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Die Tagung fand unter der Leitung von W. Ballmann (Bonn), J.P. Bourguignon (Palaiseau)
und W. Ziller (Philadelphia) statt.

Wie iiblich waren zu der Tagung so viele Geometer von fern und nah ‘angereist, daB es
nicht schwer viel, ein hochkaritiges Programm zusammenzustellen — zu bedauern wire
lediglich, da wir nicht noch eine weitere Woche bleiben durften.

So wurden etwa auf dem Gebiet der positiven Kriimmung zahlreiche spektakuldre neue
Resultate dargestellt, die sowohl mit analytischen Methoden aus dem Bereich der partiellen
Differentiagleichungen als auch mit verfeinerten Vergleichskonstruktionen erzielt worden
waren. Dariiber hinaus wurden seit langer Zeit auch einmal wieder neue Beispiele positiv
gekriimmter Mannigfaltigkeiten konstruiert.

Viele Vortage beschiftigten sich mit dem Zusammenspiel spezieller geometrischer Eigen-
schaften wie homogenen Kahlermannigfaltigkeiten, 3-Sasake Mannigfaltigkeiten oder Kon-
taktstrukturen, wobei bemerkenswerte Klassifikationsresultate erzielt wurden.

Das interessante Tagungsprogramm wurde dadurch aufgelockert, da8 jeweils der erste
Nachmittagsvortrag als Uberblicksvortrag angesetzt war.

Vortragsauszige

M. KAPOVICH
Flats in 3-manifolds

We prove that if a compact aspherical Riemannian manifold M?3 contains a 2-flat in the
universal cover M3 then m(M) contains Z & Z. This generalizes the Buyalo-Schroeder
theorem to the case of indefinite sectional curvature.
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D.V. ALEKSEEVSKY & V. CORTES
Isometry groups of homogeneous quaternionic Kihler manifolds

A general method for calculation of the full isometry group of a Riemannian solvemanifold
is presented.

Using it the full isometry group of the non-symmetric quaternionic Kahler solvemanifolds
M is determined: T—,w- and y-spaces.

As an application, it is proved that the isometry group acts transitively on the twistor
space and on the S0(3)-principal (“3-Sasakian”) bundle of M and that the manifold M
does not admit quotients of finite volume. ‘

Finally, a new, simple description of the Alekseevsky spaces

7(p), w(p,q), 7(,k) (k # 0(4)), 7(p,q: k) (k = 0(4)))

in terms of a certain spinorial module S of the group Spin(3,3 + k) is given.

C. CROKE
A survey of manifolds without conjugate points

We survey the current status of the subject with special attention to the recent proof by
Burago and Ivanov of the E. Hopf conjecture: “Every metric on an n-torus without con-
jugate points is flat”. We also discuss results and open questions concerning the topology
of such manifolds as well as results and open questions of rigidity type.

Open Questions: Topology of compact NCP
(1) Do all compact NCP manifolds admit a metric with K < 0?

(2) (Tits alternative) Does every subgroup of m1(M) contain either a free group of two
generators or is virtually abelian? :

(3) (Quadratic isoperimetric inequality) Does there exist C(M) such that for all closedg
in M, 7 spans a surface of area < C(M)L?(%)?

(4) Do there exist infinitely many geometrically distinct closed geodesics (m(M) £Z)?

Open Questions: Rigidity )
(1) (Maié conjecture) If M is a compact NCP manifold and hiop = 0, must M be flat?

(2) For M a non-compact NCP manifold of higher rank, does it admit any nontrivial
compactly supported NCP perturbation?

(3) For M a compact NCP of higher rank, must any NCP metric also have higher rank?
(special case: must the universal cover of £2 x § 1 with NCP metric split off an R'?)
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(4) Are compact NCP manifolds C° conjugacy rigid?
(5) Are there any analogue of the splitting theorem?

(6) (Parallel postulate) If M? is 1-connected, NCP such that for all geodesic v and every
p ¢ 7 there is a unique geodesic T sucht that p € 7 and 7N+ = @ then must M? = E??

T. COLDING
Aspects of Ricci curvature

We survey various geometric and topological results of manifolds with a given lower Ricci

curvature bound. In particular we discuss a new estimate of the distance function for-

such manifolds and discuss applications of this to volume convergence, Gromov's conjec-
ture generalizing Bochner’s theorem to manifolds of almost nonnegative Ricci curvature,
splitting theorem for singular spaces and volume cone imply metric cone.

K. GALICKI

We survey geometric and topological results on Riemannian manifolds admitting a 3-
Sasakian structure. These spaces were introduced by Kuo and Udriste in 1970 and, in
particular, are Einstein manifolds of positive scalar curvature. We describe some old results
concerning this type of geometry obtained in the 70’s as well as some recent developements.
These include a simple quotient construction of a large class of families of compact, simply
connected 3-Sasakian manifolds out of 3-Sasakian spheres $4"*+3(1). This new construction
yields examples that are not regular and the Riemannian metric is inhomogeneous. We
conclude with a discussion of several open problems concerning: moduli of 3-Sasakian
structures on a given smooth manifold, rigidity, Betti numbers, and classification of 3-
Sasakian spaces in dimension 7. .

B. LEEB
Rigidity of nonpositivly curved spaces

We report on joint work with M. Kapovich and B. Kleiner about quasiisometry invariants
of nonpositively curved spaces. Quasi-isometries play an important role in geometric group
theory and rigidity problems. Concerning symmetric spaces of noncompact type, we show
that irreducible higher-rank spaces are quasi-isometrically rigid (each quasi-isometry is
within bounded distance of an isometry) and that the product structure of reducible spaces
is preserved. This extends Mostow’s rigidity theorem and confirms a conjecture of Margulis.
A finitely generated group quasi-isometric to a symmetric space of noncompact type is a
finite extension of a uniform lattice. We mention some results about universal covers

3

Forschungsgemeinschaft

o




of smooth nonpositively curved Riemannian manifolds: the geometric rank and the de
Rham product decompositions are preserved. For universal covers of non-geometric Haken
3-manifolds, the lift of the canonical (Jaw-Shalen-Johannson) decomposition is preserved.

J. BLOCK
Positive Scalar curvature on manifolds of non-positive sectional curvature

We show that a locally symmetric space of non-positive curvature and finite volume X
has a metric of positive scalar curvature K > ¢ > 0 if and only if (when ' = m(2) i
arithmetric) the Q-rank X is > 3. If the Q-rank is > 3 these metrics can also be ma
of finite volume. The obstructions in Q-rank 1 and 2 are proved by and index theorem
involving m (X) and 7§°(X) which is the fundamental group of the end.

H. PEDERSEN
Survey of Einstein-Weyl geometry

We shall consider a conformally invariant version of the Einstein equations. A manifold
with conformal structure and compatible symmetric connection is called a Wey! manifold.
If, furthermore, the trace-free symmetric part of the Ricci curvature vanishes, the geometry
is called Einstein-Weyl.

Einstein metrics are special examples of Einstein-Weyl solutions. We shall present more
examples on compact spaces as well as obstructions to solutions. In dimension four we give
a classification in presence of symmetry. These symmetric examples give some insight into
the moduli space near Einstein metrics as well as new minimal submanifolds in compact
Riemannian manifolds with positive Ricci curvature. Also, we shall see that Einstein-
Weyl geomety in the Gauducthon gauge gives a solution to a problem in Besse concerning
examples satisfying V.r(z,z) = 0, Vr # 0 and being of high cohomogeneity.

J. LOHKAMP ' !
On the geometry of multiple connected sums

Using a construction generalizing the connected sum of manifolds (we entitled “multiple
connected sums”) we obtain new metrics which have a lot of unexpected properties.

Beside others, this is the proof of existence of metrics with prescribed eigenvalues and
volume and of metrics with ergodic geodesic flows on arbitrary manifolds of dimension
> 3. The effect of these constructions might be understood as a kind of “producing”
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volume and ergodicity, respectively. This also allows to sharpen results to the end that we
find dense sets of such metrics and other flexibility results.

C. BAR
Existence of metrics with harmonic spinors

Classical Hodge-deRham theory tells us that on a closed manifold the dimension of the
kernel of the Laplace operator acting on k-forms is a topological invariant, the k** Betti
number. On a Riemannian spin manifold there is another natural operator, the Dirac
operator. The question arises whether h = dim ker(Dirac) is also topologically invariant.
But this is not true, in fact, in many dimension existence of harmonic spinors is not
topologically abstructed.

Thm. On every closed spin manifold of dimension n =3 (mod 4) there exists a Rieman-
nian metric s.t. h > 0.

The proof uses a comparison theorem for eigenvalues on connected sums and an explicit
computation of Dirac-eigenvalues on Berger spheres.

C. MARGERIN
A smooth sphere theorem, sharp

We give a sharp (local) geometric characterization of the (standard quotient of the) stan-
dard smooth spheres in all dimesnions evend and odd, but a finite number (n > 64). The
curvature invariant we consider is weak-pinching, a properly scaled norm of the trace free
part of the curvature: we prove that w.r.t. this invariant there is no other diffeomorphism
type than the standard S™/r before we meet geometries of type S x S™~1, We also discuss
the rigidity statement that these are the only ones on the boundary. We sketch a few of
the ideas in the proof, which involves deforming such metrics along the integral curves of
the Ricci curvature field (on the space of metrics) towards a metric of constant sectional
curvature. We finally suggest possible generalizations toward a more systematic higher
dimensional “geometrization”.

I. TAIMANOV
New examples of positively curved 13-dimensional manifolds

We talk about infinite series of closed Riemannian positively curved manifolds with di-
mension equal to 13. These examples were constructed by our student Ya. V. Bazaikin
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(1994, Novosibirsk University) by using the Eschenburg method. They can be considered
as deformations of the Berger normally homogeneous manifold SU(5)/Sp(2) x S! in the
same sense as Eschenburg’s 7-dimensional examples are deformations of the Aloff-Wallach
spaces. Some perspectives of further investigations are also discussed.

U. ABRESCH

Injectivity Radius Estimates and Sphere Theorems
(joint work with W.T. Meyer)

For odd-dimensional manifolds the pinching constant that is required to prove injectivit.v
radius estimates and sphere theorems can be improved as follows:

Theorem A: Let 6 = m where €i; = 1075, and let (M™,g) be a compact Rie-
mannian manifold with 8in; < Ky, < 1 and 7 (M™) = 0. Then inj(M™) = conj(M™) > .
The Berger metrics on the odd dimensional spheres provide examples where the equality
inj(M™) = conj(M™) fails provided that one allows for pinching constants < 0.117223.

Combining Theorem A with the limiting arguments that are used in the proof of Berger's
pinching below —} theorem, one obtains

Theorem B: for any n = 1(2) there exists some §,, € (0, %) such that any compact Rie-
mannian manifold M™ with é, < K < 1 and m;(M™) = 0 is homeomorphic to S*. In
contrast to Theorem A we find that Theorem B relies on pinching constants that depend
on the dimension and are not effectively computable because of the way the proof relies
on Gromov’s compactness theorem. The question whether there is a different approach
by more direct methods of comparison geometry can be answered positively, and thus we
obtain a result with an explicite pinching constant:

Theorem C: Let 8o4q4 := m;‘EoT‘) where €, = 1075, and let M™ be a compact odd |
dimensional manifold with 044 < Kar < 1 and m;(M™) = 0. Then M™ is homeomorphic ‘
to S™. '

The analogous techniques, when applied to even dimensional manifolds, however, do not
show that M™ must be diffeomorphic to a projective space unless it is homeomorphic to
S™, as one would expect in view of Berger’s pinching below —-%-theorem. So far, we ca
only recover the cohomology ring for coefficients in Z; or in Q. The proof of Theorem .
relies on the following result: )
Horse Shoe Theorem: Suppose that M™ is an compact Riemannian manifold with &, <
Ky < 1and 7 < inj(M™) < diam(M™) < m- (1 + €p,s) where 6p, := (1 + €4,)~2 and

" €hs = 37855- Then for any p € M™ and any v € T,M™ with |v| = 1 one has

dist(expy(—7v), expp(mv)) < 7

The reduction of Theorem C to the Horse Shoe Theorem is done by means of standard
arguments in algebraic topology, whereas the proofs of Theorem A and of the Horse Shoe
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Theorem make use of serveral new comparison techniques. The starting point for the
injectivity radius estimate is a new lifting construction for shortly null-homotopic curves
which can be controlled better. The key ingredient in the proof of the Horse Shoe Theorem
are new types of Jacobi field estimates, which make use of simultaneously provided initial
and boundary data.

J.M. SCHLENKER
Generalization of Efimov’s theorem

Let (Z,0) be a complete Riemannian surface with curvature K < K; < 0 and (M, p)
a 3-manifold with sectional curvature K € [K., K3) with K; < K, and (K3 — K3)? <
16(K3 — K,)(K2 — K;). Suppose that |AKz|,; [AK M| are bounded. Then there exists
no isometric immersion of ¥ into M. A similar result holds when M is a Lorentz space
form. The presented methods and results also extend to more general situations involving
hyperbolic Monge-Ampére operators over surfaces. -

A. MOROIANU
Kaéhlerian killing spinors, contact structures and twistor spaces (II)

Manifolds with Kahlerian Killing spinors are spin Kahler manifolds with the least possible
eigenvalue for the square of the Dirac operator among all Kihler manifolds of positive
curvature. They are necessarily Kihler-Einstein of odd complex dimension m.= 2k + 1.

Theorem: Let M*+2 admit Kahlerian Killing spinors. If k is even then M is isometric to
CP™. If k is odd then M is the twistor space of a quaternionic Kiahler manifold of positive
scalar curvature.

Proof: A Kahlerian Killing spinor on M induces a Killing spinor on E, a maximal root
of the canonical bundle of M, A™%M. A closer analysis of this spinor shows that E is a
regular 3-Sasakian manifold, and finally M has to be the twistor space of the associated
quaternionian Kahler manifold.

F. WILHELM

A generalization of Berger’s %-pinched rigidity theorem

Recall that the radius of a compact metric space (X, dist) is given by
radX = 215‘1 ryné%xdist(x,y).
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In this talk we generalize Berger’s 1/4-pinched rigidity theorem and show that a closed
Riemannian n-manifold with sectional curvature > 1 and radius > #/2 is either homeo-
morphic to S™ or isometric to a compact rank one symmetric space.

R. GORNET

Spectral geometry on Nilmanifolds and the marked length spectrum

In this talk, we review a construction for producing pairs of nilmanifolds of arbitrary step, ﬂ
and present the properties of resulting mew examples:
Ex of isosp. isosp. represent. same same isomorphic )
3-step on on p-forms | equiv. length marked fund.gps N
isosp. functs Vp fund.gps spec. length
nilmfd spec.
7—-dim
I Yes Yes Yes No No No
5-di
I Yes Yes Yes | Yes No Yes
7\5—dim
III\IV Yes No No No No No
7-di
g Yes No No Yes Yes Yes

Note that in E x V, the pairs of nilmanifolds have the same marked length spectrum,
Laplace spectrum, but not the same spectrum on one-forms. In contrast:

Theorem: for a large class of 3-step nilmanifolds, the same marked length spectrum ==
isosp. on functions.

The large class is all 3-step nilpotent Lie groups, strictly nonsingular, with cocompact, dis-
crete subgroups with the same intersection with center. This partially extends and partially
contrasts with a result of Eberlein, who showed that for pairs of two-step nilmanifolds, the
same marked length spectrum implies isospectral on functions and on forms.

J. CAO (joint work with J. Escobar) ' '

An isoperimetric comparison theorem for PL-manifolds of non-postive curva-
ture

We derive an optimal isoperimetric comparison theorem for manifolds with non-positive
curvature.

A piecewise flat manifold M™ is said to have non-positive curvature in the sense of Gromov
if M™ satisfies the CAT(0) inequality.
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Main Theorem: Let M™ be a simply-connected, complete and piecewise flat manifold.
Suppose that AM™ has non-positive curvature in the sense of Gromov. Then

vol,—1(09) > ¢, [‘UOI,-,,(Q)] =

for any compact domain @ C M™ with rectifiable boundary 912, where

Cp = M is the optimal constant in the n-dimensional Euclidean space IR™.

(vola[Bm () =

P. GAUDUCHON

Existence and uniqueness of complex structure on some class of compact Rie-

- mannian manifolds

We address the general problem of the existence and the uniqueness of an integrable almost-
complex structure orthogonal with respect to some given Riemannian metric g on some
oriented, even-dimensional manifold M. The problem is well unterstood in dimension
4, when a possible orthogonal structure is entirely encoded, up to a two-fold choice, by
the half-Weyl tensor w at any point where w* does not vanish; it follows that an n-
dimensional Rimannian manifold with non-vanishing w* admits at most two orthogonal

- complex structures (up to conjugacy). Examples with exactly two (non conjugate) orthog-

Deutsche

onal complex structures have been given recently by P. Kobak.

In general, for given g, the problem appears as an overdetermined , elliptic problem,
equivalent to looking for sections of the so-called “twistor space” Z(M), stable with respect
to the canonical almost-complex structure J of Z(M).

The latter geometric picture has been used by F. Burstal, O. Muékanov, G. Grantchalmv,
J. Rawnsley to prove a rigidity theorem for the invariant complex structure of compact
Hermitian symmetric spaces. We prove a similar result for compact quotients of irreducible
symmetric spaces of non-compact type by using the following general criterion for compact
manifolds of (even) dimension n > 2: o

For any Riemannian metric g, consider the following expression:

50 = i [, (2655 e )

where Scal? denotes the scalar curvature, A%, (W) the smallest eigenvalue of the Weyl

tensor W (viewed as a symmetric operator on A?M), v, the volume-form, V = [, v, the

total volume. Then,

(1) if S(g) < O (for some metric g is the conformal class), then is no [g]-compatible complex
structure.

(2) If S(g) = 0, and there exists some compatible complex structure J, then:

(l) ﬁ%ﬁ - (n_l25 nun(W)
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(ii) the Kihler form F of J belongs to the eigenspace of W with respect to A (W),

min

(iii) the Hermitian structure (g, J) is semi-Kahler (ie. F is co-closed).

E. Calabi
On singular symplectic structures

The problem of the existence of a symplectic structure in a given, closed, 2n-dimensional
manifold M™ may be studied by analysing the deformation of the singularities in a one-
parameter family of closed 2-forms. By a singularity of a 2-form we understand any poi
where the rank of the coefficient matrix of a closed 2-form w is discontinuous; the rank

a 2-form w(z) at any point £ € M is an even integer 2k, where k is the highest power o
w(z) that is not zero.

We donote by w!*! the divided powers of a 2-form w

wl® =1, 0¥ =k lw AwlF Uk > 1)

A (non-singular) symplectic structure on M) is the geometric structure defined by a
closed 2-form w such that w!® # 0 everywhere. The existence of such a form requires
(trivially) two necessary conditions: 1) the existence of an almost complex structure; 2)
a 2-dimensional, real cohomology class (the deRham class of w) whose n'* cup-power
(represented by wl!) is non-trivial.

In general a (closed) 2-form w in M (27) has a non-empty singular set, namely the set
where w!™l = 0. An open, dense set of closed forms w in the space of all such forms (with
a C™ topology) reduces the singular set to a set that is at most (2n — 1)-dimensional. A
deformation of w (usually considered are only deformations leaving w in a fixed deRham
class) displaces the singular set and modifies other invariants attached to it. The ques-
tion that arises naturally is to find invariants of the singularity that are preserved under
deformations of w. Some of these invariants are described here.

The singular set has a stratified structure, where the different strata are indexed by two
independent indices at least. A preliminary study of these singularities was initiated by
J. Martinet in his thesis and later described in an expositiry work by R. Roussarie. Consid

the sheaf of germs of closed 2-forms, 022, of class C*° (resp. C*) and its filtration by tb
bundle of jets of order k, (k =0,1,2,...).

The sheaf of germs of diffeomorphisms near the identity acts on the sheaf 02 and the
(k + 1)-jets of diffeomorphism acts on the k-jets of closed forms. The orbits in 02 under
the action of the sheaf of diffeomorphism are classified by their codimension and by the
least order of jet that distinguish them from the neighbouring orbits. In considering single
(closed) 2-forms w in M?" one may limit one’s consideration only to the dense set of
cross-sections in 2 that meet orbits in strata that have codimension 2n; in the case of
one-parameter families of forms, one should look further into strata of codimension as high
as 2n + 1.
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The only strata that are identifiable at the O-jet level in O are determined just by the
rank: the 2-forms of rank < 2k constitute a set. of codimension (n— k)(2n — 2k +1) : thus
in a 4-dimensional M, for instance one may ignore closed forms w that vanish completely
at any point, since they have codimension 6.

Given a 2-form w that has everywhere rank either 2n (in an open set) or (2n—2) (in a set of
co-dimension 1) the singular set of the set where w has rank 2n — 2 has codimension 2n+1
in the full sheaf and will be ignored here. Hence we shall consider only forms that have rank
2n or 2n — 2, and the latter value only on a smooth hypersurface. Introduce locally a non-
vanishing, smooth 2n-form o and define a corresponding, smooth, real valued function
z = z, defined by w!®l = zo. The singular set of w is determined by the hypersurface
defined by z = 0, in which case dz # 0.

For each point in the singular set M, we have the 2-dimensional vector subspace N of
T(M?") consisting of the vectors L such that L|w (the inner product) vanishes. The
intersection of N with the tangent space of the singular set M; determines a stratification
of the latter, in the following sense. Generically in an open, dense subset of M, the plane
N C TM?" is transversal to the hyperplane TM, ¢ TM®™ (ie. have a line in common
and N C TM,; on a closed subset.

More precisely, N is locally generated by two vector ﬁelds denoted by X,Y, defined as
follows: choose two functions u,v such that du A dv Aw!”~1 = ¢ and set

X uniquely defined by X|o = du w1
Y uniquely defined by Y|o =dvA w1
Z uniquely defined by Z[o = dz Awl™ !l

Then X|w = z2du,Y|(w) = 2dv, Z|w = 2dz and Z = Y (2)X — X(2)Y + 2[X,Y]. This
shows that Z lies in N NT(M;) (and hence generates it) whenever z = 0 (i.e. everywhere

in M) and N is transversal to TM;, while Z = 0 whenever z := 0 and N C T(M;) : in -

this case X, Y and [X,Y] are linearly independent and the next stratum M is defined by
the equations z = X(z) = Y(z) = 0; its smooth part is therefore the (2n — 3) dimensional
submanifold of M, defined by the additional conditions

dz AdX(z) AdY (z) Awl*™ 3 £ 0

Additional strata are defined recursively, represented in their regular parts by submanifolds
M3z, Ma, .. ., where each succesive M; is defined by a non-transversal intersection of N with
a previously determined Mj but here we deal only with the decomposition of M,.

The previous construction of X,Y and Z around M, result in the identity [X,Y](z) =
The second derivatives of z along the plane N therefore have an invariant meaning as the
“Hessian form” of z along N, denoted by Hag, (2] = {(¢,n) — X(X(2))¢% +2X (Y (2))¢n+
Y (Y (2))n?). One distinguishes points of M, in which this Hessian is positive definite, neg-
ative definite or non-degenerate indefinite: they are characterized by geometric properties
of the vector field Z in a neighborhood of a point where Z = 0. A further sub-stratum is
then defined by points where the Hessian form Hpg,(2) is degenerate (of rank 1 or zero),
which can not be discussed in the present report.
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Each of the types of singularities above allows representation of w in “standard model”
coordinates, as follows.

1) For non-singular points, from DarbouX’s theorem we have coordinates p,p2,- - -, Pn;
q1, G2, - - - gn Such that

w=_dp; Adg;
=1

2) For points in M{\M; (i.e. wherez =0, dz Awl*~1 = Z|o # 0) the standard coordinates
are obtained by choosing z,u, v as above with 2 = u, so that

w=zdz/\dv+idpj/\dqj ‘

i=2

3) For points on the smooth part of M3, where the Hessian form Hy,(z) is non-degenerate
we replace py, p2, q1 and g, by four special coordinates u,v,w, z and write w in the form

w=d ((z + %f(u,v))(udv —vdu) + 2(z + f(u, v))dw) + idpj Adg;
7=3

where f(u,v) is a “standard” quadratic form, either +u? + v2, or 2uv. Thus, for n = 2,
the matrix of w in terms of the prefered coordinates (u,v,w, 2) is

0 2+ f(u,v) —gg 2
-z — f(u,v) 0 e
o o 0 1
-3 3 -1 0
H. GLUCK & Liu-Hua PAN
@

Knot theory and differential geometry

We introduce and develop a curvature-sensitive version of knot theory, dealing with the em-
bedding and knotting in 3-space of simple closed curves with nowhere vanishing curvature,
and of compact orientable surfaces with nonempty boundary and positive curvature.

Theorem 1. Any two smooth simple closed curves in 3-space, each having nowhere
vanishing curvature, can be deformed into one another through a one-parameter family of
such curves if and only if they have the same knot type and the same self-linking number.
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This result holds as well for links in place of knots. It also follows from the «Cl-dense onc-

parametric h-principle” proved by Eliashberg and Gromov in 1971; see Gromov’s book:

“Partial Differential Relations”.

It was previously known to Bill Pohl, though never published, according to his former

students John Littele and James White. ) ‘

The hypothesis of nowhere vanishing curvature is the standard one in the geometric theory

of curves in 3-space, always achievable by slight perturbation, and enabling the construction

along the curve of the moving Frenet frame, consisting of the tangent, principal normal

and binormal vectors, the self-linking number of the curve is then defined to be its linking

number with its own displacement along the principle normal.

Self-linking numbers were introduced in 1959 by Cilugireanu via an integral formula de-

rived as a limiting case of Gauss' integral formula for the linking number of two space

curves. They were studied extensively by Bill Pohl in 1968, and further by James White

the next year.

Self-linking numbers in 3-space can be viewed as akin to winding numbers in the plan,

and Theorem 1 regarded as a natural generalization of the Whitney-Graustein theorem

to 3-space, in a knot-theoretic setting. A homotopy version of Theorem 1 for immersed

closed curves with nowhere vanishing curvature, with a mod 2 invariant in place of the

self-linking number, was proved in 1968 by Edgar Feldman.

Surfaces of positive curvature in 3-space are closely connected with self-linking of knots:

e If a smooth knot lies on a surface of positive curvature, then its own curvature never
vanishes, and hence its self-linking number is defined. ) ’

e If two smooth knots on a surface of positive curvature are isotopic on that surface, then
their self-linking numbers are equal.

 If a smooth knot is the boundary of a compact orientable surface of positive curvature,
then its self-linking number is zero. .

o If two smooth knots together bound a compact orientable surface of positive curvature,
‘then their self-linking numbers are equal.

The next two otheorems deal with the existence and classification of compact orientable

surfaces in 3-space having nonempty boundary and positive curvature.

Theorem 2. In 3-space, any compact orientable surface with nonempty boundary can be
deformed into one with positive curvature.

Theorem 3. In 3-space, any two compact orientable surfaces with nonempty boundary
and positive curvature can be deformed into one another through surfaces of positive
curvature if and only if they can be deformed into one another through arbitrary surfaces.
In 1990, S-T. Yau asked which knots bound positive curvature surfaces? A necessary
condition is that the knot have nowhere vanishing curvature and slef-linking number zero.
But this is not enough.
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Theorem 4. In 3-space, there exists simple closed curves with nowhere vanishing curva-
ture and self-linking number zero, which do not bound any compact orientable surface of
positive curvature.

What then is the appropriate version, in the presence of curvature, of Seifert’s theorem
that every knot in 3-space bounds a compact orientable surface? As a first step, we prove

Theorem 5. In 3-space, any simple closed curve with nowhere vanishing curvature and
slef-linking number zero can be deformed through such curves until it bounds a compact
orientable surface of positive curvature.

U. SEMMELMANN .

Kahlerian Killing spinors, contract structures and twistor spaces I (in addition
to part II)

Theorem: Let (M?™,g,8) be a compact Kihler-Einstein manifold of positive scalar cur-
vature and a complex contact structure. Assume further that m = 2n+1 and n odd. Then
M is a spin manifold and there are Kihlerian Killing Spinors on M.

Using the results of S. Salamon on the twistor spaces of quaternionic Kiahler manifolds
one obtains manifolds satisfying the assumptions of the theorem. In combination with the
theorem of part II we have the following equivalent conditions.
Theorem: Let (M?™,g,9) be a compact Kahler-Einstein manifold with positive scalar
curvature and m = 2n + 1,n odd. The following conditions are equivalent

(i) M is spin and admits Kahlerian Killing spinors.

(ii) MM is a twistor space of a quaternionic Kihler manifold with positive scalar curvature.
(iii) M is a complex contact manifold.
In particular, this theorem describes complex contact manifolds with a Kahler-Einstein

metric as twistor spaces. This equivalence, without the dimension restriction, was also
obtained in a recent work of C. Le Brun.

M. HERZLICH .

In 1963, R. Penrose introduced a new way of studying asymptotic behaviour of Riemannian
(as well as pseudo Riemannian) non compact manifolds, called “conformal compactifica-
tion”. He noticed that, given a compact Riemannian smooth manifold, suitable rescalings
of the metric by a conformal factor which vanishes on a given submanifold gave birth to
“nice” non compact manifolds (w.r.t. the behaviour of the metric at infinity). In the
context of asymptotically flat Riemannian manifolds, one possible compactification is by
a point at infinity.
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We address the question of finding some conditions that ensure that a given asymptotically
fat manifold is compactifiable by a point (and this gives a smooth (at least C?) compact
Ricmannian manifold). We show that this construction can be done if the Weyl and
Cottan-York tensors of the asymptotically flat manifold decay faster than 1/7* (resp.1/7°).

The proof involves conformal geometry and the use of weighted Holder spaces analysis.

C. SEARLE (joint work with K. Grove)
Differential Topological Restrictions by Curvature and Symmetry

We consider manifolds of positive sectional curvature admitting a large effective and iso-
metric group action. One way to measure the size of a G-action on M is via the dimension
of its orbit space M/G, also called the cohomogeneity of the action. Motivated by the fact
that (for nontrivial action) the dimension of M, /G is constrained by the dimension of M <,
the fixed point set of G in M, we define the fized point cohomogeneity of a G-manifold M

as follows:

cohom fiz(M,G) = dim(M/G) —- dim(M®) > 1

(where, by convention cohomfiz(M,G) = cohom(M,G) + 1 when M€ = @). Then G-
manifolds of minimal fixed point cohomogeneity 1 are either (a) homogeneous, or (b) G
acts transitively on a normal sphere to some component of M €. In this last case, we call

(M, G) fized puint homogeneous.
As one of our main results we obtain a complete classification of fixed point homogeneous
manifolds of positive sectional curvature. As a special case, we obtain:

Theorem A: A simply connected fixed point homogeneous manifold of positive sectional
curvature is diffecomorphic to S™, CP™,HP* or CaP2. '

Berichterstatter: Matthias Weber
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