
Tagungsbericht 20/1995

Computational ~spects of Commutative Algebra

and Algebraic Geometry

21. 5. - 27. 5. 1995

The conference was organized by D. Eisenbud (Brandeis), G. Scheja (Tübingen) and F.­
O. Schreyer (Bayreuth) and attended by about 45 participants from USA and Europe.
There werde 18 hours of lectures and three evenings of aetive informal discussions among
smaller groups. The talks included discussions of computer algebra packages, presentations
of new algorithms, and new theoretical results in which the computer played only a back­
ground role. The general atmosphere of the meeting seemed particularly lively, perhaps
because of the varied background of the participants.
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...." ~ Vortrag~auszüge

HENDRIK W. LENSTRA, JR.

Approximating 'Rings of Integers ~n Number Fields

Joint work with J. A. Buchmann (Saarbrücken).

This talk is concerned with the algorithmic problem of finding the ring of integers of a given
algebraic number field. In practice, this problem is often considered to be well-solved, hut
theoretical results iodieate that it is intraetable for number fields that are defined by
equations with large coeffieie~ts. Such fields occur in the number field sieve algorithm fora
factoring integers. Applying a variant of a standard algorithm for finding rings of integers,.
one finds a subring of the number field that one may view as the "best guess" one has
for the ring of integers. This best guess is probably "often" correct. One may wonder
what can be proved about this subring, and which good properties it shares with the
ring of integers. The main result is that it has a particularly transparent Iocal structure,
which mimics. the structure of tamely ramified extensions of Ioeal fields. In particular, it
is a complete intersection ring, and each of its maximal ideals can be generated by two
elements. It is not clear how the final ring ean be ,'intrinsically' characterized in terms of
the initial data specifying the number field.

JAN-ERIK Raas

Homological Classiflcation of Families of Quadratic Forms

Let R = k [X1, ... , X n] / (fl , ... , ft) be a quotient of a polynomial ring in n variables over
a field k by an ideal generated by. t .quadratic forms fi. Two invanants ean be associated
to such a ring R:

(1) The Hilbert series of R.

(2) The bigraded Hilbert senes of the Yoneda Ext-algebra ExtR(k, k) (which is the en­
veloping algebra of a certain bigraded Lie-Algebra).

The behavior of these invariants for n 5 3 is we1l-known (cf. the literature cited in m_1

paper in J. Pure Appl. Algebra, 91, 1994, 255-315). For fixed n ~ 6 I have proved (ComptelJ
RendulJ, vol. 316, 1993, 1123-1128) that there can be infinite families of rings R, having
the same Hilbert senes of type (1) hut having different Hilbert senes of type (2).

For n = 4 and n = 5 I have found by computer studies that there seem to be finitely many
cases (80 and ~ 2600 cases respectively) and that these cases oceur nicely in families. The
attempt to prove that this is a eomplete strueture theorem gives rise to rather difficult
problems, at least for n = 5. As a by-product I have found four counter-examples to a
problem about the cha.racte~izationof Koszul algehras (Comptes Rendus, vol. 320, 1995).
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TEO MORA

Gröbner Duality

Gröbner proved that there is a duality 'between' primary ideals at the origin and suitable
vector spaces of differential conditions. The theory he introduced was mainly aimed at
understanding multiplic~tyand Macaulay's inverse systems. Up to fixing minor complex­
ity problems it is easy to verify that Gröbner's proposal is a reasonable alternative to the
classical ways of describing multiplicities within polynomial system solving theory. Appar­
ently Gröbner's theory has also oth~r applications from commutative algebra to numerical
analysis.

HUBERT FLENNER

Same Examples of Cuspidal Rational Curves

Joint work with M. Zaiden~erg (Grenoble)

A cuspidal curve is an algebraic curve which is locally analytically irreducible. It is easy
to construct rational cuspidal curves in the projective plane p2 with one or, two singular
points. In contrast there are only a few rational cuspidal curves known which have at least
three cusps. The most classical one is tbe rational cuspidal quartic having three simple
cusps. Other _examples are known from the classification of quintics in p2 due to Namba
where one can find three furtber examples, one witb four and two with three singularities.
A basic invariant of a cusp is its multiplicity sequence which is the sequence of multiplicities
of the proper transforms of the curve in a minimal embedded resolution. The main result
exhibits new examples of rational cuspidal curves C of degree d with three cusps where
the highest multiplicity of a cUßP is d - 2. A complete classification of such curves is given.
The multiplicity sequences of the singular points are (d - 2), (2a ), (26) with a + b = d - 2,
and for each such pair a, b there exists such a curve which is tinique up:to projective
equivalence. This seems to give the first known infinite series of rational cuspidal curves
with at least three singular points.

GERD-MARTIN GREUEL

Classifikation of Simple Space Curve Singularities

1 report ,on recent work of my student Anne Frühbis who classified all reduced curve
singularities in (<c3

, 0) which have the property that they deform only into finitely many
other singularities (up to analytic isomorphism). .

The case of hypersurface singularities is covered by Amold's list of A-D-E singularities
(they really embedinto (C2

, 0) C (C3
, 0); the simple complete intersections are classified
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by M. Giusti. The simple space surve singularities which are not complete intersections
consist of two infinite series and eleven "exceptional" singularities. The ideal of these
singularities in ce{x, y, z} is always generated by the 2 x 2 minor~ of a 3 x 2 matrix, .the
multiplicity of the singularities is either 3 or 4. Geometrically they can be nicely described
by looking at their generic projection to (C2

, 0) or as a specialization of some of the simple
complete intersections. .

BERND STURMFELS

Polyhedral Methods for Solving Polynomial Equations

A basic problem in computational algebra is to find alt zeros of a sparse system of polyno-ei

mial equations. The situation ia fairly wen understood for complex zeros: their expected ._
number is the mixed volume of the given Newton polytopes. This result due to Bernstein
can be proved by an elementary algorithm using toric deformations. Things are more
difficult (and interesting) over the real numberf?: Khovanskii has shown that the number
of real raots is bounded by a function which is independent of the degree of the given
equations. More precise upper bounds are stated in conjectures of Kouchnirenko 'and
Itenberg-Roy. We discuss these results and conjectures, and we illustrate them with many
colorful pictures of planar polygons. .

DANIEL R. GRAYSON AND MICHAEL E. STILLMANN

Macaulay

We gave a demonstration of Macaulay 2, a successor to the computer program Macaulay,
written by David Bayer and Michael Stillman. Macaulay 2 is designed to compute Gröbner
hases and syzygies over quotient rings of polynomial rings aver finite fields, the integers,
and the rationals, and includes a general purpose object-oriented programming language
for the user.

In its current state the only ground fields available are finite prime fields, the Gröbnee
basis routines function hut have not been optimized for speed yet, and the documentation
(readable through netscape or Mosaic) is incomplete. On the positive side, it is easy
to implement new features daily. Recent ones hlclude lifting of module maps to their
resolutions, and computation of the syzygy variety.

We will complete the documentation and then, in a couple of weeks provide the program to
those volunteering as er-testers. Anyone desiring to make suggestions about the algorithms
or the look-and-feel of the program is welcome to participate. It is still possible to make
major changes.
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d = L /C -ac,
c

PAUL PEDERSEN

Newton Polytopes and Trace Forms

Joint work with Bernd Sturmfels

We consider toric deformations of systems of Laurent polynomials:
fi(x, t) =EqEAi Ciq x q tWi(q), 1. ~ i :5 n. H fi has Newton polytope Pi, then the weights

Wi(q) determine lifted polytopes Pi := {(q,Wi(q)) : q E Pi} in JRn+t. Let P= Pt +... +Pn
denote the Minkowski SUffi upstairs. The projection 1T(P_) to the first n coordinates of
the lower convex kull P_ of P determines a subdivision ß of EPi = P = 1T(P_). Each
cell C of 6. has the form Ft + ... +Fn = 1T(F) where Fi = 1T(Fi) is a subpolytope of Pi.
The mixed celz., of 6. are defined by the condition dimeFt ) == ..• = dim(Fn) = 1. The
SUffi of the volumes of the mixed cells of any mixed subdivision equals the mixed volume
M V( Pt, ... , Pn)' This is an integer which does not depend on the choice of subdivision,
and by Bernstein's Theorem, it equals the number of toric roots {x E (e·)n : fi(x) = 0,
'Vi }. Any mixed cell C is a paral1elotope, and when considered "half-open" C', then
Vol(C) = #IC' n Znl.

Theorem 1. Let fl"'" fn be generic Laurent polynomials with Newto~ polytopes
PI, .. . ,Pn , respectively. The monomiaJs corresponding to the lattice points lying in the
half-open mixed cells C' of any mixed subdivision ß of P = Pt + + Pn form a vector
space basis for tbe quotient ring A = K[Xl' xII, ... ,Xn,x;l] I (ft, ,fn). '":.

Theorem 2. With respect to tbe basis "in Theorem 1, the trace form of the deformed
system is a matrix polynomial B(t) = Bo td (1 +0(1»), wbere

det(Bo) = II Vol(C)Vol(C) : b~Uclac.
C

(/c, 1) 1S the vector supporting tbe mixed [aeet above C, ac = E{q E C'}, and x Uc = bc
is tbe binomial "degeneration" of the equation system to the facet over C'~~ (Sum and
product over an mixed cel1s of ß.) .

Theorem 3. Tbe number of real roots of the deformed system for all sufficiently small
t, is bounded by L 2P(C), where p(C) = the number of even invariant factoTs of the

Cmixed
finite Abelian group zn IUe.

G.-M. GREUEL, G. PFISTER, H. SCHÖNEMANN

Demonstration of the Computer Algebra System SINGULAR

SINGULAR is a system for algebraic geometry and singularity theory. It is being developed
at the University of Kaiserslautern and its implementation is directed by G.-M. Greuel,
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G. Pfister and H. Schönemann with'contributions by H. Grassmann, B. Martin, W. Neu­
mann, W. Pohl and T. Siebert. Recently, W. Decker, M. Messollen und R. Stobbe con­
tributed to primary decomposition in SINGULAR. ,The basic algorithms are a general
standard basis algorithm (implemented for any semigroup ordering, not necessarily well­
orderings), syzygy algorithms and combinatorial algorithms (for computation of Hilbert
series, etc.). This generality allows the computation in polynomial rings, localizations
hereof, factorings of these and tensor products of all these. The possible ground fields are
ZjpZ (p a prime::; 32003), arbitrary finite fields, the rational numbers and finite transcen­
dental extension of" these. Multivariate algebraic extensions will be ready very soon and
float coefficients are under experimentation.

SINGULAR has a flexible programming language with for, if ... else, while con~

structs and contains also a continuously growing library with useful procedures for alge- ...
braic geometry and singularity theory. .'
SINGULAR has developed through the necessity of carrying out complicated computations
in connection with mathematical problems and is, therefore, designed for speed. It has the
most flexible broad standard basis algorithms with respect to monomial orderings of all
known computer algebra systems. Moreover, many comparisons show that it is also the
fastest system for computations of standard hases and syzygies (at least over Zjp71).

The programme is available under ftp helios.mathematik.uni-kl.deor www.mathematik.uni­
kl.de, requests a~d comments may be sent to singular@niathematik.uni-kl.de.

KAREN E. SMITH

Simplicity of Rings of Differential Operators

Joint work with Michel Van den Berg

Let R be a commutative Noetherian k algebra where k is an arbitrary field. Let Dk(R)
denote the ring of k linear differential operators on R.. A basic question is: when is Dk(R)
a simple ring?

We proved the following theorem: Let R be a graded subring of a polynomial ring S over
a perfect field k of characteristic p > O. H the inclusion map of R into S splits in the
category of graded R modules, then Dk(R) is a simple ring. e
A key idea in the proof is the introduction of the notion of "Finite F-representation type" .-
A (reduced) ring of characteristic p > 0 has finite F-representation type if there are only
finitely many isomorphism classes of indecomposable R modules that appear as summands
in a direct sum decomposition of Rl/q as q ranges over all integer powers of p.
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LORENZO ROBBIANO

CoCoA 3

The system CoCoA does Computations in Commutative Algebra.

1987 Two small projects (Giovini and Niesi)

1988 Merging the two projects into a bigger one: CoCoA

1989 First distributed version (0.99) a1 the COCOA 11 Meeting in Genova.

1990 Second version (1.0)

1991 Third version (1.5)

After the death of Giovini (January 1993)

another project started, the " CoCoA 3"

Project Manager: Robbiano

Authors: Capani, Niesi

Co-workers: Bigatti, Caboara, De Dominicis,

Q-Testers: Elias, Eliahou, Kreuzer, Loustaunau, Recio, Sturmfels.

1995 First distributed ß-version at the COCOA IV Meeting

Genova, May 29th - June 2nd , 1995

ALESSANDRO LOGAR

Computation of the Lines of a Cubic Surface

Joint work with Michela Brundu

Let S· be a smooth cubic surface in pa. A classic theorem claims that S contains 27 distinct
lines. In the paper we discuss some computational approaches to the determination of the
lines. In particular, we show how to parametrize all the smooth cubic surfaces up to a
linear change of coordinates and we explicitely give the equations of the 27 lines in terms
of the parameters.

We then get a procedure to construct all the cubic surfaces having only rationa11ines.
~ina1ly we discuss some methods to get a rational representation of S.
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EBERHARD HECKER

The Real Radical of an Ideal and its Computation

We report on

1) the theoretical relevance of the real radical of an ideal,

2) the algorithIIl: of Becker-Neuhaus,

3) the complexity analysis of this algorithm.

The algorithm depends on various other algorithms of computational commutative algebra
(e.g. eomputing the ordinary radical) as weH as on genuine problems of real algebraic
geometry, e.g. deciding whether a polynomial is positive semi-definite. The last task ean
be carried out by a variant of Renegar's ideas and areal root counting method.

MONIQUE LEJEUNE-LALABERT

Are Strueture of Singularities

In an unpublished preprint written in the sixties, J. Nash initiated the study of the set of
ares on the germ (V, 0) of an algebraie, or analytic, variety V at a singular point O. In
his terminology, an are is a parametrized formal curve lying on (V, 0). In connection with
the desingularizationproblem, he first recognized some finiteness properties that trus set
enjoys, despite its natural structure of a non noetherin affine scheme. We made a survey
of old and new results by Nash, Bouvier, Gonz81ez-Sprinberg, Hickel, Reguera in this area.

ARJEH M. COHEN

Structure Determination of Lie Algebras

The idea behind some of the algorithms implemented in GAP by W. de Graaf have been
discussed. Partieular attention has been given to algorithms for finding a non-nilpotent el­
ement, a Cartan subalgebra, the nilradical, and the solvabel radical for a finite-dimensional
Lie algebra given by structure constants.

KEITH PARDUE

Crossing the Hilbert Scheme

I state the following two theorems and give a sketch of the main technique used in their
proof. I describe the earlier contributions of Hartshorne, Baptista de Campos, Reeves,
Macaulay, Bigatti and Hulett.
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Let S be a polynomial ring over an infinite field.

Theorem A If F is a graded free S-module of finite rank and F/M and F/N are two
graded quotient modules with the same Hilbert function, then there is a senes of deforma­
tions, all defined over Al, taking one to the other.

Theorem B If F is a graded free module, M is a graded submodule, and L is the lex­
icographic submodule of F with the same Hilbert function as M, then the graded Betti
numbers of F/M are bounded by those of F/L.

AiDO CONCA

Sagbi Bases and Applications to Blow-ups

Joint work with J. Herzog and T. Valla

Sagbi bases theory was introduced by Robbiano and Sweedler, and independently by Kapur
and Madlener. Given a sub-k-algebra A of a polynomial ring R, one associ~tes to A its
initial algebra in(A) which is the k-algebra generated by the initial monejIfiials of the
elements of A.

The algebra in(A) need not to be finitely generated, but in the cases in which it is finitely
generated it can be described as the special fibre of a I-parameter Hat family w~ose generic
fibre is A. As a consequence of this fact one has thatA is Cohen-Macaulay or normal
whenever in(A) is so.

We apply this idea to the study of the Rees algebra R(I) associated with the ideal I of
definition 'of a rational normal curve. 1t turns out that R(I) is normal Cohen-Macaulay
and Koszul.

1RENA PEEVA AND JÜRGEN HERZOG

Resolution of Monomial Ideals

Stable ideals are an important class of monomial ideals; the interest in studying these
ideals comes .from Gröbner basis theory. We consider resolutions related to stahle ideals;
we build a special algebraic structure on some finite resolutions, and using it we obt8.in
numerical information about infinite resolutions.

We introduce squarefree stable ideals and squarefree lexsegment ideals, and construct their
minimal free resolution. This information is used to prove some inequalities about Betti .
numbers and conjecture others. This part is joint work with Aramova and Hibi.
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BARRY TRAGER

Square-Free Algorithms in Positive Characteristic

Joint work with P. Gianni

We study the problem of the square free decomposition for polynomials witb coefficients
over fields, of positive characteristic or fields whicb are explicitly finitely generated over
perfect fields; tbe classical algorithm from characteristic zero can be generalized using
multiple derivations. For more general fields one must make an additional hypothesis
for the problem to be d~cidable. Seidenberg's condition P gives a necessary and sufficient
condition on the· field k for computing a complete square free deeomposition of polynomials
with eoeffieients in any finite algebraic extension of k.

DALE CUTKOWSKI

Local Factorization of Birational Maps

We give a positive answer to a question of Abhyankar, generalizing tbe Ioeal faetorization
theorem of Zariski and Abhyankar on birational maps of regular Ioeal rings of dimension
2. We prove

Theorem Let K be a" field of algebraie functions over an algebraieally elosed field k of
characteristic zero. Let ReS c K be regular local rings of dimension 3 with quotient
field K such that the residue fields of R and S are k. Let V be a valuation ring of K
dominating S. Then there exists a factorization by a triangle

v
U
T

0/ 'ß
R -----+ S

wh·ere 0, ß are products of monoidal transforms.

SORIN POPESCU

Geometry and Equations of a Smooth Surface

We discuss various construction techniques for smooth surfaees in pR and as example we
prove the existence of a component of the Hilbert scheme of surfaces in pR parametrizing
smooth non-minimal K3 surfaces, blown up in 15 points and embedded via a linear system
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4 14

H = Hmin - 4Eo - L 2Ei - LEj
" i=l j=5

where Hmin is a very ample linear system on the minimal model Smin, giving an embedding
Smin ~Hrnin p29. The invariants of such surfaces are d = 14, 7r = 19, ",2 = -15, X ="2."
We give an explicit method to construct the equations of such surfaces and we describe

part of their rich geometry.

e Berichterstatter: D. Koppenhöfer (Tübingen)
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