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TQe meeting has been organized by Hans Wilhelm Alt (Bonn) and Paul Fife (Salt Lake
,City). The purpose of the meeting was to bring together people from different fields so

that they could exchange their knowledge .and ideas on mathematical models for phase
t'ransitions. During the conference two evening discussions took place, one on "TripIee junction motion" and one on "Hysteresis".

Vortragsauszüge

NICK ALIKAKOS

Finite Dimensional Dyn~ics and· Interfaces Intersecting the Boundary ­

A Paradigm

(Joirit work with G. Fusco and M. Kowalczyk)
We consider the Allan-Cahn (AC) equation Ut = c2 ßu - f(u),

/\ / J ?~I(C7 <N

~ = 0 on a domain with adegenerate neck, n c }R2 with C1,Q-boundary, 0: > 0,

where near corners the boundary is given by X2 = q,(Xl) with

q,i(xt} = { Klxll° + o(lxlI
1
+

a
) ,Xl $ 0 ,

o , Xl =0 .

We describe the motion of single (diffused) interface solutions inside the rectangle 1234.

c({) = [cl+aar31C3 + t 1+o"r41C4] e-2ß~ - (cl+01rlIC1 + cl+a2r2K2] e-2ß!:f , (1)
, [;i] . ' '. [B] ,
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L.~

where Ki = curvature of i-th corner, r i = constants related to r-function, Oi = Hölder
expanents at i-th corner.

Theorem 1 (Equilibria)

1. Suppose [A] [B] > O. Then there exists a unique equilibrium with interface at eE

(1,1 -I) with le - ~I $ el1n cl.
2. Suppose [A][B] < O. Then there exists no equilibrium with interface in (1,1 - I)

Theorem 2 (Dynamics): c(e) in (1) is the principal term 0/ the speed.

ROBERT ALMGREN

Solidification Computation

We review the current state of solidification camputation. First, we discuss the reasans

for performing computations: to identify interesting special behavior which may therr be

sought in experiment, to test theories about velocity selection and the line, and to provide

detailed information about m.icrostructure for practical engineering purposes. Second, I
present the physical assumptions which lead to the most commonly used mathematical

models, for large, intermediate, and small undercooting, in which kinetic effects appear

differently. Third and finally, I survey several currently papular methods. In the quasi­

static limit at low undercooling, boundary integrals are quite effective; we present some of

our own computations showing dendrites and singularity formati~n ~th dumbbell initial

data. Among methods which do not track the interface explicitly, the current favorite is

phase field: we present efforts in process to implement adaptive mesh techniques. Other
promising methods are level set, a variational algorithm based on the Ising model, and
artificial dynamics.

PETER BATES

Traveling Waves for Higher Order and Nonlocal Models

_(joint wit~~ Paul Fife, Bob Gardner, Chris Jones, Xiao~~~g_ Pien, Xenfeng Wang)

Starting with a Helmholtz free energy for an order parameter distributed on a lattice, we

derive a nonlocal evolution equation aB the gradient flow of the continuized energy:

Ut=J*u-u+!(u) (1)

were f is bistable.

We also consider "truncations" of the energy and obtain, a.s a gradient flow, the equation

(2)
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where AN is a 2Nth order elliptic operator.

We establish existence, uniqueness and stability of traveling plane waves for (1) which

connect the stahle zeros of f. We also characterize those f's for which the wave is

discontinuous and therefore stationary even when J: f f; 0 (a, b are the stable zeros of

f)·
For (2) we establish the existence of a stationary solution when J: f = 0 and the existence

of traveling waves when this is violated but under the assumption that all but the second

order coefficient in AN are sufficiently small.

e YVES BRECHET

Plastic Instabilities and Plastic Waves

Travelling plastic waves are shown to .occur both in strain rate softening (8 type) and

strain softening (h type) constitutive laws. Computer· simulations both for prop.agative
,t.v',

waves and for noise induced instabilities are presented. -,~

LIA BRONSARD

On the Multiplicity of Interfaces for the Allen-Cahn Equation

We study the radial Allen-Cahn equation

e<pt - c<prr - ~<P,. + ~w'(lj» = 0 in B(O;I) C IRn
with U18,. = 1 and where w(lj» = ~(1 - <p2)2 .

Using the energy method of Bronsard-Kohn ([BK]), we c~nstruct solutions cjl(I, t) with

N interfaces in (p(t) - NeO,p(t) + NeO), er ~ :' which persist for same finite ~trictly

positive time. Here p(t) solves the mean eurvature flow p = - (n;1), p(0) = Po ~,( ~, 1).

This shows that in the limit e -7 0, the limiting interface p(t) has "multiplicity"~··N. In

particular, when N is even, this shows that there exist "phantom" interfaces separating

the same phase. The assumptions are that the weighted energy (unctional introduced in

[BK] is bounded by NCo + Cl c20
, where Co represents the jump in energy across one

_~terface, aJid that the initial data is dose (O(c"» in one sense to a step function with N
jumps in (p(t) - Neo, p{t) + NeO). We also construet such initial data.

This is joint work with Barbara Stoth (Bann Univ.)

L.-Q. eHEN

A Multicomponent Order Parameter Model for Grain Growth and Ostwald

Ripening in Multiphase Systems

It is proposed that an arbitrary multiphase microstructure can be deseribed by a set

of non-conserved and conserv~d order parameters, 171,··· ,1'Jp, and Cl, ... ,eq. The noo­

conserved order parameters represent the orientations of grains while the conserved order

3
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parameters distinguish the compositional differences among different phases. The tempo­

ral evolution of the spatially dependent order parameters is modeled by the Ginzburg­

Landau (Allen-Cahn) and Cahn-~illiard equations:

~ = -L 5F 1 <_ i <_ P8t l1i 5f1i

!!=i. = V· (L .VE) 1 ~ J' ~ q8t CJ 5cj

where L'1i and LCj are kinetic coefficients related to interface mobilities and diffusional

coeflicients, and F is totally free energy.

F= 1[(/(1/1.... ,1/p. Cl ••• • ,Cq ) + ~'l ~(V'1/i)2 + ~. ~(V'C;)2] ~T • ,.

'J •

where Ct'1 and etc are gradient energy coeflicients. Computed microstructures using this
model reproduced qualitatively very similar microstructures observed experimentally and

it is expected to be powerful in predicting microstructural evolution in real systems.

XINFU eHEN

Numerical Simulations for the Mullins-Sekerka Free Boundary Problem

We implemented numerical schemes to solve the following geometrical problem

Vr.= [:n Kr.]
where f t is the position of the unknown curve at time t, Vra is the normal velocity of

r t , Krt is the harmonie extension of the eurvature Krt of r t , and [~Kra] represents the
jump of the normal derivatives of K ra across f t .

Our numerical scheme is implicit and is stable, allows large time steps. Various kinds
of geometrical properties of the motion have been verified, several new features of the
motion have also been discovered.

KLAUS DECKELNICK

Weak Solutions for the Curve Shortening Flow

We consider the curve shortening ßow for curves in arbitrary codimension in the following e
- formulation:

Xt = ~
x(·,O) = Xo

in SI X (0, T)
in SI

(1)

where xo.: SI----+IRn is a parametrization of the initial curve. (1) differs from the usual

formulation x~ = "N only by a motion in tangential direction. We .prove that the solutions

of the regularized problems

4

in SI X (0, (0)
in SI
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....

have a subsequenee that converges to a function x which ~olves (1) in a suitable weak

sense.

GERHARD DZIUK

A Numerical Scheme for Anisotropie Curve Shortening Flow.

The gradient ßow for the anisotropie length funetioiIal (v = normal to r(t) = x([O, 211"], t»,

lex) = ( g(v)lx,J ds ,
lR/21f

_ is diseretized with piecewise linear finite elements. This gives a scheme whieh also works

• for erystalline 9 E CO•1• For smooth 9 we prove convergence in LOO((O, T), L2(lR/211"» n
L2 ((O, T), Hl(R/2tr» for the approximations of x and its time derivative Xt by the semidis­

erete solution (Le. eontinuous in time).

CHARLES M. ELLIOTT

Diffusion in Multicomponent Systems with Concentration Dependent Mobility

Matrix

Many phenomena in the theory of phase transitions can be modelled by diffusion equa­

tions for multicomponent systems. We study evolution equations with conserved order

parameters which are based on a Ginzburg-Landau free energy.

In particular we are interested in cases where the diffusion in the interfacial region is

stronger than in the pure phase. This fact is reßeeted in a con~entration dependence

of the mobility matrix. Sinee physieally reasonable mobilities degenerate in the pure

component', we are let to a srstem of fourth order degenerate parabolic equ.ations.

We discuss some properties of the model and give an existence proof for the degenerate

parabolic system.(Joint work with C.M. Elliott (Sussex»

IRENE FONSECA

_Phase Transitions, Interaetions between Fracture and Damage for Solid Ma­
terials, and Related Questions

Reeent progress in the understanding of material instabilities has motivated the study

of nonconvex variational problems. Usually minimizing sequences develop finer and finer

structure, and eonverge weakly to nonminimizing states which may be stahle enough

to be observed. The dynamieal development of the microstructure and its evolution is

addressed. It is well-known that interfacial energies playa pivotal role in stabilizing the

microstrueturej in some models, the interfacial energy is produced "naturally" by the

bulk terms, while in others interfacial energy contributions are indueed in the initial total

energy. To illustrate the first case, the analysis of a problem of change of phase of an

5
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elastie material is studied; the analysis of the evolution for a eontinuum that undergoes

both damage and fraeture fits inta the latter.

I.G. GÖTZ

Kinetic Undercooling in the Stefan Problem with the Distributed Phase Func­

tion

We deal with the one-dimensional Stefan problem with distributed phase funetion. The

phase funetion satisfies a Hamilton-Jacobi equation, whieh deseribes the kinetic under­

eooling. We prove the existence of a solution with the non-smooth initial data. For the

Hamilton-Jacobi equation we find a viscosity solution, which is given as a minimum value •

of some functional. We study also the limit ease, when a kinetic parameter tends to zero.

Doing so we obtain a weak solution of the undercooled Stefan problem without the kinetic

eondition.(Joint work with A.M. Meirmanov (Covilha»

GERHARD HUISKEN

Mean Curvatitre Flow with Neumann Boundary Conditions

Let En c ]Rn+l be a smooth, fixed hypersurface. We study one-parameter families F :

Mn X [0, T) -t ]Rn+l of smooth immersed hypersurfaces, which move by mean eurvature

and meet En orthogonally at the boundary 8M.n:

{

1tF(p, t) = H(p, t) P E Mn, t > 0

F(p, 0) = Fo(p)
v(p,t) E TE . pE 8Mn,t > 0 ,

where V is the normal of F(Mn). The problem was previously studied in the ease ofvertical

cylinders and nonparametrie solutions by Huisken, Stone, .Altschuler-Wu. and Guan. In

the talk new results in the general parametric setting due to Axel Stahl (Tübingen) were

presented: Shorttime existence holds for s'uffieiently smooth E and Fa, a singularityean

only oceur if the curvature of M+ becomes unbounded, a barrier principle holds if the ~

barrier satisfies an angle eondition at E. If E = sn, any convex initial surface contracts •

in finite-time to a point, approaching the shape of ahemisphereasymptotically~

HANS G. KAPER

Vortex Dynamics in Type-II Superconductors

In this talk, I discuss various aspects of the vortex state of type-II superconducting

materials, as described by the Ginzburg-Landau equations,

~(8t1/1 + iKqnp) + (~V - A)· (~V - A)1/1 + (11/11 2
- 1)1/1 = 0 in n,

u(8tA + V4» + V x V x A - J., = 0 in n,
J., = 2:" (,p·V1/1 - 1/1V1/1·) - 11/112A .
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Here, t/J is the complex order parameter, 1/1 : 0 -+ C; A is the vector potential, A
o -+ 1R,3; and t/J is the electric potential, ~ : 0 -+ R. The Ginzburg-Landau parameter

I'- is large (I'- f"oJ 100 for high-temperature superconductors); a measures the ratio of tbe

relaxation times for tbe order parameter and the vector potential.

Tbe GL equations, supplemented by the "natural" boundary conditions, are gauge invari­

ant under the transformation (1/1, Acf» I--? (1/1ei l'x, A + \IX, cf> - atX). Possible gauges are

the zero--electric potential gauge (t/J = 0) or the Landau gauge (\I. A = 0 in n, A· n =0

on an).
Existence of global weak solutions (n c Ji2 ) and existence and uniqueness of global strong

esolutions o(n C JR2 or JR3) have been established by Tang and Wang (preprint).

With proper scaling, we sbow that the GL equations describe the dynamies of a system

of "vortices" in the limit as 1'----+00 (0 C ]i2).

We show the results of numerical simulations in 2 and 3 dimensions. In two dimensions,

we fo~us on the evolution of a superstructure in tbe vortex lattice (point-defects, grain

boundaries); in three dimensions, on the formation of vortices and the inßuence of thermal

ßuctuations.

This work was done jointly witb several colleagues at Argonne. The computations were

done on the IBM-SPI (128 processors, 128 Mbytes per processor).

INGO MÜLLER

The Effect of Cohereocy 00 Phase Diagrams

Usually in a binary mixture in two phases the free enthalpy of an mixture is assumed to be

equal to the surn of the free enthalpies of the phases. If coherency at the phase boundaries

is taken into account, a penalty term for the formation of such interfaces mnst be added.

In the present work that penalty term is assumed to be proportional to·the product of

the fractions of the two phases - with a coherency coefficient a.s' factor of proportionality.

In order to investigate the consequences of such an Ansatz we consider the simplest

possible phase mixture, viz. an ideal solution of incompressible liquids in equllibrium

~th a mixture of ideal gases consisting of the vapours of the liquid.

It turns out that - compared to the usua! non-coherent case - the holling line is lowered

and the condensation line is lifted. Both lines intersect such that the pure constituents

and, in fact, dilute solutions, suffer the effect of supersaturation. The mixture does not, at

least not for moderate values of the coherency coefficient. The most prominent prediction

of this theory is that the single holling and condensation points - which normally char­

acterize "the pure constituents - occur at concentrations of the mixture that are unequal

to 0 or 1.

7
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STEFAN MÜLLER

Microstructures with Multiple Scales

Many systems develop a fine scale structure that involves several small scales. Typical

examples are magnetic materials where magnetic domains, Bloch walls and point or line .

singularities occur on separate scales or solid-solid phase transformation that often lead to

a microstructure that involves a hierarchy of laminates. While there are powerful methods

to deal with problems involving one small scale (singular perturbations, r- convergence,... )

much less is known about multiple scales.

A simple mathematical model is given by the problem

I.(u) =11

e2U~" + (u~ - 1)2 + u2 dx 4 min,

u: [0, l]----+-IR, periodic.

By rather ad-hoc methods one can show the following

Theorem 1 Suppose that c is small eriough and U f is a minimizer 01 Je' Then U e is
periodic with period Pe = L oc1/ 3 + O(c2/ 3).

The talk discusses the development of ageneral approach to analyze such problems that
is based on studying the Youngmeasure related to a rescaled map

where

(-v~(x))(y) = c-1
/

3
U e (X + e1

/
3y)0, x E (0,1), Y E (-L, L)

(Joint work with G. Alberti, Pisa)

AMY NOVICK-COHEN

Cahn-Hilliard/Allen-Cahn Equations and Trijunctions e
For a system of Cahn-HilliardjAllen':-'Cahn equations derived in the context of simultane-

ous ordering and phase separation in binary alloys on a BCe lattice, formal asymptotic

equations are developed in the low temperature limit and under the assumption the mo-

bility is dependent on the concentration and on the non-conserved order parameter. This

motion yields two interphase boundaries which move by motion by minus the surface

Laplacian of mean curvature coupled to an antiphase boundary which moves by motion
by mean curvature.

8
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EUZA ORLANDI

Ising Spin Systems with Kac Potentials Modelling Phase Separation
(Joint work with A. De Masi, E. Presutti, L. Triolo)

We consider an Ising spin system in Z d with Hamiltonian

(1)

where a(~) = ±1 for x E Zd, and 1 > 0 is a scaling parameter,

J.,(x, y) = -ydJ(-Ylx - yl), J(lrl) ~ o. ! J(lrl) dr = 1 .

We are interested in the limit 1.J,. O.

This class of models has beeil introduced by Kac-Uhlenbeck, Hemmer [63] to pr:ove the

validity of the Van der Waals Theory of phase transition. The equilibrium statistical

'properties have been studied by Lebowitz and O. Penrose [66]. We consider theGlauber

(non conservative) spin-Hip dynamie for the spin ~odel with hamiltonian (1) and rescaling

suitably time and space we d~rive the continuum equation for the order parameter of the

system: the magnetization m. We prove tbat at time t the evolution of the spin system

is very close to tbe solution of the following non loeal equation:

8m 1
7ft = -m + tghßJ *m ;' ß = R' T = i X •

Resealing furtber space and time we prove that for ß > ßc = 1 the clusters of tbe two

phases forming after time ~ log! will move aceording to the mean curvature motion of
7 ~

parameter (), before developing of singularities.

FELIX OTTO

Viscous Fingering

ewe consider the flow of two fluids of different mobility in a porous medium. If the more

mobile displaces tbe other, the interface is virtually unstable and a speci~e microstructure

is generated and evolves in time. Within a PDE-model'we prove that the mixing zone
only grows linearly in time.

Since the introduction of DLA., various stochastic algorithms simulating this phenomenon

have been d~veloped. The generated clusters are fracta! in the limiting case of mobility

ratio A < 00 and compact for A = 1. With support of numerieal experiments and

renormalisation-group arguments, it had been conjeet!1red that they eventually cross
e

over from fracta! to compact for all finite A E (1, 00 ). Dur result above eonfirms this
eonjecture.

9
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IRENA PAWLOW

Phase Transitions Models with Second OrderFree 'Energy

We give a thermodynamical framework for phase transitions' models governed by a se.cond '

order free energy, e.g. of Ginzburg-Landau type

1 = lo(u) + ~l(U) IVul2+ K2(U) Iß~12 ,

wbere u is an order parameter, 10 nonconvex, ~1 of arbitrary sign and K2' > O. Such

form arises in phase transition models for oil-water-surfactant mixtures. We consider the

isothermal situation and single order parameter satisfying

{

8tu + V· j = T

~~h~a constitu~ve equation for them~f1ux
J-J(Y), Y-{ut,DUt,u,Du, ... ,D u).

Here Dmu = (Uil ...im )il ,... ,im ;;l,...N, T is a sour~e term.
The goal is to determi~~ constitutive res~rictions imposed by tbe entropy principle. Hy
exploiting this priIiciple according to 1. Muller's theory with(Lagrange-Liu) multipliers
we obtain the following:

1. the constitutive equation for the free energy f = j (u, Du, D2u );

2. the constitutive structure of the free energy flux;

3. a differential equa~lon for the chemical potential (identified with the multiplier);

4. th'e residual inequality.

Furthermore, we formulate a general class of models with multiplier as independent v~i­

able. Sufficient conditions for the entropy principle to be satisfied are given.

OLIVER PENROSE

A Phase-Field Model for Diffussion-Induced Grain-Boundary Motion (DIGM)

(joint work with J. W. Cahii-and P.~Fife)
DIGM is the mo~ion of the boundary between two grains with differing chemical compo­

sitions in a thin film of metallic alloy, in the presence of a vapour consisting of atoms of

one of the component metals. The aim of this work is to find plausible mechanism for

this phenomenon.

Dur model uses two fields: 4> which takes the values +1 and -1 in the two crystals, and

u the concentration of the "vapour" atoms in the solid metal. Tbe free energy is

F =1A[w(</I) + ~(V'</I)2] + ulogu + (1- u) log(l-u) + ep(</I, u) Ifx

10
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where A, E are constants, w(t/J) = ~(1 - if» if -1 ~ t/J :5 I, +00 otherwise and p(t/J, u) is

the coupling function. The kinematic equations are

-E /f ~(uo,t/J0) cosxdxdy
c = -----:~------

J1f/2 2 d
_1(/2COS X x

~here t/J(O) = sin x and u(O) are the approximate (to lowest order in E) solutions for f/J and

u~ in a coordinate system with x perpendicular to the grain boundary, y perpendicular to
the film. ,..;

The physical conclusion is that p = 0 gives no motion, p = u(l - f/J2), eorresponding to

an enhanced stability in the boundary, gives a prediction disagreeing with experiment,

but that a p( t/J, u) representing the effect of elastic interaction is consistent with existing

experimental results.

-6F/6t/J = l/J+ \J2t/J - E
8p

. 8t/J

Ut = div[D( cf>, u)grad ~~1= div[D(O)(1 - cf>2)grad u) + Ll(e)

where D(4), u) = D(O)(l - 4>2) U (1 - u) and the diffusivity D(O)(l - 4>2) is zero in the

grains but large in the boundary.

A travelling wave solution is obtained by a successive approximation method, leading to

the formula•I..;

G. PURDY

Phase Equilibria and Diffusion in Multicomponent Systems

Two examples are eonsidered of the application of thermodynamics to multicomponent

diffusion-transformation systems.

•
1. Ostwald Ripening (with I. Manal): Classical mean-field theory is reviewed; it is

shown that the thermodynamiC· properties of the parent solution enter both the

diffusion coefficients and the Gibbs-Thomson relationships through the same factar,

(the Hessian of the free energy). These thermodynamic terms caneel, leaving only

~obilities in the final kinetic expression.

2. Coherent Equilibrium and Diffusion in Multilayers (with Yves Brechet): Multi­

component equilibrium and diffusion equations can be extended to include biaxial

coherency strains. Ternary two-phase equilibria are described by a construction in

which compositions of phases in equilibrium are determined as points of contact of

planes, doubly tangent to the isothermal coherent free energy surfaces. In single­

phase multicomponent multilayers oue can always chaase sets of initial compositions

to give a strain-free multilayer. In these choices, strain energy will first increase,

then decrease with the course of diffusional homogenization.

11
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PIOTR RVBKA

Solid to Solid Phase Transitions in the Framework of Viscoelasticity

We study some qualitative properties of the system of viseoelasticity

(1)

in many dimensions. Here a(F) = DW(F). If W has several loeal minima the above

system may be eonsidered as a model for martensit phase transitions in solids.

We show that this equation does not permit any motion of singularities of Vu. (Surfaces

of jumps of Vu are interpreted as interfaces). Moreover, ~ priori bounds for Vu(t) in Loo
in terms of initial data are impossible. Thus, equation (1) may not be appropriate model

for phase transitions in solids.

ALFRED SCHMIDT

An Adaptive Method Cor the Computation of Mean Curvature Motion by the

Allen-Cahn Equation

(joint work with M. Paolini, C. Verdi, Milano)
Up to now, no loeal a-posteriori estimate is known whieh gives eriteria how to ehoose

the loeal meshsize and order parameter e to reach a given error bound for the moving

interface.
We propose to make these values dependent on the width of the strip around the interface,
where the distance funetion is smooth. For an implementation in 2D and 3D, the maximal

principal eurvature must be eomputed and global effects taken into aceount, when different

parts of the interface carne elose together.

R.F. SEKERKA

Optimum Stability Conjecture for the Role of Interface Kinetics of the Den­

drite Operating State

The dendrite operating state eonsists of a specification of the grown speed, v, and the

tip radius, p, 'of adendrite growing from a puresupereooledmelt. The supereoolingis

ßT = TM - T00 where TM is the melting point and T00 is the far field temperature. The

dimensionless supercooling is S = L~/~v where Lv is the latent heat and C1J is the specifie

heat. The Pectet nurnber is P = *where k is the thermal difIusivity. Conservation of
energy (Ivantsov)gives

S = I(P).

To determine v and p separately, one needs an additional eondition: Specify

2kdo
17'=--

p2v

12
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where do is a capillary length. Current theories give T = const (independent of S) which is

violated experimentally by Pivalic Acid. We conjecture that pis given by the wavelength,

A, of morphological stability theory that is related to the fastest growing model. This

uives 1 = A + !l where A and Bare constants. This fits the experimental data for
b

A er p

Pivalic Acid. One can combine this with the energy equation S = I{P) to obtain p and

v separateIy. The fit is better than for constant q but not good at low supercoolings, due

to convection in the melt that is not accounted for by the theory.

R.F. SEKERKA

e Stagnant Film Model of the Effect of Natural Convection on the Dendrite

Operating State

HALIL METE SONER

Vector-valued Ginzburg Landati Equations

I consider the e ,J.. 0 asymptotics of the reaction diffusion system

uE

u~ - AUE = 2(1 -luEI2 ) , on (0,00) x IRd

e

for the unknown uE E }R2. ·Using energy estimates, we show that, as e ,J.. 0, the zero level

set of uE{t,·) moves by mean curvature. This result is valid for d > 2 and when starting

from r o = {uE(O, x) = O} there is a smooth mean curvature ßow {ft}tE[O,T]. The main
ingredient is a parabolic type Pohozaev inequality

·e

ft f 1](t, x) E"(t, x), dx:::; f (1]1 -ß1])E2 + D 21]Vu" - Vu"

where EE(t, x) = ~IVUE(t, x)12 + ~W(UE), w(u):= ~(1 - lu12)2 and

( ) {
(dist (x, r t ))2/2, x near r t

TI t x =
.' smooth ~ TJo , x away from r t .

For d = 2, the zero set of uE
( t, .) is discrete and after rescaling of time by I/In(1/e), the

vortices (=zeroes) move according to a simple differential equation.

Ta obtain similar results for uE E ]Rk, I consider a slightly different equation:

(EE(t, x»i-1
U : = -bIt = div({EE)f-1VuE

) + (EE)f-l~(1 -luE I2 )

where

IE{lj»:= ( f{EE)~, E2 = ~IV4>12 + trw{if» .lad
Above equation becomes:

E A E (k I)VEE - Vu
t

_ U
r (1 I EJ2)

Ut - U - 2 - Et - ET - u ,

13
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for the unknown ut: E ]Rk. Results analogous to the k = 2 case hold. These are joint

results with R. Jerrard (Carnegie Mellon and University of Illinois)

BARBARA STOTH

The Ginzburg-Landau Equations for Type-I Superconductors and Sharp In­
terface Limit

In this talk I present rigorous asymptotics of the Ginzburg-Landau equations for type­

I superconductors. These equations model the penetration of a normal region into an

initially superconducting wire, when a sufficiently strang external field is applied. The

Ginzburg-Landau equations for the magnetie field H = eurl Q and the sealar order •

parameter 1 take the form (cf. Chapman-Harrison-Gehendon / SIAM Rev. 1992)

{
~(Qatf - ~(rI')') + w'(f) + -fJIQ2 = 0

8t Q - (~(rQ),), + fr12Q = 0

where'\ is a material canstant measuring the penetration depth of H, W(/) = i(l- 12)2
the potential and K the Ginzburg-Landau parameter. We impose Neumann conditions

for 1 and Dirichlet eonditions for H = eud Q on the surfaee of the wire.
We prove rigorously that, as "\--tO, the magnetie field converges to a solution of the

elassieal, one-phase, well-posed Stefan problem: H = 0 in the supereonducting region,

8trH - ßH = 0 in the normal region, and H = ~ and 'VH· v =~V on the interface
separating normal- and superconducting regions.

We assume an initially stable situation.

The analysis holds true for any value of K, but the radial model seems ooly appropriate ­

for K ~ ~, which eorresponds to type-I sup~reonduetors.

These results are joint work with Lia Bronsard (MeMaster).

JEAN E. TAYLOR

Crystalline Surface Diffusion

We eonsider the motion of polyhedral eurves bounding regions in R2 by the law v •

-ßsK~ for a crystalline "surface"energy ~, where v is the normal velocity,K,~ is the

weighted mean eurvature K. and ßs is the surface Laplaeian. (Terms are defined below).

For such motion, we establish the right formulation, develop the bases of the theory, and

implement it eomputationally.
Given a function 4> : sn-l--t~+ whieh is the surface free energy per unit area, the Wulff

shape W = {x E Rn : x· n ~ ')'(n)} is the (unique to translations) solution to the

isoperimetric problem of enclosing a region of volume equal to that of W by a surface

of minimum surface free energy (as measure by J5 4> (ns(x) )crnn
-

1
). The crystalline ease

is where W is a polyhedron (in ~2, a polygon). We fix W in jR2, and require the initial

14
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polyhedral curves to have their normals by normals of W. The crystalline (weighted

mean) curvature of a line segment Si in a polyhedral curve is - O'.~~nil, when li is the

length of Si, A(ni) is the length of the line segment of aw with normal ni = normal of Si,

and Gi = 1, 0 or -1, depending on the geometry around Si. A major technical difficulty

is deciding where and when to stop edges.

JEAN E. TAYLOR

The Variational Approach to Motion by Weighted Mean Curvature and Other

Motions

A variationaJ approach is given for the motion of boundaries of regions in Rn by weighted

mean curvature for any given surface free energy function (per unit areal eil : 8n
-

1 ---+ lRt

and for all time t ~ O. Existence is proved for all time of flow K(t) of surfaces, given a

initial region KO of finite perimeter, this flow agrees with any classical motion b~_Yieighted

mea~ curvature of auy viscosity solution wherever such solutions are defined. This motion,

however, äpplies to any ~ and passes through all singularities.

One thereby obtains a piecewise constant flow Kj(t) for each j = 1,2, ... , and Cantor

diagonalization produces a limit flow K(t) defined for a chosen set of time t. The cruciaJ

step is the proof of a Hölder bound on the K;(kßt) which ena.bles K(t) to be extended

.continuously to all time t.
More recent work extends this to cover grain growth (including multijunctions) with

different ~ij and mobility Mi; for each pair of adjacent regions (Carabello - there are

certain conditions the «I>ij and M ij must satisfy) and motion by surface diffusion (Chung)

AUGUSTO VISITIN

Models of Phase Nucleation

Extending the classical Stefan model, we represent surface tension by the Gibbs-Thomson

law, and account for solid nucleation in an undercooled liquid.

This phenomenon includes bistability (e.g., temperature does not necessarily determine

the phase), and symmetry breaking.

We distinguish two modes of phase e.volution: front motion and discontinuous phase

transition (like nucleation).

On account of the smallness of the capillarity scale, we propose a model involving both a

macroscopic and a mesoscopic space-scale. Transition from the finer to the coarser scale

is provided by an average procedure, which we represent by convolution with a Gaussian

kernel. This accounts for fast diffusion of latent heat of fusion, and allows us to represent

solid nucleation at low undercooling.

This also provides an interpretation of mushy regions.

15
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ADAM WHEELER

Anisotropie Phase Field Models

A natural way to incorporate an anisotropie surface energy inta aphase field model is

based on a free-energy functional of the form

rP = f ~[r('V'rP)]2 + f(rP, T) dV10 2

where r(V4» is a homageneous function of degree one. We show that the corresponding

Euler-Lagrange equation for 4> may be expressed as

where ((V4» provides a natural generalisation of the Cahn-Hoffman xi-vector previously

employed for sharp interfaces.

We go onto report an asymptotic analysis in the sharp interface limit € --+ 0, and show

that we obtain the appropriate form of the Gibbs-Thomson equation, expressed in terms
of the xi-vector:

u=~\ls'(

where \lS' is the surface divergence on the interface S. (Joint work witli G.ß. McFadden,
NIST, USA)

DARIUSZ WROZEK

Inßnite System of Reaction-Diffusion Equations in the Theory of Sol-Gel
Transition

The followi.ng system of reaction-diffusion equations is studied:

dl ßU1 = alU1L:a;u; ,
;=1

on 0 x (0, T), where 0 is a bounded open set in IR", n ~ 1, with smooth boundary 80,
. dk , ak are positive constants. We impose homogeneous Neumann boundary conditions

8u = 0 on an x (0, T) k = 1,2, ...
811

and initial data

U1(X,O)=UO(X) , uk(x,O)=Ofork~2, XEO

16
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where Uo is a given function, such that Uo E LfX)(n) , Uo ~ O. The variables Uk repre­

sent concentrations of k-mers (polymers). The relevant.o.d.e. system was derived by

Smoluchoski in 1917. We study the problem under two different hypotheses

(HI) k~~ ~ = 0, dk > 0 k = 1,2, ...

(H2) 1. there exists M ~ 1 such that dk = d = const, for k ?: M

2. tim sup ~ < 00.
k~oo

Existence, uniqueness and asymptotic behaviour of solutions are investigated. In some

cases, the mass M = J; kUk(X, t) dx is violated in a finite time. This phenomenon is

related to a sol-gel transition. (Joint work with Ph. Benilan)
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