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Freiformkurven und Freiformflächen
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Die Tagung fand unter der Leitung von R. E. Barnhill (Arizona State University.
Tempe). W. Böhm (TU Braunschweig) und J. Hosehek (TH Darmstadt) statt.
Im Mittelpunkt der Vorträge standen Fragen der Konstruktion und Darstellung
von Kurven und Flächen im Bereich des Computer Aided Geometrie Design.
Dabei wurden unter anderem folgende Schwerpunkte gesetzt:

Anwendung von Methoden aus der algebraischen Geometrie. Konstruktion und
Einsatz spezieller Kurvenklassen, Erzeugung von Kurven und Flächen durch Un­
terteilungsalgorithmen. Anwendung von Ergebnissen der Approximationstheorie
zur Beschreibung geometrischer Objekte, Rationale B-Spline-Kurven und -Flä­
chen, Einsatz von Variationsm~thoden bei der Approximation mit· B-Spline­
Kurven und -Flächen, Globale ModelIierung, Anwendung von Methoden der
Differentialgeometrie im CAGD.

Unter den Teilnehmern befanden sich neben Mathematikern auch zahlreiche
Ingenieure und Informatiker sowie Vertreter der Industrie. Trotz des dicht
gedrängten Vortragsprogramms kam es zu zahlreichen intensiven Diskussionen,
die allen Beteiligten eine Fülle von Anregungen vermittelten. Als fruchtbar er­
wies sich dabei auch der Kontakt zwischen den Anwendern aus der Industrie und
den Vertretern der universitären Forschung.
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Vortragsauszüge

R. Andersson
Shape Preserving Surface Conversion
Within CAGD, many different methods for representing curves and surfaces have been
proposed and used. It seems likely that different forms of representations are optimal
for different tasks. On the other hand, there are a few de facta standard representation
methods for communication of geometry, understood by CAD systems from several dif­
ferent vendors. In this situation, conversion from the representation suitable for a given
purpose to a standard one is inevitable.

In the talk, we will consider the problem of converting a smooth parametrized surface
of any. possibly unknown, origin into a standard B-spline surface. while keeping its shape e
dose to the original surface. In general, this ;5 hard to attain by just fitting a B-spline
surface to the given one.

In the method proposed, instead of fitting the B-spline surface itself, we find a B­
spline surface whose first- and second fundamental forms are dose to those of the given
surfaee. This is accomplished by approximately solving the system of partial differential
equations appearing in the fundamental theorem of surface theory.

R. E. Barnhill
John Gregory's Research: from Computable Error Sounds through Gregory's
Square to Convex Combinations
In this paper I present three of John's intelleetual feats. The topics involved are com­
putable error bounds, compatibly corrected bicubic patches and convex combination
patches. These early themes signalIed his special talent and they reeurred throughout
his career. His tater work on geometrie continuity, su~division methods and monotonie
approximations is discussed by Nira Dyn in this VoJume. John's first published work
was on the topie of eomputable error bounds for surface interpolants. Perhaps his best
known research involves the patch scheme known as "Gregory's Square" which solved an
outstanding problem in the use of networks of bicubic patches. The concept of "con­
vex combinations" provides, among other things, a variety of pateh schemes including
n-sided patches. The ·Iast two topics are espeeially useful for the design of objeets such
as automobiles and airplanes as weil as geometrie modelling in general. Below I present
eomputable error bounds for a triangle, the first non-rectangular ease. I illustrate this
with the example of linear interpolation of a triangle. I show the conneetion between
finite element error analysis and surface interpolation remainder theory. I then move to
his best known work, Gregory's Square. I present the problem of ineompatible twists and
present John's method for interpolating to them. I allude to the important special case
of polynomial boundary data. Third, I define convex combinations and use the unifying
eoncept of convex combination~ to frame his two classes of smooth veetor-valued trian­
gular interpolants and his pentagonal interpolant.
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R. E. Barnhill
A Geography Application of CAGD
The prediction of solar radiation onto the earth is modelled by a set of integral differential
equations in Geography. Triangular interpolants from CAGD permit the visualization of
this radiation so that global c1imatic trends can be predicted.

P. Barry
Geometrically Continuous Tchebycheffian B-spline Curves
Geometricafly continuous Tchebycheffian B-sprine curves generalize both geometrically
continuous piecewise polynomial spline and Tchebycheffian splines. Many of the desir­
able geometrie and algorithmic properties of B-spline curves extend to this more general
representation. In this talk, I will define the space of geometrically continuous Tcheby­
cheffian spline, mention briefly same af the properties, make a few observations, and list
same open questions.

R. Barteis
Preliminaries to the Design of a Higher-Order Basis for Global Illumination
In this presentation we review the general illumination model used in image synthesis,
known as the rendering equation. Three approximations to the full model, the ambi­
ent/diffuse/specular version of classical computer graphics, the radiosity versiotl, and the
radiance version are progressively more complicated computational approaches to using
the model. Recent work on radiosity and radiance computations develop solutions in terms
of scale-and-wavelet expansions of the illumination, often using piecewise constant bases.
Higher-order bases have also been considered, but computational complexityincreases
rapidly with order. In the belief (and with some evidence) that higher-order bases do,
indeed, provide more appealing results, we present a design approach currently in progress
to produce spline scales and wavelets, which are tuned to the particular characteristics of
the radiosity approximation in order to economise on computations. The requirements
present an interesting exercise in wavelet design. Speculations on extensions to radiance
com putations dose the presentation.

M. Bercovier
Energy Methods and Duality in Surface Editing/Constructing
We define a energy type minimization over patches whose planar basis can be an un­
structured mesh or even non standard joints (Iike two patches connected to the same
boundary curve of a third one). Continuity conditions whether Cl, C2 or GI, G2 are in­
troduced by constraint eq uations. GI and G2 conditions are controlled by linear external
definitions (i.e. the normal to the tangent plane in the GI case). Lagrange multipliers
for the constraints define a complete dual problem. To be precise, from the energy +
constraints one has to solve
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which is reduced to

M!l.- C T A= F }
C!2.=9. (1)

(2)

M is decomposed once only and (2) can be modified to construct surfaces that will be
Cl or CO or C2 etc. by part. A final example is given of the strength of the method by
constructing GI "hole" filling patches for an odd number of boundary curves.

P. Bonitz .
Global Modelling with ICEM SURF
The capability has been developed of modelling complete surfaces, such as a complete
car body or large parts, such as doors.

In the past, direct modelling operations were limited to single surface elements, typi­
cally Bezier or B-spline patches. The alteration of an arbitrarily structured collection of
parametric patches was a time consuming procedure.

The new global modelling facility allows the CAD-user to pick a surface point or a row
of control points of a governing control patch, and modify it. This can influence many
patches automatically, so that the new shape of the complete body or part can be redrawn.

W.Dahmen
Multiresolution on Surfaces
This talk is concerned with applications involving the analysis or the numerical treatment
of functions defined on a surface r which typically describes the boundary of some (3D)
geometrie object. Examples are the computation of electrostatic fields from charge dis­
tributions on r, scattering from obstacles or the computation of light intensities based on
radiosity coneepts. In these cases one has to salve a (singular) integral equation on the
surface r. The solution requires a representation of r which suits also the construction
of appropriate trial spaces on r. The main difficulty in this context is the tremendous
computational complexity caused by the densely populated matrices which typically arise
from such discretizations. The key to overcoming these problems is to adapt multiresolu­
tion concepts to the geometry representations. We formulate the essential requirements
arising in this context and indicate ways of constructing trial spaces and corresponding
wavelet bases which meet these requirements.
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W. Degen
Heigh Accuracy Approximation of Curves

We start the talk with a survey on various approaehes to the subjeet reeently given by

several authors. Introducing the notion of a "geometrie contaet element" (at a eertain

point P in IRd and with a certain order k), a general theory of Ugeometrie Hermite inter­

polation" will be outlined. Thereby, an arbitrary finite set of geometrie contact elements

at different points and of various orders are preseribed and a (polynomial or rational)

approximant with degree n is wanted so that it realizes these contact elements. This new

theory comprises many special cases. reeent as weil as c1assieal ones. A general estimate

of the approximation order will be derived. More details will be given for the two-point

Hermite interpolation problem for d = 2 and n = 4.

T. DeRose
Parametrizing Arbitrary Meshes

An algorithm for solving the following problem was presented:

Given: A mesh - that iSt a triangulated polyhedron in IR? - with a large number of

faces.
Find: A simplieial complex !( with a small number of faces and a homeomorphism

S: [{ ~ M.

The algorithm is useful in a number of applications. including: finite element analysis,

multiresolution approximations of geometry, texture mapping. and B-spline surfaee fit­

ting. (Joint work with Matthias Eck, Tom Duchamp. Hugues Hoppe, Michael Wunsboy

and Werner Stuetzle.)

N. Dyn
John Gregory's Research on Rational Splinelnterpolation, Subdivision Algo-

rithms and C2 Polygonal Patches. .

Three of the main research topics in the later part of John Gregory's eareer are reviewed:

(i) Shape preserving interpolation by rationalsplines; quadraties for monotonie data and

eubics for monotonie and convex data. (ii) Construction of interpolatory subdivision

schemes with shape control) and their analysis in terms of a general theory for univariate

and bivariate schemes. (iii) Construetive methods for C2 polygonal patehes in a eomplex

of C2 bi-polynomial patchest based on a general theory for Ck-contaet between two

polygonal patches, and its generalization to C k patches.
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N. Dyn* and D. Levin
Analysis of Hermite-type Subdivision Schemes
The theory of binary subdivision schemes is extended to the case of Hermite-type inter­
polatory subdivision sehemes, which is a special important case of matrix subdivision. In
particular the known necessary and sufficient conditions for the eonvergence of interpola­
tory subdivision schemes to Cl limit functions are extended to Hermite-type subdivision
schemes which interpolate function values and derivatives. A specific family of such
schemes is presented as an example.

M. Eck
Applications of Parametrized Meshes
We discuss two applications of a parametrization (J" : 1(° -+ M of a mesh M of arbitrary
topology over a simpler base mesh KO whieh is homeomorphic to M.

At first, the multiresolution analysis as described in Lounsbery, DeRose, Warren (1994)
can be applied to determine approximations of a of various resolutions. For example,
the lowest resolution would be least-squares approximation to M whieh has the same
connectivityas [{o.

The second application is surface reeonstruction using NURBS. Here a given point
c10ud X is automatically approximated by a collection of NURBS patches. The men­
tioned parametrization 0' is used here to get appropriate parameter values to all data
points 4X'i E ){.

G. Farin
Projective Splines for Interpolation and Design
Projective splines are a geometrie approach to spline schemes known as rational gamma­
splines or rational beta-splines. Those splines need the notion of a knot sequence and
of weights: they are replaced by more intuitive handles in the case of projective splines.
Projective splines are G2 in projective space, but one can devise a knot sequence (not
needed in their original definition) such that they become C 2

. When projected into affine
space, they become C 2 piecewise rational eubics over a sequence of simple knots.

We present a method that computes the projective spline shape handles automatically,
in order to arrive at "niee" curvatu re plots. The method produces circles when the input
is a regular (closed) n-gon as the control polygon.

We then observe that cubic spline interpolation may be computed by iteratively solving
the linear, tridiagonal , system. A geometrie interpretation of this is that the solution my
be obtained by a sequence of affine maps: for the i-th equation, we move control point
no. i to a position such that interpolation occurs for data point no. i. This may be viewed
as an affine map, taking control points no. i-I and i + 1 to themselves, and the current
junction point no. i to the desired data point. Next, we say that a sequenee of projective
maps gives the solution to the projective spline interpolation problem. Projective maps
are determined by four image and preimage points. Thus we ean now move control point
no. i anywhere, and still force interpolation to data point no. i. In particular, we explore
the possibility of leaving the control points fixed and still forcing interpolation.
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We explore several ways to take advantage of the new degrees of freedom in this
scherne, keeping in mind that they have to be automatie, and not user-specified. We can
present a scheme that reproduces circles exactly and yet produces a tight fit to rapidly
varying data.

G. Albrecht and R. T. Farouki*
Construction of C 2 Pythagorean-Hodograph Interpolating Splinesby the Ho­
motopy Method
The complex formulation of polynomial Pythagorean-hodograph (PH) curves allows the
problem of constructing a C 2 piecewise-PH-quintic uspline

u
that interpolates a given se­

quence of points Po, PI' ... , PN and end-derivatives do and d N to be reduced to solving
a utridiagonal" system of N quadratic equations in N complex unknowns. The system
can also be easily modified to incorporate PH-spline end conditions that bypass-the need
to specify end-derivatives. Homotopy methods have been employed to compute all so­
lutions of this system, and hence to construct a total of 2N +1 distinct interpolants for
each of several different data sets. We observe empirically that all but one of these in­
terpolants exhibits undesirable ulooping" behavior (which may be quantified in terms of
the elastic bending energy, i.e., the integral of the square of the curvature with respect
to are length). The remaining ugood" interpolant, however, is invariably a fairer curve ­
having a smaller energy and a more even curvature distribution over its extent - than the
corresponding uordinary" C 2 cubic spline. Moreover, the PH spline has the advantage
that its offsets are rational curves and its are length is a polynomial function of the curve
parameter.

T. Sederberg and R. Goldman *
A New Approach to Implicitizing Rational Curves and Surfaces
Resultants are the standard tool for implicitizing rational curves and surfaces. But re­
sultants vanish in the presence of base points. We investigate a new teehnique for
implieitizing rational eurves and surfaces based on the method of moving algebraie curves
and surfaces. Empirical results show that this method is robust, even in the presence of
base points. We explain the new method, examine cases where it succeeds, and show
how to reeover when it fails. Since our results are still preliminary, we dose with a list of
open questions for future research.
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T. Goodman
Total Positivity and Total Variation
Suppose that a curve is represented in terms of a totally positive basis. Then the total
angle turned through by the tangent to the curve (the integral of the magnitude of its
curvature) is bounded by the total angle turned through by the control polygon. The
twist of a curve is the total angle turned through by its binormal (the integral of the
magnitude of the torsion). In contrast to the above result, the twist of a curve bounds
the corresponding twist of its control polygon, provided that the torsion of the polygon
keeps the same sign. Abound for the twist of a curve can be given for cubic splines and
this reduces, for a planar curve, to abound on the number of inflections.

G. Greiner
Interpolating Seattered Data using a Variational Approach
A method for interpolating scattered data is presented. It is based on a variational
approach, i.e., the resulting function (surface) is the solution to a constrained optimization

problem:
J( F) = min & F satisfies the interpolation conditions

Hereby J is a quadratic, data-dependent fairness functional of second order. f' varies in
the dass of all tensor product B-spline functions (surfaces) over an equidistant, rectangu­
lar grid in the plane. The advantages of this method, compared to the existing methods,
lies in the fact, that the function (surface) is a tensor product B-spline, thus can be easily
integrated in a CAD system. Moreover, this method can be extended to the parametric

case.

H. Hagen
Stability Coneept for Surfaees
In CAD /CAM technologies the design of free form surfaces is the beginning of a chain of
operations that ends with the numerically controlled (NC-) production of the designed
object. An important part of this chain is shape control. A new aspect of shape control

is the stability of a surface.
In this talk stability conditions based on the concept of infinitesimal bendings are

presented.

K. Höllig* and J. Koch •
Geometrie Hermite Interpolation with Maximal Order and Smoothness
We conjecture that splines of degree ~ n can interpolate points on a smooth curve in

IRm with order of contact
k - 1 = n - 1 + l(n - l)/(m - l)J

at every n-th knot. Moreover, this geometrie Hermite interpolant has the optimal ap­
proximation order k + 1. We give a proof of this conjecture for planar quadratic spline
curves and describe a simple construction of curvature continuous quadratic splines from

control polygons.
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ehr. M. Hoffmann
Geometrie Constraint Solving, the 3D Case
We investigate how to solve geometrie constraint systems between points, lines and
planes in 3-space. The general approach is a graph-construetive one: A eonstraint
graph abstracts the eonstraints and the geometrie objects. A clustering phase aggregates
geometrie structures that ean be solved sequentially, and a merging phase eombines clus­
ters that intereonneet in partieular patterns. Specifie problems include how to combat
eombinatorial explosion, and how to devise uniform eomputations for diffieult geometrie
eonstructions.

B. Jüttler
least-Square Approximation by Parametrie Curves using Parameter Variation
Least-square approximation by B-Spline curves and surfaces is of fundamental iniportance
in Computer Aided Geometrie Design, e.g., for the construction of curves or surfaces from
measured data or for the approximate conversion between different curve or surface de­
scriptions~ Using the dual basis of the Bernstein polynomials, we are able to construct
an explicit representation of the approximation of (vector-valued) functions by (vector­
valued) polynomials in Bernstein-Bezier form. But the approximant of a curve or surface
depends on its special parametric representation. With help of the explieit representation
of the least-square approximant we introduce the idea of parameter variation: 1 he opti­
mal parameterization of the given curve is found by minimizing an appropriate funetional.
Several functionals and their influence to the result of the approximation scheme are
diseussed. The whole seheme ean be said to be a geometrie formulation of least-square
approximation.

P. D. Kaklis*, A. I. Ginnis and I. R. Sarantidis
Cubic Spline Interpolation under Unit-Tangent-and-Curvature Boundary Con­
ditions
This work addresses the problem of construeting a C2 cubic spline, which interpolates a
given planar set of points, with given parametrization, and possesses fixed unit-tangent
and curvature at the two boundary points. It is shown that this problem can be equiv­
alently formulated as a quartie equation, with respect to the Euclidean norm of either
of the two boundary tangent veetors, plus an inequality constraint. Necessary conditions
are derived and numerieal results are also presented.
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P. D. Kaklis* and K. G. Pigounakis
Fairing Three-Dimensional C2 Cubic B-splines
In this work we present an extension of the Sapidis-Farin technique for fairing three­
dimensional C2 cubic B-splines. The technique is local and essentially employs the fol­
lowing strategy: move the "offending" control point onto its projection on the line (or
plane) along which the derivative of the curvature (or the torsion) of the curve at the
"offending" knot becomes continuous. An algorithm is proposed and its behaviour is

illustrated for three data sets.

L. Kobbelt
A Variational Approach to Interpolatory Refinement
Interpolatory refinement is a simple and intuitive method for the iterative generation
of smooth curves and surfaces. The motivation for doing a variational approach is the
observation that in most of the literatu re only sufficient or necessary conditions for the
convergence of a given scheme are proven, but one can hardly find any general methods
for the construction of interpolatory schemes which satisfy these conditions. Further:
the analytical proofs for the convergence do not illustrate what really happens when
refinement is done. The variational approach gives a simple answer to why interpolatory
refinement can produce smooth curves: because the refinement can be considered as

strain energy minimization.
In this talk, I present how the concept of energy minimization can be exploited to

derive refinement schemes for curves and surfaces which produce very well-shaped ob­
jects. I explain how the convergence analysis of such schemes can be clone and give some
examples for schemes which produce interpolating curves with high order of continuity.

D.-Y. Liu* and J.-Y. Wang
Modeling of Rubber Curves and its Applications
In this paper, a method of creating a curved polygon based on the cubic NURBS is
presented. To create or modify a curve does not need to manipulate the control points
one by one, a group of control points will be generated or modified simultaneously instead.

These curve displayed on the screen are rubber-like.
The method described in this paper has been applied in apparel pattern making sys­

tem developed by GINTIC of Nanyang Technology University, Singapore. Also it can be
extended to 3D surface case and applied to computer animation.
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T. Lyche
Multiresolution Analysis Based on Quadratic Hermite Interpolation - Part 1:
Piecewise Polynomial Curves
We discuss a multiresolution analysis based on Cl quadratic Hermite interpolation and
the I/X> norm. The use of the Loo norm is natural in many CAGD applications and it leads
to schemes which are faster and simpler to implement than the wavelet schemes based
on the L2 norm. We have chosen to discuss quadratic Hermite interpolation because (i)
it is a Cl scheme with nice shape preserving properties, (ii) we have a certain sup norm
stability in the wavelet spaces, (iii) there are local support bases for these spaces, (iv) the
decomposition coefficients can be determined explicitly in real time, (v) it generalizes to
splines over triangulations. In the talk we give several examples of decomposition of para­
metric curves. This isjoint work with M. D~hlen, G. Holm, K. M~rken, and H.-P. Seidel.

A. McEntee and H. McLaughlin*
The Shape of Noisy Data _. ,"
An algorithm is presented which accepts two sets of noisy curve data and compajes their
shapes. The output of the algorithm is one of the following three statements: (1) the
two data sets have the same shape, or (2) the two data sets da not have the same shape,
or (3) it is not possible to determine the shape of at least one of the data sets. The input
of the algorithm consists of two unordered sets of planar points: each point is given by
a pair of x-y coordinates. The notion of shape is a qualitative one: it is defined by a
resident catalogue.

A. Le Mehaute
Knot Removal for Scattered Data
We present a review of same strategies recently developed for reducing the number of
knots for the representation of a piecewise polynomial approximation of a function defined
on seattered data, without perturbing the approximation more than a given tolerance.
The method removes some (or all) of the interiorknots. The number and location of
these knots are determined automatieally. Applications are in approximation of data, data
storage and image reconstruction.

H. Nowacki
Toward a Synthesis of Fair Free-Form Curves and Surfaces
A synthesis process is described in which a fair free-form surface is built up by consecu­
tively fairing curves, eurve meshes, and surfaces. At each stage of this process, an explicit
fairness measure is used as an objeetive function and appropriate constraints are applied.
The shape elements have more free shape parameters than constraints so that the shape
is free to respond to the fairing objectives. At the final stage, surfaces of regular or irreg­
ular mesh topology are faired based on a flexible choice of the fairness measure, including
isotropie and direction dependent fairing criteria. The quality of the resulting surface and
of its shape elements can be quantified in terms of their fairness measures.
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J. Peters
Decompositions of the Identity and the Construction of Smooth Surfaces
Geometrie modelers typieally define surfaces as images of closed polygonal regions under
polynomial or rational maps, called patches. The images, also called patches, do not
overlap but join along curves in IR? Differential topologists define surfaces as domains
of invertible maps, also called patches, from IR? to open sets in IR? The patches cover
the surface by overlapping in open subsets. This paper develops a surface model that
reeonciles the apparent discrepancy between the constructive and the analytic approach
by defining and characterizing maps that link the domains and ranges of the various types
of patches. Of particular interest are families of maps whose composition matches the
Taylor expansion of the identity map. Such families are named decompositions of the
identity and its members roots of the identity.

H. Pottmann
Applications of the Cyclographic Map and Laguerre Geometry in CAGD
We briefly review Euclidean laguerre geometry and its different models, namely the stan­
dard Euclidean model, cyclographic model, Blaschke cylinder and isotropie model. Based
on that, applications in CAGD are studied: the geometry of the medial axis transform,
geometrical optics and, in particular, rational PH curves and surfaces. These curves and
su rfaces. which are characterized by the rationality of all their offsets, can be elegantly
handled within Laguerre geometry. In the isotropie model. they appear as arbitrary ratio­
nal curves or surfaces, but also the other models are appropriate to study their properties
and derive algorithms for modelling with them. Furthermore. we address rational canal
surfaces and the invariance of PH curves and surfaces under lie transformations.

M. J. Pratt
Quartic Supercyclides
Various c1asses of algebraic surfaces have been examined as to their suitability for CAGD
purposes. This paper contributes further to the study of a dass of quartic surfaces re­
cently investigated by Degen, having strong potential for use in blending, and possibly
also in free-form surfaee design. These surfaces are here put in the context of a classifi- _
cation of quartic surfaees originally given more than one hundred years ago. An algebraie ..
representation is provided for them. and a simple geometrie interpretation given for their
rational biquadratic parametrie formulation. Their theory is established from an analytie
geometry viewpoint whieh is more straightforward than Degen's original approach and
gives further useful geometrie insight into their properties. A major subclass of Degen's
su rfaces consists of projective transforms of the Dupin cyclides; for this reason (and oth-
ers, explained in the text) the name supercyclides is proposed for them.
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H. Prautzsch
Gk Surfaces of Minimal Degree
One can build Gk surfaces of arbitrary topology with tensor product patches. While it
is possibfe to join most patches with simple Ck joints the surface has in general n sided
patch configurations with general Ck joints (Gk joints).

In the talk it was shown that these n-sided patch complexes can be built so as to lie
on an arbitrarily chosen polynomial. If this polynomial is of degree r, then the patches
Iying on it are parametrized as tensor product patches of degree r k + r.

Secondly Catmull/Clark type subdivision schemes of arbitrary higher degree were con­
sidered where the scheme around an extraordinary point is described by a matrix. The
differentiability of the limiting surface was related to the spectral properties of the ma­
trix. These smoothness conditions are bot~ sufficient and necessary and also apply to
hypersurfaces of any degree. Further these conditions also show how one can control C k

schemes producing surfaces with polynomial patches of in general minimal degree.

u. Reif
TURBS ~ Topologically Unrestricted Rational B-Splines
A new method for constructing free form surfaces of arbitrary topological genus is pre­
sented . It fits in the standard tensor product NU RBS framework by providi ng the following
features:
- Representation by real-valued B-splines
- Shape control by spatial control points and rational representation
- Subdivision formulas
- Arbitrary order of smoothness
The bi-degree for generating Ck-surfaces is 2k + 2. On one hand, this is a substantial
improvement of all existing methods which require polynomials of order O(k2

). On the
ether hand, this result is optimal in the sense that no further degree reduction is possible
if subdivision formulas are assumed to exist.

M. Sabin
Discrete Geometry
In CAGD we typically use floating point numbers to hold 'reals', and ignore the effects
of inaccuracies of arithmetic. The solid modelling community do worry about errors and

jump through hoops with tolerances.
In fact, floating point numb~rs form a discrete set, and any code which uses them in

fact implements approximations to the algorithms.
This presentation explores the possibility of being explicit about this discreteness and

knowing exactly what we are doing.
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Because of the novelty and difficulty involved, it addresses only the 20 geometry of
points, lines and conics.
• Some Abstract Ideas
• Luby' line theory
• Towards a theory of conics

L. H. T. (hang and H. B. Said*
A C 2 Triangular Patch for Scattered Data Interpolation
Given a set of data points \Ii = (Xi, Yi, Zi), i = 1, ... , n, and their positional and up to
second derivative values, we wish toconstruct a C2 surface that interpolates these values.
Firstly these data points are triangulated, and then a triangular patch is defined over each
triangle. We propose a triangular patch which consists of a convex combination of three
uloeal" triangular patehes. Each of these IIl0cal" patehes satisfies C2 continuity over a
boundary of the triangle.

R. Sarraga
Optimization Methods for Shaping Trimmed B-spline Surfaces
This talk diseusses results obtained by applying shape-optimization functionals on sev­
eral geometrie configurations. The functionals are of the family introdueed by Günther
Greiner, and the surface is eomposed of Cl quintics.

L. L. Sehumaker
Splines on the Sphere
We deseribe a natural set of barycentric coordinates associated with spherical triangles
and use them to construct spherical Bernstein-Bezier polynomials which have almost _
all of the properties of the classical BB-polynomials on planar triangles, including a de- _
Casteljau algorithm, subdivision, smooth joins, etc. This leads to a new dass of spline
funetions defined on the sphere (and on sphere-like objects). After briefly describing the-
oretical properties of these spaces, we discuss a variety of new methods for interpolating
and fitting scattered data on the sphere. These include macro element methods (Powell-
Sabin, (Iough Tocher, etc.), minimal energy methods, least squares, and penalized least
squares. The talk i5 based on joint work with Peter Alfeld and Mike Neamtu.
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H.-P. Seidel
Multiresolution Analysis Based on Quadratic Hermite Interpolation - Part 2:
Piecewise Polynomial Surfaces over Triangles
This talk continues the talk given by T. Lyche and covers piecewise polynomial surfaces
over triangles. We first construct a nested sequence of spaces using Powell-Sabin splits.
We then construct a locally supported wavelet basis and prove stability in the Loo-norm.
Similar to the curve case, the resulting scheme has the following attractive features: (i)
Cl-scheme with nice shape preserving properties, (ii) stability of the wavelet basis, (iii)
there are local support bases for these spaces, (iv) the decomposition coefficients can be
determined explicitly in real time.

H.-P. Seidel
Convergence of B-Spline Subdivision and Degree Elevation
We outline a short proof for the convergence of both· subdivision (quadratic conver­
gence) and degree elevation (linear convergence) for B~splines, ~ased on the de~.~oor-Fix

dual functionals andJor polar forms. The approach naturally extends to surf~ic~s. For
subdivision of B-spline curves this approach goes back to the classical work by C. de Boor.

J. Warren
An Efficient Aigorithm for Evaluating Polynomials in the P61ya Basis
A new O(n) algorithm is given for evaluating univariate polynomials of degree n in the
P61ya basis. Since the lagrange, Bernstein, and monomial bases are all special instances
of the P61ya basis, this technique leads to efficient evaluation .algorithms for these special
bases. For the monomial basis, this algorithm is shown to be equi\lalent to Horne(s rule.

F.-E. Wolter
Geodesie Offsets t Computations an.d Applications
Geodesic offset curves are obtained as end points of a family of geodesic segments which
emanate orthogonally from a given progenitor curve. (All geodesic segments of this fam­
ily have equal length.) The talk describes how methods from Riemannian geometry can
be used to compute the curvature of geodesic offset curves and how to estimate the
distance of offset singularities to the progenitor curve. Further methods are explained to
compute generalized medial curves on a surface. A medial curve on a surface contains
surface points that are (in geodesic distance) equidistantial with respect to two given
surface curves. Finally we sketch an idea for a potential contribution of geodesie offsets
(and of the offsets tangent vector field) to model adeformation procedure in a die-Iess
metal forming process. This forming process is supposed to generate a curved metal shell
(with a user defined Gauss curvature) from a flat metal plate with a plastic deformation
behaviour.
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A. Worsey
Reparameterizing Rational Curves for Applications
Rational Bezier curves are typically parameterized so that the first and last weights are
unity. We consider the problem of reparameterizing these curve so as to optimize certain
properties which are useful in applications. Specifically, our results lead to an improved
method for polynomial approximation using hybrid curves, and more importantly, gener­
ate parameter values for "optimal" subdivision, as weil as bounding box estimates that
are often sharper than the standard convex hull of the curve's control points.

Y. Yamaguchi
Bezier Normal Vector Surface and its Application
A Gauss map, which is a representation of normal vectors of a surface, and a visibility
map, which is a representation of locally visible directions of a surface, have wide vari­
eties of applications such as offset surface generation, surface-surface intersection, tool
orientation for Ne machining, workpiece setup, and so on. However, it is usually very
expensive to calculate a Gauss map and a visibility map. Therefore, the previous works
approximate their bound either by bounding cones, by rectangular pyramids, or by hexag­
onal pyramids. We will propose a Bezier normal vector surface, which is a Bezier form
representation of non-unit normal vectors.of a surface. It gives a much tighter bound
of the surface nermals. Normal vecters of both a tensor product Bezier surface and a
triangular Bezier surface can be represented as a tensor product Bezier surface and a
triangular Bezier su rface respectively.

We will also discuss how a Bezier normal vector surface can be used for surface­
surface intersection. A relatively robust algorithm to calculate intersections is a marching
method. However, it is difficult to find all initial points of intersection branches and to
trace a curve near singular points. Critical points which have parallel normals on both
surfaces are key points to solve those problems. We will explain a new algorithm to find
an critical points efficiently by using Bezier normal vecter surfaces.

J. J. Zheng
Generating Surfaces aver Non-four-sided Areas
This talk will present mathematical expressions with control points for 3-, 5- and 6-sided
surface patches whose boundary curves may be Bezier curves of arbitrary degrees. These
patches can meet surrounding rectangular surface patches of arbitrary degrees with Cl
contin uity.

Berichterstatter: B. Jüttler
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