
MATHEMATISCHES FORSCHUNGSINSTITUT OBER

Tagungsbericht 23/1995

Differentialgeometrie im Großen

11.06. bis 17.06.1995

Die Tagung fand unter der Leitung von W. Ballmann (Bann), J.P. Bourguignon (Palaiseau)
und W. Ziller (Philadelphia) statt.

Wie üblich waren zu der Tagung so viele Geometer von fern und nah -angereist, daß es
nicht schwer viel, ein hochkarätiges Programm zusammenzustellen - zu bedauern wäre
lediglich, daß wir nicht noch eine weitere Woche bleiben durften.

So wurden etwa auf dem Gebiet der positiven Krümmung zahlreiche spektakuläre neue
Resultate dargestellt, die sowohl mit analytischen Methoden aus dem Bereich der partiellen
DifferentiagleichungcD als auch mit verfeinerten Vergleichskonstruktionen erzielt worden
waren. Darüber hinaus wurden seit langer Zeit auch einmal wieder neue Beispiele positiv
gekrümmter Mannigfaltigkeiten konstruiert.

Viele Vortäge beschäftigten sich mit dem Zusammenspiel spezieller geometrischer Eigen­
schaften wie homogenen KählermaIUligfaltigkeiten, 3-Sasake Mannigfaltigkeiten oder Kon­
taktstrukturen, wobei bemerkenswerte Klassifikationsresultate erzielt wurden.

Das interessante Tagungsprogramm wurde dadurch aufgelockert., daß jeweils der erste
Nachmittagsvortrag als Überblicksvortrag angeset~t war.

Vortra.qsauszü.qe

M. KAPOVICH

Flats in 3-manifolds

We prove that if a compact aspherical Riemannian manifold M 3 contains a 2-Bat in. the
universal cover M3 then 1rl(M) contains 1l $ 7l. This> generalizes the Buyalo-Schroeder
theorem to the case of indefinite sectional curvature.
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D.V. ALEKSEEVSKY &. V. CORTES

Isometry groups of homogeneous quaternionie Kähler manifolds

A general method for ealeulation of the full isometry group of a Rielnanllian solvenlanifold
is presented.

Using it the fuH isometry group of the non-symmetrie quaternionie Kähler solveillallifolds
M is determined: r-,w- and (-spaces.

As an applieation, it is proved that the isometry group aets transitivelyon the twistor
space and on the SO(3)-prineipal ("3-Sasakian") bUDdle of M .and that the manifold M
does not admit quotients of finite volume.

Finally, a new, simple deseription of the Alekseevsky spaees

r(p), w(p, q), '1(1, k) (k ~ 0(4», ,(p, q; k) (k ~ 0(4»)

in terms of a certain spinorial module S of the group Spin(3, 3 + k) is given.

C.CROKE

A survey· of manifolds without conjugate points

We survey the current status of the subject with special attention to the recent proof hy
'Burago and Ivanov of the E. Hüpf eonjecture: "Every metrie on an n-torus without eOll­

jugate points is Bat". We also discuss results and open qUestiüIlS eoncerning the topology
of such manifolds as weH as results and open questioIlS of rigidity type.

Open Questions: Topology of compact NCP

(1) Do all compaet NCP manifolds admit ametrie with K ~ O?

(2) (Tits alternative) Does every subgroup of 1f1 (M) contain either a free group of two
generators or is virtually abelian?

(3) (Qu~dratic isoperi~etric inequality) Does there exist C(M) such that for a11 clos~
in Al, i spans a surface of area ~ C(M)L2(-t)? •

(4) Do there exist infinitely many geometrically distinet closed geodesics (1ft (M) =1= 7l) ?

Open Questions: Rigidity

(1) (Maiie conjecture) If M is a compact NCP manifold and htop = 0, ID':lSt M he Hat?

(2) For M a non-compact NCP manifold of higher rank, does it admit any nontrivial
compactly supported NCP perturbation?

(3) For M a compaet NCP of higher rank, mllSt aoy NCP metric also have higher rank?
(special case: roust the universal cover of E2 x Si with NCP metric split off an IRI ?)
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(4) Are compact NCP manifolds CO conjugacy rigid?

(5) Are there any analogue of the splitting theorem?

(6) (Parallel post.ulate) H M 2 is l-connected, NCP such that for all geodesie fand every
p f/; "Y there is a unique geodesic T sucht that pET and T n "Y = 0 then must M2 = E 2?

T. COLDING

Aspects of Ricci curvature

We survey various geometrie and topological results of manifolds with a given lower Ri<.~ci

curvature bound. In partieular we discuss a new estimate of the distance function for·
such manifolds and discuss applications of this to volume eonvergence, Gromov's eonjec­
ture generalizing Bochner's theorem to rnanifolds of almost nonnegative Rieci eurvature,
splitting theorem for singular spaces and volwne cone imply metrie cone.

K. GALICKI

We survey geometrie and topological results on Riemannian manifold~ admitting a 3­
Sasakian structure. These spaces were introduced by Kuo and Udriste in 1970 and, in
particular, are Einstein manifolds of positive scalar eurvature. We describe same oirl results
eoncerning this type of geometry obtained in the 70's as weIl as some recent developements.
These include a simple quotient construetion of a large elass of families of compact, simply
connected 3-Sasakian manifolds out of 3-Sasakian spheres s4n+3 (1). This new eonstruction
yields examples that are not regular and the Riemannian metric is inhomogeneous. We
conelude wit.h a discussion of several open problems concerning: moduli of 3-Sasakian
structures on a given smooth manifold, rigidity, Betti .numbers, and classification of 3­
Sasakian spaces in dimension 7.

B.LEEB

e Rigidity of nonpositivly curved spaces

We report on joint work with M. Kapovieh and B. Kleiner about quasiisometry invariants
of nonpositively curved spaces. Quasi-isometries play an important role in geometrie gTOUp

theory and rigidity problems. Concerning symmetrie spaees of noncompact type, we show
that irredueible higher-rank spaees are quasi-isometrieally 'rigid (each quasi-isometry is
within bounded distanee of an isometry) and that the produet strueture of reducible spaces
is preserved. This extends Mostow's rigidity theorem and confirms a conjecture ofMargulis.
A finitely generated group quasi-isometrie to asymmetrie space of noneompact type is a
finite extension of a uniform lattice. We mention some results about universal covers
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of smooth nonpositively curved Riemannian manifolds: the geometrie rank and the de
Rham product decompositions are preserved. For universal covers of non-geometrie Haken
3-manifolds, the Hft of the eanonical (Jaw-Shalen-Johannson) decompositioll is prcserved.

J. BLOCK

Positive Scalar curvature on manifolds of non-positive sectional curvature

We show that a locally symmetrie spaee of non-positive eurvature and finite vohune X
has ametrie of positive scalar curvature K 2::: c > 0 if and only if (when r = 1rl (x) is
arithmetric) the Q-rank X is 2:: 3. If the Q-rank is 2:: 3 these metrics can also be mael
of finite volume. The obstructions in Q-rank 1 and 2 are proved by and index theorenl
involving 11'"1 (X) and 1r1 (X) which is the fundamental group of the end.

H.PEDERSEN

Survey of Einstein-Weyl geometry

We shall eonsider a eonformally invariant version of the Ein...ertein equations. A nlallifold
with conformal structure and eo~patible symmetrie conneetion is calIed a Weyl lllanifold.
If, furthermore, the trace-free symmetrie part of the Rieei eurvature vanishes, the geonletry
is ealled Einstein-Weyl.

Einstein metries are special examples of Einstein-Weyl solutions. We shall present more
examples on eompact spaces as weH as obstructions to solutions. In dimension four we give
a classification in presence of syrometry. These symmetrie examples give some insight into
the nl0duli spaee near Einstein metrics as well as new minimal submanifolds in eonlpaet
Riemannian manifolds with positive Ricei curvature. Also, we shall see that Einstein­
Weyl geomety in the Gauducthon gauge gives a solution to a problem in Besse concerning
examples satisfying Vxr(x,x) = 0, Vr =I- 0 and being of high cohomogeneity.

J. LOHKAMP

On the geometry of multiple connected sums

Using a construetion generalizing the conneeted surn of manifolds (we entitled "multiple
connected sums") we obtain new metries which have a lot of unexpected properties.

Beside others, this is the proof of existence of metrics with preseribed eigenvalues and
volume and of metries with ergodie geodesie flows on arbitrary manifolds of dimension
~ 3. The effect of these constructions might be understood as a kind of "producing"
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volurne and ergodieity, respectively. This also allows to sharpen results to the end that we
find den~ sets of such metrics and other flexibility results.

C.BÄR

Existence of metries with harmonie spinors

Classical Hodge-deRham theory teIls us that on a elosed manifold the dinlension of the
kernel of the Laplace operator aeting on k-forms is a topological invariant, the k th Betti
numher. On a Rieulannian spin manifold there is anothe.r natural operator, the Dirae
operator. The question arises whether h = dim ker(Dirac) is also topologically invariant.
But this is not true, in fact, in many dimelL'3ion existence of harmonie spinors is not
topologically abstructed.

Thm. On every closed spin manifold of dimension n == 3 (mod 4) there exists a Rieman­
nian metric s.t. h > O.

The proof uses a eomparison theorem for eigenvalues on eonnected sums and an explicit
comput.ation of Dirac-eigenvalues on Berger spheres.

c. MARGERIN

A smooth sphere theorem, sharp

We give a sharp (Ioeal) geometrie charaeterization of the (standard quotient~of the) stan­
dard smooth sphcres in a11 dimesnions evend and odd, hut a finite number (n ~ 64). The
curvaturc invariant we consider is weak-pinching, a properly scaled norm of the trace free
part of the curvature: we prove that w.r. t. this invariant there is no other diffeomorphism
type than the standard snIr before we meet geometries oftype SI x sn-I. W~ also discuss
the rigidity statement that these are the only ones on the boundary. We sketch a few of
the ideas in the proof, which involves deforming such metries along the integral curves of
the Ricei curvature field (on t.he space of metries) towards ametrie of constant sectional
curvature. We finally suggest possihle generalizations toward a more systematic higher
dimensional "geonletrization".

I. TAIMANOV

New examples of positively curved 13-dimensional manifolds

We talk about infinite series of elosed RiemaIlllian positively curved manifolds with di­
mension equal to -13. These examples were constructed by our student Va. V. Bazaikil1
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(1994, Novosibirsk Dniversity) by using the Eschenburg method. They cau be cOllsidered
as deformatioIlS of the Berger normally homogeneous lllanifold SU(5)/Sp(2) x SI in thc
salne sense as Eschenburg's 7-dimensional examples are deformations of the Aloff-Wallach
spaces. Some perspectives of further investigatioIlS are also discussed.

u. ABREseH

Injectivity Radius Estimates and Sphere Theorems
(joint work with W.T. Meyer)

For odd-dimensional manifolds the pinching constant that is required to prove injectivie,
radius estimates and sphere theorems can be improved as follows:

Theorem A: Let bin; := 4(X+~inj)2 where cin; := 10-6
, and let (Mn, g) be a compact Rie­

mannian manifold with bin; < K Tn ~ 1 and 1rl(Mn) = O. Then inj(Mn) = conj(A1n) 2:: 1L

The Berger metries on the odd dimensional spheres provide examples where the equality
inj (Mn) = canj(Mn) falls provided that one allows for pinching constants < 0.117223.

Combining Theorem A with the limiting arguments that are used in the proof of Berger's .
pinching below - ~ theorem, oue obtains

Theorem B: for any n == 1(2) there exists some bn E (o,~) such that any cOßlpact. Rie­
mannian manifold Mn with bn < KM ~ 1 and 1rl(Mn) = 0 is hOlne<nuorphie to sn. In
contrast to Theorem A we find that Theorem B relles on pinching COll..'\tants that depend
on the dimension and are not effectively computable because of the way the proof relies
on Gromov's compactness theorem. The question whether there is a different approach
by Olore direct methods of comparison geometry can be answered positively, and thus we
obtain a result with an explicite pinching constant:

Theorem C: Let bodd := 4(1+~Odd) where Codd = 10-6
, and let Mn be a compact odd

dinlensional manifold with bodd < KM ~ 1 and 1rl(Mn) = O. Then Mn is hOlueoIIlorphic
to sn.
The analogous techniques, when applied to even dimensional manifolds, however, do not
show that Mn must be diffeomorphic to a projective space unless it is homeomorphic to
sn, as one would expect in view of Berger's pinching below - ~-theorem. So far, we ca.
only recover the cohomology ring.for coefficients in Z2 or in Q. The proof of Theorclll •
relles on the following result:

Horse Shoe Theorem: Suppose that Mn is an compact Riemannian manifold with bhs <
KM ~ 1 and 1r ~ inj(Mn) ~ diam(Mn) ~ 1r • (1 + chs) where bhs := (1 + chs)-2 anel
Chs := 27~O. Then for any p E Mn and any V E TpMn with lvi = 1 one has

The reduction of Theorem C to the Horse Shoe Theorem is done by means of st.andard
arguments in algebraic topology, whereas the proofs of Theorem A and of the Hürse Shoe
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Theorem malre use of serveral n~w comparison techniques. The starting point for thc
injectivity radius estimate is a new lifting construction for shortly null-homotopic curves
which can be controlled better. Thc key ingredient in the proof of the Horsc Shoe TheoreDl
are new types of .Jacobi field estimates, which make use of simultaneously provided initial
and boundary data.

J .M. SCHLENKER

Generalization of Efimov's theorem

Let (E, a) be a complete Riemannian surface with curvature K ~ K 1 < 0 and (M, Jl)
a 3-manifold with sectional curvature K E [K2,K 3 ) with K 1 < K2 and (K3 - K 2)2 <
16(K3 - K 1)(K2 - K}). Suppose that IIßKEII,; IIL\KMII are bounded. Then there exists
no isometrie immersion of E into M. A similar result holds when M is a Lorentz spaee
form. The presented methods and results also extend to more general situations involving
hyperbolle Monge-Ampere operators over surfaces. , .

A. MOROIANU

Kählerian killing spinors, contact structures and twistor spaces (11)

Manifolds with Kählerian Killing spinors are spin Kähler manifolds with the least possible
eigenvalue for the square of the Dirac operator among a11 Kähler manifolds of positive
curvature. They are necessarily Kähler-Einstein of odd complex dimension m.7= 2k + 1.

Theorem: Let M4k+2 admit. Kählerian Killing spinors. If k is even then M is isometrie to
cvpm.. If k is odd t.hen Al is the twistor space of a quaternionie KäWer Inanifold of positive
scalar curvature.

Proof: A Kählerian Killing spinor on M induces a Killing spinor on E, a nlaximal root
of the canonical blmdle of AI, Am,OM. A eloser analysis of thiS spinor shows that E is a
regular 3-Sasakian manifold, and finally M has to be the twistor space of the associated
quaterllionian Kähler manifold.

F. WILHELM

A generalization of Berger's ~-pinched rigidity theorem

Recall that the radius of a compaet nletric space (X, dist) is given by

radX = minma~dist(x,y).
xEX yE ...\
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In this talk we generalize Berger's 1/4-pinehed rigidity theorerll and show that a closed
Riemannian n-manifold with sectional cllrvature ~ 1 and radins ~ 'Fr/2 is cither hOlUro­

11lorphie to sn or iSOllletric to a compact rank one sylnmetric space.

R .. GORNET

Spectral geometry on Nilmanifolds and the marked length spectrum

In this talk, we review a construction for producing pairs of nilmanifolds oE arbitrary step,
cl t th roperties of resulting me e amplesan presen ep w x :

Ex of isosp. isosp. represent. same same isolliorphic
3-step on on p-forms equiv. length marked fUlld.gps
isosp. functs Vp fund.gps spec. length
nilmfd spec.
7-dim

I Yes Yes Yes No No No
5-dim

11 Yes Yes Yes Yes No Yes
7\5-dim

[II\IV Yes No No No No No
7-dim

V Yes No No Yes Yes Yes

Note that in E x V, the pairs oE nibnanifolds have tbe same Inarked length SpectflUl1,
Laplace spec.trunl, but not tbe same spectrum on one-forms. In contrast:
Theore~: for a large class of 3-step llilmanifolds, the same marked length spectflull ==>
isosp. on functions.

The large elass is all3-step nilpotent Lie groups, strictly nonsingular, with eoeOlupact, dis­
crete subgroups wit.h the same int.ersection with center. This partially extellds alld part.ially
contrasts with a result of Eberlein, who showed that for pairs of two-step nilmanifolds, t.he
same 'Dmrked length spect.rum implies isospectral on functions and on forms.

J. CAO Uoint work with J. Escobar)

An isoperimetrie comparison theorem for P L-manifolds of non-postive curva­
ture

We derive an optimal isoperimetrie conlparison theorem for luanifolds with non-positive
curvature.

A piecewise Rat manifold A1n is said to have non-positive curvature in the sense of Gronl0v
if Afn satisfies the C AT(O) inequality.
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e·

Main Theorem: Let Aln he a simply-connected, eOlllplete and piecewise Hat. nlanifold.
Suppose that AlU has non-posit.ive curvature in the sell.-~ of Gromov. Thell

for any cOlllpact. dOluain n ~ A1n with rectifiable boundary 8f2, where
Cu = vol" - 1 [Sn - 1 ~) »)1 is the optimal constant in t.hc n-dinlensional Euclide.all space IRn .

(1 101" [ß" (1»)--n

P. GAUDUCHON

Existence and uniqueness oe complex structure on some class oe compact Rie­
mannian manifolds

We address the general problem of the existence and the uniqueness of an inte.qrable alnlost­
complex structure orthogonal with respect to some given Riemamlian metric 9 on some
oriented, even-dimensional manifold ,AI. The problem is weil unterstood)n dimension
4, when a possihle orthogonal structure is entirely encoded, up to a two-fold choice, by
the half-Weyl tensor w+ at. any point where w+ does not vanish; it follows that an 11.­

diIncllsional Rhllannian manifold with non-vanishing w+ admits at most two orthogonal
, cOlllplex structurcs (up to conjugacy). Examples with exactly two (non conjugate) orthog­
onal complcx structures havc been given recently by P. Kobak.

In general, for given g, the problein appears as an overdetermined , elliptic prohlem,
equivalent to looking for sections of the so-called "twistor space" Z(M), stahle with respect
to thc canonical ahnost-complcx strueture J of Z (AJ) °

The latter geolnetric picture has been usedby F. Burstal, 00 Muskanov, G. GrantchallOv,
J. Rawnsley to prove a rigidity theorenl for the invariant complex structure~üf cOlupaet
Hernlitian syuuuetric spaces. We prove a sioli1ar result for compact quotients of irreducible
syo1ll1etrie spaces of non-colllpact type by using the following general criterion for compact
manifolds of (even) dimension n > 2:

For any Riemanllian Dletric g, consider the following expression:

"( ) _ 1 {( SCll.lg 1 9 ( ))
5g - y":2 1M n(n -1) - (n _ 2) Amin W Vg

where Scal9 denotes the scalar curvature, A~in(W), the smallest eigenvalue of the Weyl
tencsor W (viewed as a sylnmetric operator on A2 AI), vg the volunle-form, Y = IM Vg the
total volulue. Then,

(1) if 8(g) < 0 (for SOUle llletric gis the conformal class), theo is 00 [g]-compatible cOlnplcx
structure.

(2) If 8(g) = 0, and there exists SOUle compatible cOlnplex structure J, then:

( 0) scalg ) 9 ( )
1 n(n-l) - (n-2) A,nin W == 0;
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(ii) the Kähler fornl F of J belongs to t.he eigenspace of W with respect. t,o ;\~I.in(ltV);

(Hi) the Herrnitian structure (g, J) is semi-Kähler (i.e. F is eo-elosed).

E. Calabi

On singular symplectic structures

Thc problem of thc ex1stence of a symplectic structure in a: given, closcd, 2n-diIneLL~ional
Iuanifold Mn may be studied by analysing the deformation of thc singularities in a one­
parameter family of closed 2-forms. By a singularity of a 2-form we understand any POi~
where the rank of the coefficient matrix of a closed 2-forrn w is discontinuous; the rank
a 2-form w(x) at any point x E M is an even integer 2k, where k is the highest power 0

w(x) that is not zero.

We donote by W[k] the divided powers of a 2-forrn w

A (non-singular) symplectic structure on M(2n) is the geometrie structure defined by a
closed 2-forlll w such that w[n] =1= 0 cverywhere. The existencc of such a forul requires
(trivially) two necessary conditions: 1) the existence of an almost eornplex struet.ure; 2)
a 2-dimensional, real cohomology class (the deRham class of w) whose n th cup-power
(represented by w [n]) is non-trivial.

In general a (closed) 2-forln w in Al(2n) has a non-empty singular set, llalilcly the set.
where w[n] = o. An open, dense set of closed forms w in the space of a11 such fonus (wit.h
a C OO topology) recluces the singular set to a set that is at most (2n - l)-dimensional. A
defornlat.ion of w (usuaUy considered are only deformations leaving w in a fixed deRhanl .
class) displaces the singular set. and modifies other invariant.s att.ached to it. The ques­
tion that arises naturally is to find invariants of the singularit.y that are preserved nuder
defornlations of w. Solue of these invariants are described here.

The singular set. has a stratified structure, where the different strat.a are indexed by two
independent indices at least. A preliminary study of these singularities was initiat.ed by
.J. lVIartinet in his thesis and later described in an expositiry work by R. Roussarie. Consid.
the sheaf of germs of closed 2-forms, n~, of class Coo (resp. CW) and its filtration by tW
bundle of jets of order k, (k = 0, 1,2, ...).

The sheaf of germs of diffeomorphism..c;; near the identity acts on the sheaf n~, anel the
(k + l)-jets of diffeomorphism acts on the k-jets of closed forms. Thc orbits in n~ under
the action of the sheaf of diffeornorphism are classified by their codimension and by the
least order of jet that distinguish them from the neighbouring orbits. In considerillg single
(closed) 2-form& w in M 2n one may limit one's consideration only to the dense set of
cross-sections in n~ that meet orbits in st.rata that have codimension 2n; in the case of
one-parameter families of forms, oue should look further iota strata of codimension as high
as 211. + 1.
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The only st.rat.a that are identifiable at the O-jet level in 0 2 are deternline.<l just by t.he
rank: t.he 2-forms of rank ~ 2k constitute a set. of codimension (11. - k)(2n - 2k + 1) : t.hus
in a 4-dimensiollal M, for instancc one may ignore closed forms w that vanish cOlllplet.ely
at auy point, since they have codimension 6.

Given a 2-fornl w that has everywhere rank either 2n (in an open set) or (2n- 2) (in a set of
co-diulCllsion 1) the singular set of the set where w has rank 211. - 2 has codimension 211. + 1
in thc full sheaf and will be ignored here. Heuce we shall consider only forms that have rank
2n or 211. - 2, alld the latter value ooly on a smooth hypersurface. Introduce locally "a non­
vanishing, SlllOOt.h 2n-form u and define a corresponding, smooth, re,a! valued fuuction
z = Zu defined by w (n] = zu. The singular set of w is determined by the hypersurface
defined by z = 0, in which case dz =I O.

For each point in the singular set M, we have the 2-dimensional vector subspace N of
T(A1 2n ) consisting of the vectors L such that LLw (the inner product) vanishes. The
intersection of N with the tangent space of the singular set MI determines a stratification
of tbe latter, in the following sense. Generically in an open, dense subset of M, the plane
N C TM2n is transversal to the hyperplane TM} C TM(2n) (Le. have a lille in conmlon
and N c T MI Oll a closed subset. .

l\1ore precisely, N is locally generated by two vector fields denoted by X, Y, defined as
folIows: choose two functions u, v such that du A dv A w[n-I] = u and set

X uniquely defined hy X Lu .= du A w(n-I]

Y uniquely defined by YLu = dv I\w(n-I]

Z uniquely defined by Z lu = clz 1\ w[n- 11

Then XLw = zdu, Yl(w) = zdv, ZLw =. zdz and Z = Y(z)X - X(z)Y + z[X, Y]. This
shows that Z lies in N n T(Al1 ) (and hence generates it) whenever z = 0 (Le. everywhere
in Alt> and N is transversal to TMt, while Z = 0 whellever z ::= 0 and N C T(AtII ) ; in
thL'"i case X, Y and [X, Y] are linearly independent and the next stratlilll ]\,12 is defined by
the equations z = X(z) = Y(z) = 0; its smooth part is therefore the (2n ~ 3)""dimensional
sublllanifold of AI, defined by the additional conditio11'5 .

dz A dX(z) A dY(z) Aw[n-2] 1= 0

Additional strata are defined recursively, represented in their regular parts by submanifolds
M3 , /\14 , •.• , where each succesive "1\lj is defined by a non-transversal intersection of N with
a previously detenllined Alj , hut. here we deal only with the decomposition of A12 .

Thc previous construction of X, Y and Z around M2 result in the identity [X, Y](z) = O.
The second derivatives of z along the plane N therefore have an invariant meaning as the
"Hessian form" of z along N, denoted by H M2 (Z] = {«,7]) ~ X(X(z»)(2 + 2X(Y(z))(TJ+
Y(Y(Z»112

). One distillguishes points of M2 in which this Hessian is positive definite, neg­
ative definite or non-degenerate indefinite: they are characterized by geometrie properties
of the vector field Z in a neighborhood of a point where Z = O. A further sub-stratum is
then defined by points where the Hessian form H A12 (z) is degenerate (of rank 1 or zero),
which can not be diseussed in the present report.
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Each of the types of singularities above allows representation of w in "standard 1110der'
coordinates, as folIows. .

1) For non-singular points, from DarbouX's theorem we have coordinates Pt,]J2, ... ,Pn.;
ql, Q2, ••. qn such that

n

W = L dp; 1\ dqj
j=1"

2) For points in Mt \M2 (Le. where z = 0, dzl\w[n-l] = Zla =1= 0) the standard coordinates
are obtained by choosing z, u, v as above with z = u, so that

n

W = zdz 1\ dv +L dpj 1\ dq;
;=2

3) For points on the smooth part of M 2, where the Hessian form HM2 (Z) is non-degenerate
we replace Pt, 1>2, ql and q2 by four special coordinates u, v, W, z and write w in the form

w = d (z + ~f(u, v)(udv - vdu) + 2(z + f(u, V))dW) +t dpj /\ dqj
1=3

where f(u, v) is a "standard" quadratic form, either ±u2 ± v2 , or 2uv. Thus, for n = 2,
tue matrix of w in terms of the prefered coordinates (u, v, w, z) is

0 z+ f(u, v) -~ v
8u 2"

-z - f(u, v) 0 -~ u
8v -2"

~ ?!.1 08u ßv

v u -1 0-2" "2

H. GLUCK & Liu-Hua PAN

Knot theory and differential geometry

e,
We introduce and develop a curvature-sensitive version of knot theory, dealing with t.he eill­

bedding and knotting in 3-space of simple closed curves with nowhere vanishing curvature,
and of compact orientable surfaces with nonempty boundary and positive curvature.

Theorem 1. Any two smooth simple closed curves in 3-space, each having nowhere
vanishing curvature, can be deformed into one another through a one-parameter family of
such curves if and only if they have the same knot type and the same self-linking number.
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This result holds as weil for links in place of knots. It also follows frOD1 the uC1-dcllse onü­
parametrie h-principle" proved by Eliashberg and GroD1ov in 1971; see Gromov~s book:
"Part.ial Differential Relations".

It was previously knOWD to Bill Pohl, tbough never published, according to Ws fonner
st.udent.s John Lit.tele and James White.

The hypothesis of nowhere vanishing curvature is tbe standard oue in the geometrie theory
of curves in 3-space, always aehievable by slight perturbation, and enabling the eonstruetion
along the curve of the moving Frenet frame, eonsisting of the tangent, prineipal Donnal
and binormal veetors, the self-linking number of the eurve is then defined to be its linking
number with its own.displaeement along the principle·normal.

Self-linking numbers were introdueed in 1959 by Cälugareanu via an integral formula de­
rived as a limiting case of Gauss' integral formula for the linking number of two space
curves. They were studied extensively by Bill Pohl in 1968, and further by James White
the next year.

Self-linking numbers in 3-spaee can be viewed as akin to winding numbers in the plan,
and Theorem 1 regarded as a natural generalization of the Whitney-Graustein theorem
to 3-space, in a knot-theoretie setting. A homotopy version of Theorem 1 for inunersed
elosed eurves with nowhere vanishing eurvature, with a mod 2 invariant in p1ace of the
self-linking number, was proved in 1968 by Edgar Feldman.

Surfaces of po~itive curvature in 3-space are elosely connected with self-liIlking of knots:

• If a smooth knot lies on a surfaee of positive curvature, then its own curvature never
vanishes, and hence its self-linking number is defined. '.

• If two slnooth knots on a surface of positive curvature are isotopic on that surface, then
their self-linking numbers arc equal.

.• If a sn100th knot is the boundary of a compact orientable surface of positive curvat.ure,
thell its self-linking number is zero.

• If two smooth knots together bOUlld a con1paet orientable surface of positive curvature,
·thcn their self-linking nun1bers are equal.

The next two ötheorems deal with the existence and classifieation of compaet orientable
surfaces in 3-space having noneo1pty boundary and positive curvature. .

Theorem 2. In 3-space, any compact orientable surface with nonempty bOWldary can be
deformed ioto one with positive curvature.

Theorem 3. In 3-space, any two compaet orientable surfaces with nonempty boundary
and positive curvature can be deformed into one another through surfaees of positive
eurvature if and ooly if they can be deformed into one another through arbitrary surfaces.

In 1990, S.-T. Yau asked which knots bound positive curvature surfaces? A necessary
condition is that the knot have nowhere vanishing eurvature and slef-linking number zero.
But t.his is not enough.
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Theorem 4. In 3-spac.e, there exists sinlple closed eurves with nowhere vallishing; ('urvC\.­
ture and self-linking nUlnber zero, which da not. bOlmd any cOlllpact orientable surface of
positive eurvilturc.

\Vhat tlu..~l1 is the appropriate version, in the presence of eurvatllrc, of Seifcrt's theorenl
that cvcry knot in 3-spaee bounds a cOlllpaet oricntable surfaee? As a first st.ep, we prove

Theorem 5. In 3-space, auy simple closed curve with nowhere vani"hing curvature alld
slef-linking nUlllber zero can be deformed through such curves' until it bOUllds a cOlnpact.
orielltable surface of positive curvature.

u. SEMMELMANN

Kählerian Killing spinors, contract structures and twistor spaces I (in addition
to part 11)

Theorem: Let (AI2
m" g, 8) be a COlnpact Kähler-Ein....,tein manifold of posit.ive scalar <:111'­

vature and a cOlllplex contact. st.ructure. Assume further that 1n = 2n+ 1 and n odd. Th~ll

AI isa spin Illallifold and there are KäWerian Killing Spinors Oll AI.

Using the results of S. 8alalnon on thc twistor spaces of quat.erllionic Kähler Illanifolds
one obtains lllanifolds satisfying the assunlptions of the theorenl. In conü>inatioll with the
theorelll of part 11 we have the foIlowing equivalent conditions.

Theorem: Let (Al2m, g, 8) be a COlllpact. Kähler-Einstein Inanifold with positive scalar
curvat.ure and 1n = 2n + 1, n odd. The following conditions are equivalent.

(i) A1 is spin and adluit.s Kähleriall Killing spinars.

(ii) Al is a t.wistor space of a quaternionie Kähler lllanifold wit.h positive scalar eurvat.1U"C.

(iii) At is a cOlnplex eontact Ilmnifold.

In particular, this theorenl describes cOlllplex cOlltact Iuanifolds with a Kähler-Eillsteill
nletric as twist.or spaces. This equivalence, without. the dinlension restrietion, was also
obtained in arecent work of C. Le Brun.

M. HERZLICH

In 1963, R. Penrose introduced a new way of studying asymptotic behaviour of Rien13Iuüan
(as weIl as pseudo Riemannian) non conlpact manifolds, called "conformal compactifiea­
tion". He notked that, given a conlpact Riemannian sluooth manifold, suitablc rcscalillgs
of thc luetric by a conforlnal factor which vanishes on a given submanifold gave birth to
"nice" non cOlllpact manifolds (w.r.t. the behaviour of the metric at infinit.y). In t.he
context of aSYlnptotically Bat Riemannian Iuanifolds, one possible cOlllpactification is by
a point. at infinit.y.
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VVe address tohe question of finding some conditiol1.'; t.hat. ellSure that. a given asYlnpt,ot.ieally
ßat. lllanifold is cOlllpactifiable by a point {and t.his gives a Slllooth (at least. C 2 ) eOlllpaet
Riclnaluliall luallifold). V\'c show that t.his construct.ioll can be done if the '\Teyl allel
Cot.tall-York t.ensors of the asynlptotically Hat nlaIlifold decay faster than 1/1''' (resp.l/r5 ).

The prüof involves <:onformal geonletry and the use of weighted Hölder spaces analysis.

c. SEARLE (joint work with K. Grove)

Differential Topological Restrietions by Curvature and Symmetry

We consider manifolds of positive sectional curvature admitting a large effective and iso­
llletric group action. One way to measure the size of aG-action on AI is via the dimension
of its orbit space AlJG, also called the cohomogeneity of the action. Motivated by the fact
that (for nontrivial action) the dinlension of MJG is constrained by thc dimension of Me:,
the fixed point set of G in Al, we define the fixed point cohomo.Qeneity of a G-nlanifold M
a..") folIows:

cohmnjix(A1, G) = di1n(MjG) - dim(MG
) ~ 1

(where, by convention coho1nfix(A1,G) = cohom{M,G) + 1 when MG-~ 0). Then G­
lllanifolds of uuninlal fixed point eohonlogeneit.y 1 are either (a) homogeneous, or (h) G
a.ct.s transitivelyon a nonnal sphere to sonle component of AlG . In this last case, we call
(Al, G) }ixF-d point homo.Qeneou8.

As one of our luain results we obtaill a cOlnplete classification of fixed point homogelleous
Illallifolds of positive seetional c.urvature. As a special case, we obtain:

Theorem A: A SilUply conneeted fixed point homogeneous nlanifold of positive sectional
curvat.urc is diffcolllorphic t.o sn, ccprn, nIpk or <CaP2.

Berichterstatter: lVIatthias Weber
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