIONS OF COMPRESSIBLE, STRONGLY UNSTEADY FLOWS
ON ADAPTIVE, UNSTRUCTURED GRIDS USING A "MULTI-SEQUENCE
RUNGE-KUITA METHOD"

Unsteady flow are of large importance in fluid dynamies. Typical examples are vis­
cous, separable and vortical fiows or chemical driven flow.
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Computations of such fiows are very time consuming, mainly due to the small
seales in time to be resolved. Therefore several studies are made to improve the
performance of algorithms. Former studies based a time-consistent FAS multigrid
applied to explicit time-stepping scheme have shown only moderate suceess.

Bettel' performance was achieved with the so-called Runge-Kutta Method with
Multi-Sequences, which reduces the severe stability restrictions of an explicit scheme.

In this way the stability limit for 6.t could be satisfied nearly locally by ordering
the grid cells in groups of sirnilar size.

Time consistency could be preserved by a suited synchronization of the Runge­
Kutta Scheme. Comparative studies have shown a gain in CPU of a factor 5 to 10
eompared to standard Runge-Kutta and of 2 to 5 compared to the unsteady FAS­
inultigrid.

Monday, Afternoon Session

U. RÜde:

IMPLICIT MULTILEVEL EXTRAPOLATION METHOnS

Multilevel methods can be combined naturally with extrapolation-like techniques
for raising the approximation order. A special algorithm of this type is the T­

extrapolation method for multigrid algorithms. This technique presents an implicit
application of the extrapolation principle that does not need globalasymptotic error
expansions. It is therefore weH suited to be used loeally in combination with local
grid refinement.. The analysis of these methods is based on asymptotic error expan­
sions für combined differentiation/integration rules in combination with appropriate
stability conditions.

J. E. Dendy:

VARIANTS OF THE FREQUENCY DECOMPOSITION MULTIGRID
METHOn

We discuss several variants of the frequency decomposition method motivated by
an application to global ocean modeling. It is shown how to achieve robustness for
problems with anisotropie and discontinuous coefficients, and the application in global
ocean modeling is discussed.
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R. Stevenson:

FREQUENCY DECOMPOSITION MULTILEVEL METHOnS

Without a special choice of a smoother t a standard multi-grid method is not robust
far anisotropie second order boundary value problems. In three dimensions suitable
smoothers with reasonable eosts are hard to find. For this reason Hackbusch proposed
in t88 the s(J-called Frequency Decomposition (FD) multi-level method for application
to tensor product grids. The characteristic feature of this method is the use of more
than one coarse-gr-id correction -in which case the smoother can be dropped.

In a some\vhat modified formt the FD method can be seen as an additive Schwarz
preconditioner based on a multiscale decomposition of the finite element space into
a set of spaces that are mutually orthogonal w.r.t. discrete (hut (L2 )-like) scalar
produets. In this talk, we will show how this concept can be applied to general nested
sequences of finite element spaces, including those that correspond to locally refined
grids. The resulting preconditioners have optimum condition numbers for zeroth and
second order problems and are suitable for application to anisotropie problems.

Tuesday, 2nd, Morning Session

S. Vandewalle, M. Holst:

SCHWARZ ~1ETHODS: TO SYMMETRIZE OR NOT TO SYMMETRIZE

We present a precondi tioning theory for Schwarz methods. The theory establishes
sufficient conditions for multiplicative and additive multi-level Schwarz methods to
yield self-adjoint positive definite preconditioners. It is applied to multigrid and
domain decomposition methods. The theory does not require any variational condi­
tions to be satisfied, and allows for the use of non-convergent Schwarz methods as
preconditioners.

We show that symmetrizing may be a bad idea for linear methods. We conjec­
ture that enforcing minimal symmetry achieves the best results when combined with
conjugate gradient acceleration. Also, it is shown that absence of synunetry in the
linear preconditioner is advantageous when the linear method is accelerated by using
the Bi-CGstab method.

Numerical examples are presented for two test problems which illustrate the theory
and conjeetures.

5

                                   
                                                                                                       ©



A. Meyer:

PRECONDITIONINC THE PSEUDO-LAPLACIAN FOR CFD-SIMULATION

If the simulation of time-dependent incompressible flow uses finite elements and some
idea of projection methods that require the solution of apressure correction equation,
a linear system of the type BT Mi 1Bji = - B T Ü arises. In order to use hierarchieal
techniques for efficient preconditioning this matrix, we proved the spectrally equiv­
alence to a true "Laplacian". The introduction of a coarse mesh solver causes some
problems due to the fact that often no 1st type boundary conditions for the pressure
are possible. It is discussed how to overeome this difficulty.

M. Jung:

ON THE PARALLELIZATION CF MULTI-GRID METHOnS USING A NON­
OVERLAPPING DD-DATA STRUCTURE

We discuss the parallelization of multi-grid methods using a non-overlapping domain
decomposi tion data structure. The algori thms are implemented on parallel machines
with MIMD architecture.

Especially, we propose a new variant of a parallel smoothing procedure of Gauss­
Seidel type which needs the same communication as a Jacobi smoother. For solving
the systems of algebraic equations on the coarsest grid we use the preconditioned
conjugate gradient method applied to the corresponcling Schur complement system.

Numerical examples show the efficiency of our algorithms.

G. Haase, U. Langer:

DIRICHLET DOMAIN DECOMPOSITION VERSUS GLOBAL MULTIGRID e
METHODS

This talk presents sorne new results in the development of fast Dirichlet ASM-DD­
preconditioners and compares the DD-preconditioned conjugate gradient (cg) method .
with aglobai multigrid method parallelized on the basis of some non-overlapping
domain decomposition (DD) data structure. The most sensitive part in the Dirichlet
DD-preconditioner is the approximate execution of the operation

(harmonical extension)

6

                                   
                                                                                                       ©



which will be done by a hierarchieal extension technique with an exaet harmoni­
cal extension on the coarsest level and postsmoothing sweeps (Sl,k - Gauss-Seidel
smoother) on all other levels :

Eu,:,'}.

b'/C,k

S'!":2 [Q/,2 K I,: (-K1C,d + Qrc,2] Qc,~

S~~ [Q/,kE/C,k-l + Q/C,k] Qc~ Vk = 3,f,

where Q i6 the transformation from the hierarchical basis into the usual FE-nodal
basis and K = Kr p.d. denotes the finite element stiffness matrix the block par­
titioning (Kc , KCJ : K/c , K/) of whieh eorresponds to the DD as usual. Due to
the fact that lEl~ includes the first part of a V -multigrid-cycle an algorithmic im­
provement results additionally in a cheaper preconditioner. A parallelized version
of the cg-method using this DD-preconditioner solves a linear system of equations
(magnetic field of an electrieal motor, complex interface geometry, large jumps in
the coefficients, FEM-di6eretization) with 375000 unlmowns in 46 seconds on the
Po\verXplorer with 16 processors.

A parallelized global multigrid solver using the same DD data structures (talk of
M. Jung) is approximately 3 times faster on the finer grid for the same problem on
the same computer. However, the DD methods offer the opportunity to couple FEM
and BEM. ThllS, the combination of both methods ean be quite useful.

Tuesday,. Afternoon Session

S. Brenner:

CONVERGENCE OF NONCONFORMING OR NONNESTED MULTIGRID
ivIETHODS WITHOUT FULL ELLIPTIC REGULARITY

We consider nonconforming or nonnested multigrid methods for second and fourth
order elliptic boundary value problems which do not have full elliptic regularity. We
prove that the contraction number of the W-cycle algorithm with a sufliciently large
number of smoothing steps is bOl mded away from 1 uniformly. We also show that
the symmetrie variable V-cyele algorithm is an optimal preeonditioner.
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s. Tllrek:

ON ROBUST AND EFFICIENT MULTILEVEL SCHUR-COMPLEMENT
SOLVERS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

We present multilevel acceleration techniques for the "discrete projection methods"
which are discrete versions of the weil known continuous projection schemes (cf.
Chorin, van Kan). We show that, in combination with special smoothing operators in eJ
additive form, these methods are very efficient for stationary as weH as nonstationary
calculations, and that this approach seems to have no problems with gird anisotropies.
Numerical test canfirm aur theoretical considerations.

D. Braess:

EFFICIENT SivIOOTHING OF THE NAVIER-STOKES EQUATIONS BY U­
DOMINANT ITERATIONS

When iterations for the solution of a saddle point problem

are investigat.ed as smoothers, a classification is helpful:
An iteration is called -u,-dominant or direct (~dominant or Schur complement

iteration, resp.) if (Uk+l,Pk+l) mainly depends on Uk (on Pb resp.). SIMPLE C turns
out to be p-dominant and not to be a good smoother.

Au-dominant iteration which is a good smoother is obtained when· the given
equation is approximately solved via

and if 9 = Q. The crucial point is the fact that the new values do not depend on the
old approximation of p. The iteration is known from the pressure correction method,
hut is a big difference whether f = 0 or 9 = O.
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Wednesday, 3rd, Morning Session

M. Feist.aller:

NUMERICAL SOLUTION OF NONLINEAR CONVECTION-DIFFUSION
PROBLEMS

The paper is concerned with nmnerical solution of nonlinear convection-diffusion
problems appearing mainly in fluid dynamies. The method is based on upwind flux
vector splitting finite volume schemes on unstructured grids used for the discretiza­
tion of nonlinear convective terms~ combined with the finite element approximation
of viscous dissipative terms The resulting scheme can be treated as a fully implicit,
semiimplicit or purely explicit method. Special attention is devoted to a suitable
adaptive techniql1e for precise shock capturing. The combined finite volume-finite
element scheme is theoretically studied on a model nonlinear scalar conservation law
equation with a diffusion term. Namely, the convergence of the scheme is proved
with the aid of suitable apriori estimates, discrete maximum principle and some
compactness results. The method is applied to the numerical simulation of viscous
compressible flow. Some camputational results will be presented.

A. Rensken:

MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS

In this talk we consider a two-grid method based on approximation of the Schur
complement. We study the dependence of the two-grid convergence rate on cer­
tain problem parameters. As test problem we take the rotated anisotropic diffusion
equation and the convection-diffusion equation. Using Fourier analysis and discrete
Greens funct.ions we analyze the robustness of the two-gird method w.r.t. variation
in the relevant problem parameters. For the multigrid we use a standard W-cycle.
This multigrid method then has tbe same algorithmic structure as a standard multi­
grid method and is fairly efficient. Moreover, when applied to the two test problems
then, as in the two-grid method, we have a strong robustness w.r.t. variation in the
problem parameters. This is shown by numerical results for the test problems.
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J. Fuhrmann:

ON ALGEBRAIC MULTILEVEL METHOnS FOR PARTIAL DIFFERENTIAL
EQUATIONS

It is weil known that in the one-dimensional case, the method of eydic reduction
ean be interpreted as an exact multigrid method with operator dependent transfer
operators. Starting with this observation, a more or less heuristic scheme is discussed
which allows the derivation of multigrid components in higher dimensions.

Within this framework, a multigrid method for two- and three-dimensionallogi­
eally orthogonal meshes is described. It works weil for both symmetrie and nonsym­
metrie problems and show robustness with respect to coeffieient jumps not aligned
to coarse mesh boundaries.

Further, a generalization to the ease of unstructured meshes is proposed which
aHows the implementation of an algebraic multilevel method which is able to utilize
structure information if possible.

Numerical examples for bot methods are discussed.

Thursday, 4th, Morning Session

N. Neuß:

HOMOGENIZATION AND MULTIGRID

For a linear elliptic equation of second order with oscillating eoefficients (possibly
with large jumps) we show convergence of a multilevel method that uses a coarse grid
problem generated by a homogenization technique. This is a step towards real multi-
scale methods, and it also may influence the development of more effieient geometric- .-
~lge~raic multigrid methods. .,

P.Oswald:

MULTILEVEL PRECONDITIONERS FOR NONCONFORMING DISCRE­
TIZATIONS

We review recent approaches to preconditioners of hierarchical basis and BPX-type
for nonconforming discretizations of seeond and fourth order elliptic boundary value
problems. There are two main directions at present~
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• NIllltilevel splittings of a nonconforming finite element space can be obtained
from the natural sequence of nonconforming coarse grid spaces by using an
appropriately designed set of intergrid transfer operators. Except for some
simple cases, the control of all perturbations arising in a nonconforming setting
remains a nontrivial task.

• 1'he multilevel decomposition can be inherited from another element type. In
t.his ease (which is easier to deal with theoretically but depends on existing
c.onforming preconditioning methods), the only issue is the design of an accurate
two-Ievel method to switch to the reference element.

Both approaches can be based on the additive Schwarz setting and eomplemented
by adaptivity strategies. As an illustration, some specific element types~(PIJ rotated
Ql, Morley, Zienkiewicz, nonconforming PI-PO Stokes element) are dis~Jussed.

J. Junkherr:

wIULTIGRID METHODS FOR WEAKLY SINGULAR INTEGRAL EQUATIONS
OF 1ST KIND

The integral equation of 1st kind

Du=j,

wit.h
lJ : f/ 7 (r) -+ l-l-'Y(r), 1 < 0 (*)

is considered. Due to the negative order of the operator D, "classical" multigrid
methods do not work efficiently: the smoothing iteration does not damp the oscil1ating
parts of t.he error. A strategy is presented, how to design smoothing iterations for
problem (*). Essential für this strategy is the construction of a prewavelet basis of
boundary elements 'on general surfaces. By taking a simple ansatz, not depending on
the well-known "refinement equation", it is possible to eonstruct a prewavelet basis on
Lipschitz surfaces. Numerical results show the efficiency of the constructed multigrid
methods.
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R. Kornhllber:

APOSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS

Let u E H be the exact solution uf a given self-adjoint elliptic b01llldary value prob­
lem, which is approximated by some Ü E S, S being a suitable conforming finite
element space. Efficient and reliable aposteriori estimates of the error lIu - üll, mea- a
suring the (local) quality of ü, playa crucial role in termination criteria and in the ..
adaptive refinement of the underlying mesh. A well-known elass of error estima-
tors ean be derived systematically by localizing the discretized defect problem using
domain deeomposition teehniques.

In our talk, we provide a guideline for the theoretical analysis of such error esti­
mators. We further elarify the relation to other concepts. Our analysis leads to new
errar estimates, whieh are specially suited to three space dimensions. The theoretical
results are illustrated by numerical computations.

Thursday, Afternoon Session

R. Bank, J. Xu:

AN ALGORITHM FOR COARSENING UNSTRUCTURED MESHES

We develop and analyze a procedure for creating a hierarchieal basis of eontinuous
piecewise linear polynomials on an arbitrary, unstructured, nonuniform triangular
mesh. Using these hierarchieal basis functions, we are able to define and analyze
corresponding iterative methods for solving the linear systems arising from finite
element discretizations of elliptic partial differential equations. We show that such
iterative methods perform as weIl as those developed for the usual case of structured,
locally refined meshes. In particular, we show that the generalized condition numbers
for such iterative methods are of order J2, where J is the number of hierarchical basis
levels.
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S. Sauter, W. Hackbusch:

COMPOSITE FINITE ELEMENTS FOR THE APPROXIMATION OF PDES
ON DOl\1AINS WITH COMPLICATED MICRO-STRUCTURES

Usually, the minimal dimension of a finite element space is closely related to the
geometry of the physical object of interest. This means that sometimes the resolution
of small micro-structures in the domain requires an inadequately fine finite element
grid from the viewpoint of the desired accuracy.

This fact limits also the application of multi-grid methods to practical situations
because the condition that the coarsest grid should resolve the physical object often
leads to a huge number of tmknowns on the coarsest level.

We present here a strategy for coarsening fini te element spaces independently of
the shape of the object. This technique ean be used to resolve complicated domains
with only few degrees of freedorn and to apply multi-grid methods efficiently to PDEs
on domains with eomplex boundary.

In this talk ,ve will prove the approximation property of these generalized FE
"spaces.

R.H.W. Hoppe:

ADAPTIVE MULTILEVEL METHOnS FOR MIXED FINITE ELEMENTS

We consider adaptive multilevel methods for mixed finite element discretization of
second order elliptic boundary value problems. Emphasis is on the efficient iterative
solution of the mixed discretiz~dproblems by multilevel preconditioned cg-iterations
and on an efficient and reliable aposteriori error estimator" as a criterium for local
grid refinement. The multilevel preconditioner is constructed by means of appropriate
multilevel decompositions of the mixed ansatz spaces. On the other hand, a cheaply
computable aposteriori error estimator can be obtained by the principle of defect
correction in higher order mixed ansatz spaees combined with a localization by a
hierarchieal two-Ievel splitting of these ansatz spaces. The performance of the solution
process and the error estimation is illustrated by numerical experiments.
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Friday, 5th, Morning Session

F. Bornemann:

CASCADIC MULTICRID METHOnS

The theory of cascadic multi-grid methods will be presented taking adaptive, non- e
lUliform triangulations into eonsideration. Nmnerical experiments will illustrate that
interchanging the smoothing and approximation property of standard multi-grid
methods is essential.

C. Wagner:

FREQUENCY FILTERING DEC0MPOSITION

The frequency filtering decomposition, introduced. by Wittum in 1992, are a spe­
cial kind of incomplete block decompositions. With a suitable choice of test vectors
smoothers or correetors ean be eonstructed. The tangential frequency filtering de­
composition and the adaptive testveetor concept are presented. A possibility for the
treatment of unsymmetric matrices with (tangential) frequency filtering decompo­
sitions is described. Using these methods the pollutant transport in an aquifer is
simulated. Finally, some physical and numerieal results are presented.

P. Vanek, J. Mandel, :lvI. Brezina:

ALCEBRAIC MULTIGRID FOR ELASTICITY AND THIN ELASTICITY e
The purpose of this talk is to report on a progress in the development of algebraie
multigrid methods whieh have been described recently at a workshop in Meissdorf.
More preeisely, we will demonstrate the performance of the method for thin elasticity
problems.

We present a rule-based automatie coarsening technique for discretized elliptic
problems and their singular perturbations, particularly plates, shells and thin solids.
The key idea of the coarsening proeedure is a smoothing by Jacobi-like smoothers
of prolongation operators given by aggregation. Für uniformly V-elliptic problems or
anisotropie problems, the eoarsening proeess requires only the stiffness matrix. In the
ease of more diffieult problems as, e.g., insuffieient essential boundary condition, thin
solids, plates, and shells, we need additional geometrie input, namely the algebraic
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representation of the kernels of the bilinear form away from the essential boundary
conditiuns, i.e., rigid body motions in the case of elastieity. The theory for sealar
problems with fJI-equivalent forms is developed. The performance of the algorithm
will be demonstrated on several real-life problems of struetural mechanies.

w. Mulder, C. Meijling, G. Schmidt (t):

APPLICATION OF MULTIGRID TO PORODS MEDIA FLOW

The equations for incompressible, irruniscible, tw~phase parOliS media flow represent
a highly simplified model for oil reservoir simulation. A eorrunon approach is to
eomhine the ineompressibility condition and Darey's law inta one equation for the
total pressure. This equation is elliptie for given saturation. The saturation equation
is parabolic for a fixed pressure field. Because the pressure often evolves on a much
longer time scale than the saturation, operator splitting is often used, Here, the
pressure equation is discretized by the lowest-order mixed finite elements of Raviart
and Thomas, for locally refined blocks. The resulting linear system is solved by
rnultigrid. A non-standard approach to operator weighting is used. The parabolie
equation is split into a hyperbolic part that is integrated either by a non-conservative
nonlinear characteristie method or by a conservative second order upstream scheme,
and diffllsive part that is treated implicitly.

Operator splitting is shown to fail for certain problems, in particular Jor highly
unstable displacement or for gravity äriven problems. This failure ean be repaired,
but at the expense of eomputational efficiency.

An alternative tu operator splitting is the use of nonlinear multigrid for the eou­
pled system of equations. Results for a homogeneous hut strongly anisotropie two­
dimensional problem are presented.

Berichterstatter: S. Sauter
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