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Die Tagung fand unter Leitung der Herren H.W. Lenstra Jr.. (Berkeley), M.E. Pohst

(Berli~) und H.G. Zimmer (Saarbrücken) statt. '

Nach den sehr erfolgreichen ersten heiden Tagungen über" Computational Number

Theoryu in den Jahren 1988 und 1991 fand jetzt die dritte Tagung zu diesem Thema

statt. Schwerpunkte waren diesmal Beiträge zu elliptischen Kurven, Modulformen

und Arbeiten zur konstruktiven Klassenkörpertheorie.

Neben den Vorträgen im normalen Tagungsprogramm fanden an zwei Abend~n

zusätzlich informelle Sitzungen statt. Die erste Abendveranstaltung war der Präsen­

tation der Computeralgebrasysteme Kash, Lidia, Magma und Pari gewidmet (an­

dere Computeralgebrasysteme wie' Simath kamen im regulä.ren Vortragsprogramm

bei entsprechenden Anwendungen zur Sprache). In der zweiten Abendveranstal­

tung, einer nProblem - Session", nutzten die "Tagungsteilnehmer die Möglichkeit,

Probleme aus 'ihrem eigenen Arbeitskreis in einem Plenum zu erörtern.

Die Tendenz zu weniger und dafür längeren Vorträgen erwies sich als a.usgesprochen

fruchtbar. Die ausgedehnten Pausen führten zu angeregten Diskussionen und boten

.die Möglichkeit zur Zusammenarbeit an konkreten ,Aufgabenstellungen. Dadurch

wurden auch die Kontakte zwischen den Tagungsteilnehmern erheblich intensiviert,

und vereinz~lt führten Zusammmenarbeiten schon am 'ragungsort zu ersten Resul-

taten. '
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Vortragsauszüge:

D.J. Bernstein:
Multidigit modular multiplication with the explicit Chinese Remainder
Theorem.

Fix coprime moduli ml, ... ,m. of a few digits each: Let n be an integer of a few
hundred digits, We show how arithmetic modulo n may be performed upon inte­
gers 'U represented as vectors (u mod mI, ... ,'U mod m.). This method involves
no multiprecision arithmetic, except in an easy precomputation; it is practical in
software and extremely weIl suited for hardware. Our main tool is the explicit Chi­
nese Remainder Theorem, whieh says exactly how u differs from a" particular linear
combination of the remainders u mod mi.

W. Bley:
Associated orders, loeal and global freeness

Let N /<0 denote areal abelian number field with group G. We denote by UN =
O;'/{±l} the unit lattice in N. Then UN is in a natural way a Z[G]/Tc-module,
where Tc = LgEG 9 denotes the trace element. This action extends to provide
UN ®z Q with the strueture of a Q[G]/Tc-module. We de~ne

A = {f E Q[G]/TG I !(UN) ~ UN}

to be the associated order of UN , where as usual we identify UN with UN @z Z ~

UN l8lz Q. We now eonsider the following problems: .

(1) explicit construction of A,
(2) determination of the A-module structure of UN, in particular: is UN 10­

cally/globally free over A,
(3) computation of a generating element € E UN such that UN = A· €, provided

that UN is globally free.

We present an algorithm that solves these problems, or at least reduces them to,
admittedly, very hard problems in algorithmic number theory such as, for example,
a principal ideal test. Note that this also gives a computational answer to the old
question if there exists a Minkowski unit that together with its conjugates generates
the unit group modulo torsion.

;~
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W. Bosma and J. Cannon:

Programming with Algebraic Structures aod Morphisms:

The Magma Language

The design of a Computer Algebra language is of necessity based. on same partic­

ular view of mathematics. Analysis of systems such as Macsyma, Maple, Reduce

and Mathematica. show they are based on the idea of perfonning transformations

on symbolic expressions belonging to a single fixed structure (usually some kind of

differential ring). While this view may be appropriate for problems such as integra­

tion and the solution of differential equations, it is much less successful when used

as the metaphor for computation in branches of mathematics such asa.lgebra, oum­

ber theary, geometry and combinatorics where the ideas of algebraic strdcture and

structure-preserving transformation (morphism) are of fundamental importance.

A o'ew model for the design of Computer Algebra systems based on the nations

of algebraic structure (magma) and morphism has been devised. Magmas are first

classified in terms of the algebraic variety to which they belang. The variety, of

course, determines the operations and the axioms which these operations satisfy.

However, to create a particular magma, we have to specify its (carrier) set and this

is done thraugh the notion of a categary. For example, matrix rings, polynomial

rings and power series rings a.re examples of (indexed) categories belonging to the

variety of rings. Relationships between magmas (e.g. Ais a submagma of B, eisa'

quotient magma of D) are then naturally rep~esented in terms of morph~ms.

Magma is a new software system for algebra, number theory and geometry which

has been designed in accordance with these principles. The use of the concept of a

magma as the design basis provides a natural strong typing mechanism. Further,

structures aod their morphisms appear in the language as first class objects. Stan­

dard mathematical notions are used for the basic data types. The result is a power­

ful, clean language which deals with objects in a mathematically rigorous manner.

The effectiveness of the language for computation with number fields is illustrated

with the calculation of the ideal dass group of the octic field Q(A, V2, v'17) by

elementary methads.

H. Cohen:
Recent advances in' the Pari package

The aim of this talk was to give a survey of recent results obtained by the Bordeaux

CNT group and mostly included in the recent release of the freely available Pari
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package. In particular:

(1) basic element and ideal operations in number fields. (E. Tollis),
(2) Round 4 algorithm, p-adic factorization (0. Ford, P. Letard),
(3) computation of the Dedekind ( function, verification of GRH (E. Tollis) ,
(4) systematic computation of Galois groups up to degree ~ 11 (M. Olivier),
(5) finding all cubic fields in essentially linear time (K. Belabas),
(6) finding Galois automorphisms using p-adic LLL (H. C.),
(7) dass and unit group computation (under GRH), principal ideal problem (H.

C' J F. Diaz y Diaz, M. Olivier),
(8) removal of GRH: certification (H. C., F. Diaz y Diaz, M. Olivier with help

from R. Schoof and H.W. Lenstra), .
(9) computations in relative extensions (H. C., F. Diaz y Diaz, M. Olivier),

(10) finding the explicit structure of (OFtI)· (H. C.),
(11) computing narrow and more generally ray class groups (H. C., F. Diaz y

Diaz, M. Olivier).

Many tables and programs are available by ftp from megrez.math.u-bordeaux.fr.

J .-M. Couveignes:
A few computations and arithmetic properties of covers of the sphere
minus three or more points. Conies as moduli spaces.

We first recall some equivalences of categories stressed by A. Grothendieck in his
Esquisse d'un programme and give ·tbe definition of a dessin d'enfant. We give a
famous theorem of Belyi and some improvement of ours stating that any curve C
defined over a number field lI{ carries a function J unramified outside {O, 1,00} and
without automorphisms (i.e. f =F Ja for any non trivial automorphism a of the
curve). Then having such a function being characteristic of a II<.-isomorphism dass
of curves, it is natural to ask which kind of arithmetic information on C is given
by tbe topological strueture of the covering f. For example one knows that all
primes of bad reduction of C (Le. those primes p for whieh there is no model of C
with good reduction at p) must divide the order of the geometrie Galois group of
f. One may ask whether such primes must also divide the order of same geometrie
ramification order of f. In order to test such bypothesis we need a rather broad
family of examples. We thus propose a construction of Belyi functions with DO

automorphisms on any genus zero curve defined over Q. This constructioD goes as
follows.

Let m, n, p, q be four integers such that the sum over any subset of those four
numbers is non zero. Let us call Cm ,n,p,9 the curve in JID3 given by the following
equations
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(1)

(2)

ma + nb + pc + qd

ma2 + nb2 + pr? + qtfl

o
o

5

For any point P = (a, b, c, d) in Cm,n,p,q we define the rational function

We check that this fUDction is ramified over the four values {O, 1,00, "!".n,p'fl(P)}
where "m.n.ptq(P) = 4>p(8p) and

8
p

= (n + p + q).a- l + (m + p + q).b-1 + (m + n + q).c-1 + (m + n + p).d-1
•

(m+n+p+q)

Thus the function Am,n,Vtq : Cmtntp,9 -+ PI is unramified outside {O, 1,00}. Further­
more we show that it has 00 automorphisms in generaland that any genus zero
curve defin~d over Q is isomorphic to-some Cm,n,p.q.

Also, the ramification multiplicities of Am,n,p,q are 1 and 4 over 1, the sums of two
numbers in .{m, n, p, q} over 0 and the sums of three numbers in {m, n, p, q} over 00.

We even computethe monodromy of Amtn,p.q and draw the corresponding dessin.

To finish with, we study the particular case m = 1, n = 2, P = 3, q = 5" and show
that the corresponding curve C1,2,3,5 has bad reduction at 11 although all ramification
multiplicities are smaller than 11 and thus prime to it.

We finish by noticing that ours Cm,ntv,q may be interpretated as moduli spaces of
spheres minus four points with multiplicities.

J. E. Cremona:
Infinite descent on elliptic curves

In my talk I presented recent work of my PhD student Samir Siksek.

In the first part, I pre5ented" new bounds for the difference between the naive log­
arithmic height and the canonical height of points on an elliptic curve d-efined over
a number field. In many cases, if not all, these improve on similar bounds obtained
by Zimmer (19705) and Silverman (1990). Three examples were provided, in which
the bounds obtained were shown to be elose to tbe best possibl~.
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In the second part of the talk, I showed how to enlarge a set of T independent points
on an elliptic curve E over a number field K known to have rank r (for instance,
found by a 2-descent) to a Z-basis for tbe full Mordell-Weil group ECK). Here we
first use estimates from tbe geometry of numbers applied to the Mordell-Weillattice,
in order to bound the index of the subgroup spanned by the known points (this has
also been done by Gebel and Zimmer). We then use ~ sieving procedure to eliminate
possible prime divisors p of the index,· by considering the image of E(K) in E(F,)
for a large number of auxiliary primes I. This was illustrated by two examples,
including one of Mestre of rank 12, where it was shown that the 12 independent
points given by Mestre span a subgroup of index 8 in tbe group E(Q), and a basis
for E(Q) is determined explicitly.

M. Daberkow:
On the explicit arithmetic computation of Hilbert class fields

Based on a paper by Hasse on the construction of the Hilbert dass field of Q(v'=f7)
in 1964 and on the proof of the existence theorem of dass field theory by Kummer
extensions we presented an algorithm for the construction of the Hilbert dass field
H(IC) for an arbitrary number field /C.

One can immediately reduce the problem to the construction of class fields to sub­
groups C of CI/(. such that CIK./C is of prime order p. This construction is based on
the fact that tbe dass field to eisa subfield of the dass field & of :F = /C((p) to
J = Ne/~(C). U~ing {a l 1i,F, ,at1iF} = {artF I ord(a1i,F) = p} with af = Cl,OF

and UF =< Eo > x < EI > x x < Er > we can show that the dass field E of :F
to J is of the form

e1

e = :F( vtJL;, ... ,~)
with J-Li E {akE~o ..... f~r I 1 ~ k ~ t; 0 :$ mo, ... ,mT< p} \ {l}. Since the
construction of E is very hard, we outlined the idea of the construction of a field
:F ~ S ~ E, such that the dass field.of Je to C is a subfield of S, which can be .a
computed. _,

At tbe end of the talk we gave same examples of Hilbert dass fields, including the
Hilbert class field of Q(p) for p4 - 5p2+ 196 = O. Because of CIQ(p) ~ C3 x C 3 X C4,
we have [H(lQ(p) : Q] = 144.

F. Diaz y Diaz:
Computing the narrow class group

Let K be a number field of signature (Tl' T2). We denote as usual by : ZK the
integers ring, E the unit group, I the invertible ideals, P the principal ideals, 1l ::::::
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Z/nIZ x ... x Z/n.Z the dass group in the ordinary sense, h tbe dass number, 112

tbe group of classes of order :5; 2 and UiJ ••• , url the real embeddings of K in C.

Tbe signature map sg : K· -+ ~l associated to ,\ E K· tbe vector of ~l having
components 0 when Ui('\) > 0 and 1 wben u,('\) < O. An element ,\ E K· is totally
positive if sg('\') = Q.. The dass group and the cIass number in the narrow sense are
1l+ = Z(P+ and h+ = #1l+, respectively, where P+ is the subgroup ofP containing
the ideals having a totally positive generator.

Theorem H+ = h· 2rl -
q , where q is the rank of sg(E) c JF;1.

For each dass C E 1l of even order 2m we define sg(C) = sg(ß) where a2m = ßZK
for a E C. This map is well defined as element of ~I /sg(E).

Denote by t the rank of sg(1-l2 ) in ~I /sg(E). We have:

Theorem Let us denote by s tbe 2-rank of 1{ and by s+ the 2-rank of 1i.+. Then :
5+ = S + rl - q - t.

From a computational point of view, we determine the structure of 1f+ with the
following algorithm :
step 1.- Construct the set A = {alJ ... ,Ct'rl-q,E'I"" ,E'q}, wbere E'lJ··· ,E'q E E

gives a basis of sg(E) and al,"" a rl _q E Z K gives a basis of tbe supplement of
sg(E). Let V E GLrl (IF2 ) be the matrix of sg(A).

step 2.- From QI,'" ~ 0.', generators of 1f, deduce elements ß, such that a?' =
ßiZK i = 1, ... ,5'. Let B' be the matrix whose columns are Sg(ßi)' Compute
B = V-IE'.
step 3.- Reduce to the Smith normal form (SNF) the matrix of relations.

R=

B

o o

The SNF of R gives the structure of 1{+ and provides a generator'system for its
cydic groups.

E. V. Flynn:
The Arithmetic of Hyperelliptic Curves

We describe work in progess to develop techniques to perform the following.
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(1) Find J(Q) /2J(Q) via descent on J, the Jacobian of C.
(2) Deduce generators for J(Q) via an explicit theory of heights.
(3) Apply loeal techniques to try to deduce C(Q) via an embedding of C(Q)

inside J(Q). -

The first technique for (1) was due to Gordon and Grant wbieb tries to compute the
Mordell-Weil group J(Q) by complete 2-descent for the highly special esse when tbe
curve of genus 2 has all of its Weierstrass points defined over Q. We have developed
and improved a method of descent by isogeny, and bave also performed descents
when there is no torsion on the Jacobian. All methods have been considerably
enhanced during th~ last year, and many rank computations have been reduced from
several days of computing time to a few seconds on tbe same machine. Step (2) is
straigbtforward in principle, applying Hilbert's Nullstellsatz to the equations which
describe the group law on a model of the Jacobian variety. In practice, the size of
the polynomials in the resultant computations are too large. We have implemented
improvements which use isogenies to improve the value of tbe height eonstants, aod
have computed generators for J(Q) for several eurves of genus 2. We have recently
implemented step (3) for the esse when the Jacobian of a eurve of genus 2 has
rank 1. In this case, it is possible to use the formal group over a loeal field to
obtain abound on the size of C(Q). Experimentally, this bound seems typieally to
be strietly better than that obtained by Coleman's results on Chabauty's Theorem;
indeed, in the 35 eurves whieh we have so far considered, we have determined C(Q)
completely in all but one ease.

1. Gaal:
Power integral hases in algebraic number ftelds

Let K be an algebraie number field of degree n with ring of integers ZK. It is a
classieal problem in algebraic number theory (dating back to Hasse) to decide if K _
admits a power integer basis, that is an integer basis of the form {I, 0, ... ,an

-
1
}. •

If {1,w2"" ,wn } is any integer basis of K, then DK/Q(X2W2 + ... + Xnwn) =
(I(X2 , ••• , X n »2DK where I(X2 , ••• , X n ) is a form in n - 1 variables of degree
n(n - 1}/2 with integer coefficients, ealled the index form eorresponding to the
above integer basis. a = Xl + W2X2 + ... + WnXn E ZK generates a power integral
basis if and onIy if

(3)

Hence the problem of determining power integral bases can be redueed to the reso­
lution of the index form equation (3).
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If K is a cubic number field, the index form equation is a cubic Thue equation. I.
Gacil and N. Schulte (1989) determined all power integral bases in totally real and
also complex cubic number fields of small discriminants.

For quartic number fields the problem was considered by I. GaaI, A. Pethö and M.
Pohst in aseries of papers (1991-1994). It turned out, that the resolution of index
form equations (3) in any quartic field can be reduced to a cubic Thue equation
and to some corresponding quartic Thue equations. In addition, for special Galois
groups we developed more efficient algorithms.

For higher degree number fields, the problem becomes more difficult because of the
high degree and the number of variables in (3). It is ooly hopeful if the index
form· factorizes, which' is the case if K has proper subfields. For this re-~on we
considered (3) in sextic fields with a quadratic subfield. In this case the index form
equation (3) implies a cubic relative Thue equation over the quadratic subfield. For
totally real cyclic sextic fields (I. Gacil, 1994) the" corresponding equations are cubic
inhomogeneous Thue equations. For totally complex sextic fields (I. Gacil, 1995)
equation (3) reduces to same cubic Thue inequalities. For totally complex sextic
fields with a quadratic subfield I. Gaal and M. Pohst (1995) gave an algorithm for
the resolution of (3).

D. Kohel:
On the category of supersingular elliptic curves

The isogenies (including the zero map) from a supersingular elliptic curve E' to a
fixed supersingular elliptic curve E ,can be equipped with a left 0 = End(E)-module
structure. The isomorphism dass of E' (over a field k = 1C) is determined by the
O-module structure of the collection of isogenies E' --+ E, and gives an equivalence
of categories between supersingular elliptic curves over k and the category of left
projective O-modules of rank one. On considering the category of pairs (E,1r),
where E/JFq aod 'Ir is the q-th power Frobenius endomorphism, one can describe
purely aigebraically the category of supersiogular elliptic curves over IFq •

D. Koppenhöfer:
Monogeneity of quartic number fields

Schya and Storch have studied the dass of finite free A-Algebras B, where the
variety Spek (B) can be represented as a complete intersection in the projective
space. In case of rank 3 and 4 this cao be done in a canonical way; important
examples are finite free extensions of Dedekind rings.
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Starting from the rank 4 case, where Spek (B) is represented by Proj (C) with
C = A[To,Tl, T2 ]/(FI , F2 ) a graded, complete intersection, we give a si~ple criterion
whether there exists a representation by a hypersurface algebra. A first step to
find algebrCi. generators B is to find a representation by a hypersurface algebra
in projective dimension one. The reduction of dimension is done via a Veronese
transform, this works iff the corresponding Veronese variety contains, after a suitable
coordinate change, the variety ,(PI' F2 ).

Over the ring of integers of an algebraic number field as ground ring such coordinate
changes are found by solving a diophantine equation with the cubic resolvent of
F1 , F2 as left haD:d side. Finally, from the hypersurface algebra representations an
algebra generators can be found by solving Thue equations of degree 4.

The method has been implemented using KANT and has been applied to an totally
real quartic numbe~ fields of discriminant ~ 40000. '

F. Lemmermeyer:
Explicit construction of 2-class fields

Let k be a quadratic number field with discriminant d; it is a classical result due
to Redei J Reichardt, and Scholz that there is a cyclic quartic extension K/k which
is unramified outside 00 if and only if there exist coprime discriminants dl , d2 such
that (d1 /P2) = (d2 /pd = +1 for an primes Pi dividing dj. Such an extension K is
always normal over 'Q and can be constructed by solving the diophantine equation
X 2 - d1 y2 = d2 Z 2 •

This result can be generalized by replacing the cyclic group of order 4 by certain non­
abelian groups of order 8 and 16; as an example, the following theorem was given:
If k is a quadratic number field with discriminant d, then there is an extension L / k J

normal over Q, unramified outside 00, such that Gal(L/k) ~ Ha (the quaternion
group of order 8) if and only if d = d1 d2 d3 , where the dj are coprime discrimi- ~

nants such that (d l d2 /P3) = (d2d3/Pl) = (d3d1 /P2) = +1 for an primes Pj dividing _
dj. If these conditions on the Legendre symbols are satisfied, then the correspond-
ing extension L can be constructed by solving an explicitly given system of three
diophantine equations.

P.L. Montgomery:
Square roots of products of algebraic numbers

Let er be an algebraic number. Let "'((0) = II~l 9,(0) b~ a product which we
suspect is a nonzero square in Q(er). We assume that the prime factorization of
each (9, (a)) (and hence of ,(er)) is known. In particular J each prime idea.l should
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have even exponent in (1'(0'». Using this ideal factorization, we construct a squ~re

root of 1'(0'), if it exists~ The algorithm uses lattice basis reduction to. estimate a
square root, suceessively replacing tbe problem by "a simpler one until it ean be done
directly. Like the original 1'(0'), its constructed square root will have-a product form.
Tbe algorithm generalizes to k-tb roots for arbitrary k > O.

V. Müller:
~iDIA, a library for computational Du:mber theory

liDlAis a C++ library for computational number theory developed at. the univer­
sity of Saarbrücken. The liDIA-group intends to develop software wblch is very
efficient and- easyto use. The first release of LiDlA" wäs published in". the Febru­
ary of 1995. It contains classes for doing multiple preeision computatiotiS; e.g. work
with modular numbers, rational numbers, floating point numbers and eomplex num­
bers. Moreover there exist dasses for doing linear algebra over Z, lattice reduction
with the LLL algorithm and factoring integers using trial division and ECM-. The
first release is available per anonymous ftp on crypt1. es. Uni-sb. de in directory
pub/systems/LiDIA. The next release will. probably be published end of Oetober
1995 and will contain an implementation of the PMPQS, a general polynomial dass
(in~luding the FFT algorithm for polynomial multiplication over Z/mZ), a general
matrix class, routines for counting the number ofpoints on an elliptic curve mod­
ulo a prime p: Moreover we work on a dass for algebraic numbers aod a dass for
eomputations with binary quadratic forms. In addition to paper doeumentation, we
will include a html-based online-documentation in the nextrelease.

K. Nagao:
On the consi~uctionof high-rank elliptic curves

Mestre constructed elliptic curves over Q(T) with rank 2:: 11. Modifying these
eurves, he also constructed elliptic curves over <Q(T) with rank ~ 12.- Now, we find
a curve (over Q(T» with rank ~ 12 in the"curves got by Mestre's construction with
rank 2:: 11 and modifying this, we obtain an ellip~ic curve over Q'(T) with rank 2:: 13.
In the family of elliptic curves got by the specialization fram high-rank eurves over
Q(T), we (with T. Kouya) find a curve over Q with" rank ~ 21.

A.Odlyzko:
Some curious power series coefHcients"

G. Fee and A. Granville asked for the asymptotic behaviour of an, the coefficients
of
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CX)

fez) = II (1 - zk)#l(k) =E anzn.
k=l n=O

G. Almkvist observed that for 150 ::; n :$ 104, the signs of the an '5 are periodie
modulo 6, aod that the ein's for 0 in any fixed residue class modulo 6 gro~ smoothly.
The obvious question was whether this pattern persists. It does not, hut the first
eounterexample is probably around 1011 or 1012 . The exact behaviour of the an 's
appears to be extremely eomplieated. It ean be shown that the an 's are oeeasionally
at least as large as exp(cn1/

3
). Upper bounds of similar magnitude ean probably

he obtained, hut only by assuming the GRH aod additional hypotheses on the
distribution of zeros of Dirichlet L-functions..

J. Pila:
Factoring integers with hyperelliptic curves

I present a joint work with H.W. Lenstra, Jr. and Carl Pomerance on a probabilistic
algorithm for factoring integers. Oür algorithm is ealled the "hyperelliptic e~rve

method", because it uses the Jacobian varieties of curves of genus two over finite
fields in the same way that the elliptic method uses elliptic curves over finite fields.

While not a practical algorithm, the hyperelliptic curve method yields an improve­
ment· over previous eomplexity results for the detection of smooth numbers.

Our analysis of the hyperelliptie eurve method has two main ingredients. The first
is a new density theorem for smooth number in short intervals. The second is a
theorem on the distribution of the order of the group of rational points on the
Jacobian variety of a curve of genus two over a finite field.

A. van der Poorten:
Curves with prescribed singularities

The determinant a = I({:)x{l- i l ({:)y~:I-i:l1 arises in construeting polynomials P(x, y)

ove"r Z, so that aH derivatives p(i1 ,I:l» vanish at ther conjugate points (Xh, Yh). Here
IC = Q(x) = <Q{y) has degree T over Q. The rows of the determinant are indexed by
pairs (i17 i 2 ) and h = 1, ... ,·r. The (i17 i 2 ) lie in the 'triangle' defined by 0::; i 1 < ki:l
where (k i ) is a (strictly) decreasing sequence of integers with kd '1 = O. Columns are
indexed by pairs (;1,;2) with 0 :$ ;1 :$ d1, 0 ::; ;2 :$ d2 · In areal constructiuon one is
looking for factors eommon to aU the maximal minors of a rectangular matrix with
M = (d1 + 1)(d2 +1) columns and N = r ~ ki < M rows (generalising Cramer's rule
in the case N = M -1). One studies the hyper-extreme case N = M to the end. In
a paper about to appear in Experimental Mathematics Bombieri and I mention
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our finding that 6. factorises ratber surprisingly in the case r =3 as a product of a
constant eCk) depending on tbe 'triangle' (k,) and powers of differnce products of the
Xh, respectively tbe y~. The mysterious constant c(k) is the E k, xE k, determinant

with rows indexed by (ib i 2 ) as above, and columns bytbe points in the 'lozenge' left
by eliminating tbe triangle and its complement. For tbe special case k, = 2l(d2 -1)
(0 ~ i :::; ~) where dl = 31d'J - 1 it is easy to prove a formula for Cl if ~ = 1. It is
a complicate produet of primes at most dl = 31 - 1. Remarkably, computations by
David Hunt show that for general ~ = d one obtains

(dt2)
Cd =.Cl •

Vve neither understand why Cd should be apower of Cl nor, given that it is some
power, why it should be that particular power we find. Hunt also has 'discovered'
formulas for general 'triangles' in tbe cases d2 = 2,3 and 4. We cannot p~ove any of
them.

O. Schirokauer:
General discrete logarithms

Let p be a prime number and let q = pn. We address tbe problem of finding an
algorithm which computes discrete logarithms in the finite field of cardiI.!ality q and
VIhieh has a running time of

far qc5oo. (1)

Both the function field sieve and tbe number field sieve have eonjectured expeeted
running times th~ size of (1), but only if one restriets the finite fields under con­
sideration. In the ease of tbe function field sieve, the restrietion is to those q for
which n 2:: (log p)2. For tbe number field sieve, the restrietion is to those q for whicb
n :::; (logp)!-f, where f is any positive real number:-Thus a gap remains.

In tbe case of tbe function field sieve, tbe constraint 'on p and n arises because the
smoothness base in tbe polynomial ring over the prime field of p elements must have
size bounded by (1) and yet eontain a11 irreducible, monie polynomials of degree
less than or equal to some bound B ~ 1. In the case of the number field sieve,
the constraint on p and n is necessitated by the appearance of many terms in the
expression for tbe running time whieb are exponential in n. The largest of these is
(log q)O(n), which enters into the analysis, for instance, as the size of the discririlinant
of the number field used as a base field.
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U. Schneiders:
Estimating the 2-rank of cubic number ftelds by the Selmer group of the
corresponding elliptic curves . . ,

We determine a lower and an upper bound for the 2-rank of the dass group of a
non-Galois cubic number field K generated by an irreducible polynomial

j(x) = x3 + ax + b E Z[x].

The lower and upper bound. arise from the construction of a subgroup of the 2­
Selmer group and a group comprising the 2-Selmer group of the elliptic curve E
over Q defined by the Weierstrass equation

y2 = f(x).

This result facilitates the construction of cubic number fields with dass groups of
large 2-rank. For instance, a cubic· field K of 2-rank 7 is. obtained by the corre-
sponding algorithm.

The estimates we derived generalize to a great extent a similar result obtained by
Eisenbeis, Frey and Ommerborn [Computation of the 2-rank of pure cubic fields,
Math. of Camp. 32, 1978, 559-569] in the special case of a pure cubic field K.

M. Schörnig:
KASH - the KANT shell

The software package for algebraic number theory KANT has been developed over
tlie years by the research group of M.E. Pohst, firstly in Düsseldorf and now in A,
Berlin. KANT is based on the software package MAGMA. It consists o(a library of ..
functions written in C, so the user had to have some knowledge of C to benefit frorn
its functions. Because of this disadvantage we started to build a shell around the
KANT library which is based on the user interface of the software package GAp.
With this shell - called KASH - the user is now able to use the KANT functions
(e.g. for the computation of maximal orders, unit and dass groups, arithmetic in
relative extensions of number fields) in a convenient environment.

After abrief introduction into the software-architecture of KASH and its datatypes,
1 explained some features and concepts :

• computation of subfields and their embeddings;
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• the concept of the u move system", i.e. the automatie installation of homo­
morphisms between orders to allow the user to umove" algebraie elements
between them and adjust their representation to the J;lew basis;

• solution of Thue-equation;
• solution of (relative) norm-equations;
• programmiog lang1J,age aod 1,lSer detined functioDS;
• the concept of P.VM: PVM is publie domain software for distributed eom­

puting. KASH posesses an interface to that software which is very easy to
handle. .

KASH ean be obtained via ftp:
ftp.math~tu-be~lin.de Ipub/algebra/~ant/KaBh

R. Sehoof:
Computing 'rwasawa modules .of real quadratic fields

Let :F be areal quadratic ·number field of eo·nductor fand let p be an odd prime.
We present .ci. m~thod to systematically compute the P-C.lass n\lmbersof the fields
:Fn in the ~yelotomic Zp-extension of F. We ean in particular verify the p-class
group stabilize. As an illustration" of our method we show the following.

Theorem For all real quadratic number ti.elds Q(.j]) of eonduetor f < 10000 and
p = 3 the Iwasawa ;\-invariant vanishes.

The method exploits properties of theeyclotomic units in F n . If the prime p is not
split in F, we ean recover the structure cf the p---<lass group:

for n» 0

(here An denotes the p-class group and Bn the group of units modulo cyclotomic
units of Fn ). If p. is split in :F we have a somewhat weaker result. .
Our methods apply to a11 ~eal abelian number fields.

P.· Serf:
How to compute the rank of elliptic curves over re~l quadratic number
fields of class number one

We h~ye developed and implemented general 2-descent over real quadratic nuinber
fields of dass number one in order to determine the rank and points of infinite order
of elliptic curves defined over such fields. General 2-descent applies to arbitrary el­
liptie cur~es, whether or not they have a non-trivial point of order 2. For K = Q the
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method was described in [B&SI?l ([B.J. Birch and H.P.F. Swinnerton-Dyer, Notes
on elliptic cUnJes. l.t J. Reine Angew. Math. 212·(1963), 7-25]) and implemented by
J. Cremona in Exeter. The main difliculties when passing from Q to areal quadratic
number field K were to find .

• a fundamental domain for the action of 81(2, O(K» (where O(K) is the ring
of integers of K) on the 2-dimensional complex upper half plane 1i x 1l

• analogous versions of Lemma 3, 4, and 5 in (B&SD], containing sufficient
cr~teria for the reduc·tion of homogeneous.spaces at primes cf K dividing the
rational primes p :F 2,3, p = 3, and p = 2, resp.

Unfortunately, our program takes several hours of cpu time, even for curves with
small coefficients and small rank defined over small number fields.

For elliptic curves with non-trivial 2-torsion, one can apply2-descent via 2-isogeny,
a method whieh goes back to Tate. 2-descent via 2~isogeny is much simpler than the
general 2-descent, and the eorresponding program cinly takes a few hundred seeon4s
to eompute the rank rand r linearly independent points for elliptic. curves with
medium-sized eoeflicients over medium-sized number fields.

As a by-product of the algorithm using 2-isogeny, we found 17 examples ~f Tate­
Shafarevieh groups with210 points of order 2 over real quadratic number fieldswhen
we computed the ra!1k of '

E m : y2 + xy = x 3
- 16mx2 ....:. 8mx - m

over Q(v'D) for 1 ~ m ~ 1000 and D E {2, 3, 5, 6, 7,11,13,14,17, 19}. (The family
Ern was taken from [K. Kramer, A family 01 semistable elliptic curves·with Zarge
Tate-Shafarevitch,groups, Proc. of the AMS 89,3 (1983),379-3"86].)

R.J. Stroeker:
Calculating integer points on elliptic Diophantine equations using elliptic •
logarithms .

In this talk the method of finding all integer points on a given model for an elliptic
curve over Q is illustrated by means of the family of curves obtained by rewriting

n

y2 = L(X +i _1)3,
i=l

in which aperfeet square is expressed as the sum of consecutive cubes, in the more
convenient form

y2 = x~ + dnx,

. with dn = ~n2 (n2
- 1). An essential element of the method is the lower bound for
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linear forms in elliptic logarithms recently obtained by Sinnou David. For n in tbe
range 2 :s n :s 50 and n = 98 al1 points are found unconditionally.

One of the major advantages of the elliptic logarithm method is that it uses the
structure and particulars of the Mordell-Weil group of the relevant curve. On the
other hand, the construction of rank and generators is sometimes extremely. hard.·
Advantages and disadvantages' are illustrated by examples.

c. Thiel:
Computing short representations of algebraic integers

,~~,-:;;;..

Let F be an algebraic number field of degree n, let 0 be an order of F with1~tegral .
basis Wt, ••• ,Wn and discriminant D. For { E F we denote by H({) the maximum of
the normalized archimedian valuations on { an~ by N(e) the norm of e. Each { E F
can be uniquely written in the for~ { = cin1+l E7=1 ai Wi, where tll, a2 ... , ~n+l "are

rational integers, B n +l > 0 and gcd(al1a2." ,an+d = 1. We call (al,a2, ... ,an +l)
the standard representation of { with respect to the given basis. The binary size
size(~), Le. the number of bits needed to write down the standard representation of

.{, is polynomially bounded by log H«() and 10g1DI. 0 •

A multiplicative representation of (is a pair «PI'." ,ßt), (elJ .. 0. ,ei», wher~ "ßi EF
is given in standard representation, and e, is a rational integer for 1 :s i :s L, such
that ~ = rr:=l ßt' . We explain how to multiply, divide and test equality of numbers
given in a multiplicative representation in polynomial time, and prove

Theorem Given a multiplicative representation «01,'" ,Ok), (fl".' , f,c»Jf ~ E F
we can compute another multiplicative representation «ßI, ... ,'ßt), (eI" .. ,et)Y of
~ such that

• size(ß,) = (n + log IDI + max{lIog IN(er;)11 : 1 '5 j '5 k} )o(l),

(
k )0(1)

• l = Ej=llog I/il +Jog 10gH(~) + log IDI + max{llog IN(oj)1I : 1 '5 j :s k} ,

• ei $/.,

in time

( )

0(1)

n + ~(log 1/;1 + size(<l<j» + log IDI + max{llog IN(<l<j)1I : 1 '5. j '5. ~} + log logH«()
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E. Volcheck:
Addition in the Jacobian of a plane algebraic curve

We present an algorithm for addition in the Jacobian of a plane algebraic curve
(represeoted as the divisor dass group) over the rationals or a finite field.

Let C be an absolutely irreducible plane algebraic curve of genus 9 with a rational e
point Po. We apply the Brill-Noether method of adjoints to compute .c{Dl + D2 -

gPo) for D}, D 2 effective divisors of degree g.

Improvements over a previous work by the author (Proe. Ants-l, Computing in the
Jacobian of a plane algebraic curve) include

(1) using Hamburger-Noether expansions to "represent places,
(2) determining adjoints via the formula "discriminant equals conductor tiIiles

different", < Fy >= CD,
(3) showing that the residual divisor can (essentially) be reduced to degree g.

L. Washington:
Proving modularity of Q-curves

Ribet showed, under the assumption or' Serre's conj~ctures, that an 'elliptic curve
defined over a number field is modular if and only if it is a Q-curve~ namely an
elliptic curve isogenous to its Galois conjugates. We show how one ean actually in
practice prove that a given Q--curve is·modular.

D. Zagier:
Polylogarithms and multiple zeta values

The polylogarithm functions Lim{x) = E:=l ~: {m = 1,2, ... ; Li} = usualloga­
rithm) play an important role in several recent conjectures in number theory and
algebraic K-theory. There are two main questions:

(1) linear relations (over Q) among values Lim{er), er E Q,
(2) functional equations like the. n S-term relation" (Spence, 1809)

Li2 (x)+Li2(y)+Li2 ( 1
1

- x )+Li2(I-xy)+Li2 ( 1
1

- y ) =.expr. involving Lit
"-xy , ·-xy

aod for both it is important to find subgroups G ~ FX, where F is either a number
field or the function field lQ(x, y, ... ), such that
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(1) rk(G) is small,and
(2) ö{a E px \ {I} la E G and 1 - a E G} is large.

Various theoretical and computational aspects of this problem were dlscussed.

A different (but related) set of questions CO.Dcerns tbe "multiple zeta values"

which, like the polylogarithm functions, were first studied by" Euler. The set of
these numbers with given weight k1 + ... + k". = k (there are 2A:-2 of them) span a
subgroup RIr; of lR and the main question is to compute the rank of Rk and the ring
structure of R = EBIr;>o RA: (Ro = Z). An algorithm was found to compute t-h:e slowly
convergent multidimensionaI sums «k1 , • •• ,k".) rapidly and to high accuracy; then
LLL was' used to find linear relations among them. There were many (e.g. there
are 1024 ('s of weight 12, hut dimRl2 is experimentally only 12); the experimental
evidence suggests tbe formula

Tic = TA:-2 + TA;-3 ; To = 1, Tl = 0, T2 = 1.

for TA: = rk(RA;). A theoretical upper bound, whieh is conjecurally the correct answer,
can be derived. It reduces the question to aseries of hard problems of linear algebra
(over Z), the "first one being:
PROBLEM: Let VA; be tbe space of homogeneous polynomials fex, y, z) of degree
k satisfying "fex, y, z) + fex, z, y) + fez, x, y) = 0 and f-(x, y, z) + f-(x; z, y) +
J*(z, x, y) = 0, where J·(x, y, z) == fex, x + y, x + y + z). Determine the dimension
(or better, a basis) of VA;. .

The answer is 0 for k odd and conjectur~lly Lk:~lJ for k even. '-~l,

M. Zieve:
A New Class of Exceptional Polynomials

An exceptional polynomial f over a finite field K is aseparahle polynomial that is a
permutation polynomiai over infinitely many finite extensions of K. ,An important
problem is the classification of a11 exceptional polynomials. Sinee the composition of
exceptional polynomials is exceptional, and conversely -tbe composition factors of an
exceptional polynomial are themselves exeeptional, it suffices to study indeeompos­
able exceptional polynomials. To eaeh polynomial fex) over K, there is associated
a group, the geometrie monodromy gro-up of f; it is the Galois group of fex) - t over
K(t), where K denotes an algebraic closure of K. In 1993) Fried) Guralnick and
Saxl (using, among other things, the classification of finite simple groups) derived
severe restrietions on the possibilities for the geometrie monodromy group G of an
indecomposable exeeptional polynomial f. In particular, they showed that, with two
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possible exceptions, G must be an affine group and the degree of f must be apower
of the characteristic of K; every f known prior to their work had these properties.
The two exceptions are the subject·of this talk. The work of Fried, Guralnick and
Saxlieft open the 'possibility that, for an indecomposable exceptional polynomial f,
we could have p = char(K) = 2 or 3, and n = deg I = pl:(pl: - 1)/2, where k ~ 3 is
odd; here G is a group normalizing PSL2 (p1:) in its transitive representation on n
points.

For p = 2, the first such polynomials were diseovered by Müller in 1993; subsequently
Cohen and Matthews' discovered an infinite family of indecomposable exceptional
polynomials over the field of two elements which, for each odd k 2: 3, contains
polynomials having degree 21:-1(2A:: - 1) whose geometrie monodromy groups are
PGL2 (2A::). I will-discuss work done jointly with Hendrik W. Lenstra in the ease p =
3. We have diseovered an infinite family of indecomposable exceptional polynomials
over the field of three elements which, for each odd k ~ 3, contains polynomials of
degree 3A::(31:-1)/2 whose geometrie monodromy groups are PSL2 (31:). Dur methods
also apply when p =-2, and give both a new way of discovering the polynomials of
Müller, Cohen, and Matthews, and a new 'proof of their relevant·' properties.

H.G. Zimmer Uoint with Josef Gebel and Attila Pethö):
On Mordell's Equation

The determination of a11 integral points on Mordell's elliptic curves

Eie : y2 = x 3 + k (k E Z, k -:F 0)

is a classical problem which was solved in many special cases. But no large scale
computations have been carried through in the past. Our aim is to find all integral
points on Eie for k E Z within the range

o< Ikl :5 10000.

This can be done by a method proposed by Lang and Z~gier. In fact the method of
Lang and Zagier can be applied to an arbitrary elliptic. curve E over the rationals
Q provided the rank and a basis of the group E(Q) of rational points of E Qver <Q
is known and an explicit lower bound for linear forms in elliptic logarithms can be
given. The rank and a basis of the group E(Q) can be determined by an algorithm of
Manin which works under the assumption that t~e conjectures of Birch/Swinnerton­
Dyer and Shimura/Taniyama are true. This algorithm was implemented by J. Gebel
(see [1]). An explicit lower bound for linear forms in elliptic logarithms was obtained
recently by S. David. On combining these two ingredients, we are able to compute
all integral points on elliptic eurves E over Q ofranks r :5 6 (see [2]). An application
of our algorithm to Mordell's curves EI: yields all integral points on Eie for 0 < Ikl :5
10000. These cuves are of ranks r varying in the interval 0 :5 T :5 4 and they have
up to 32 integral points.
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Moreover, by using. p-adic logarithms instead of elliptic logarithms, all S-integral
points on Ek for 0 < Ikl :5 10000 can also be determined for any finite set S of
primes of Q. This was carried <?ut for S = {2, 3, 5}, and up to 94 S-integral points
on Ek were obtained. .

The results are of interest in view of conject~esof Hall, Stark a~d Lang/Demjanenko
concerning the'nuinber and size of integral point on elliptic cUrves.

[1] J. Gebel and H. G. Zimmer, Computing the Mordell-Weil iroup of an elliptic
curve over Q. In: Elliptic Curves and 'Related Topics, ed. by H. Kisilevsky
and M. Ram Murty. 'CRM Proceedings and Lecture Notes, Amer. Math.
Soc. 1994, 61 - 83.' .

,[2] J. Gebel, A. Pethö and H. G. Zimmer, Computing integral points oIrelliptic
curves. Acta Arith., 68 (2) (1994), 171 - 192. . =--~:~:

Berichterstatter: M. Daberkow
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