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\‘ This conference was the seventh one on quadratic forms in Oberwolfach. It was orga-

nized by M. Knebusch (Regensburg), A. Pfister (Mainz) and W. Scharlau (Miinster).
; The lectures covered many topics from the theory of quadratic forms mainly over
; ~ fields but over algebraic varieties and schemes, too.

Although- many interesting new results were reported, perhaps some main emphasis
.) was laid on the results on index reduction formulas (confer the talks of Merkurjev,

Panin and Wadsworth) and on the isotropy of quadratic forms over function fields
of a quadric, which was dealt in the lectures of Hoffmann, Kahn and Laghribi. This
¢ . topic got new stimulation by a recent result of Izhboldin, showing the non-excellence
of n-fold multiplicative forms for n > 3.
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Vortragsausziige

Jon Arason

The Witt Ring of an Elliptic Curve over a Local Field (joint with R.
Elman and B. Jacob)

Let X be an elliptic curve over a field K, char(K) # 2. In an earlier work of ours we
constructed a natural epimorphism @7 W(K(T)) — W(X), where T runs through
the closed points of the kernel ;X of multiplication by 2 on X. In fact, we showed
that the natural morphism W(X) — W(X) is an epimorphism, where W(X) is the
Witt ring of spaces over X that become diagonalizable after an algebraic base field

" extension, modulo the hyperbolic ones. We then constructed a natural isomorphism
W(X) = &r W(K(T)).

Let I(X) be the kernel of W(X) — W(X). We also constructed a natural epimor-
phism @p W(K(P)) — I(X), where P runs through the closed points of X.

We consider the case that K is a local field.

Theorem: I3(X) # 0 if and only if X has split multiplicative reduction. In this
case | (X)) |=2.  (I¥X) := W(X)NI¥(K(X)).)

Theorem: If X has three rational points of order 2 then W(X) is diagonalizable.
Furthermore, I(X) # I,(X) if and only if K is dyadic and X can be described by
a WeierstraB equation y2 = z(z — 1)(z — ¢€) withv(e — 1) = 4v(2) - 1. (v'is the
normalized valuation on K.)

Theorem: If X has no rational point of order 2 then I(x) = I,(X). Furthermore,
W(X) is diagonalizable if and only if K is not dyadic.

We also have a complete description when X has exactly one rational point of order
2, except for a few sporadic cases where the residue class field has 2 or 4 elements.
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R. Baeza
Positive Definite Quadratic Forms over Number Fields (joint with M.L.
Giasa)

K/Q totally real number field, m = [K : Q).dx = discriminant, Ok = inte-
gers. A Humbert form of rank n is a m-tuple S = (Si,...,Sm), where each §;
is » x n pos. def. symmetric real matrix. Let Pnn C Rim™n(n+1) be the space
of such forms. GL(n,Ok) acts on Pmn by: U € GL(n, Ok),S € Ppnn define
S[U) = (Si[UM),..., Sa[U™]), where U, ..., U™} are the conjugates of U under

’ the embeddings o1, .. ., Om : K — R (here A[B] means B‘AB whenever it is defined).

: Then det S = [1det S;, and m(S) = min{S[u] | 0 # u € O} are class-invariants of

3 S (here S[u] := I1 Si[u'?] for u € OF. The number 7k (5) = m(S/d(S))/" is boun-
i=1

ded for all S and it holds v (S) < 4"'10;2"ﬂ |dx | (wa = vol. of n-sphere)LDeﬁne
Yk = sup 7k (S) = Hermite Humbert constant of K,n. Then v, < 4™wa * | di | - =55
(for m = 1 we get Minkowski’s bound). Let M(S) = {u € Ok | Su] = m(S)} : -~ 2
be the set of minimal vectors of S. We define a constant Mk, with the pro-
spects: My, = 1 <= each S has unimodular minimal vector. For u € M(S)
set N(u) =| NK/Q(wgéouj) |, N(S) = ueT};S) N(u), N{S]:= _}gg N(T). Then

Prop.: There is a constant C = C(K,n) with N([S] < C forall § € Prn-
We define then: Mk . = sup N[S]. With this notations we have
s

K e
: Theorem: —7,':’,‘2 < (MK,.,)2 n TRo1-
If h(K) =1, then Mk, = 1, and we get Mordell’s theorem: 7}‘\_,,2 < 7,"(",3_,.
]
7?; ‘ Tom Craven (University of Hawaii)

: . Witt groups of hermitian forms over Baer ordered *-fields

Let D be a skew field with involution * and assume the space of Baer orderings,
Yp, of D is nonempty. Define WS(D, ) to be the subring of C(Yp,Z) [the ring of
continuous functions from Yp to the integers] generated by the image of the Witt
group of anisotropic hermitian forms W(D, ).

One can then see that the Baer orderings of (D,*) are naturally bijective with
the ring homomorphisms WS(D,+) — Z and with the group homomorphisms
r: W(D,*) = Z such that o(< 1 >) = 1 and o(< a >) € {1} for any sym-
metric element a # 0.
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We can also give a nice characterization of the kernels of the group homomorphisms.

When [D : Zp) is odd, we can reduce the computation of WS(D,*) to the ring
W S(F), where F is the field of central symmetric elements.

Define (D, *) to be pythagorean if for any symmetric r, any d; € D, there exists
d € D such that Y. d;rd; = drd*. Then a formally real (D, ) is pythagorean iff
W(D,*) = C(Yp,Z) is H.

Jean-Lquis Colliot-Théléne

Hasseprinzip und schwache Approximation fiir homogene Riume iiber
reellen Funktionenkdrpern

'Sei K = R(Y) der Funktionenkérper einer glatten projektiven Kurve Y/R. Fiir-

P € Y(R), sei Kp die Komplettierung von K im Punkt P. Sei G/K eine zusam-
menhangende lineare Gruppe Giber K, und sei X/K ein homogener Raum fiir G.

_ Anhand von Ergebnissen von Witt (1934, 1937), J. Knight (1969), Thaing (1993)

hatte ich Anfang 1995 folgende Vermutungen gemacht:

Vermutung 1. ({starkes Hasseprinzip) Falls X(Kp) # 0 fir fast alle P € Y(R),
dann ist X(K) # 0.

Vermutung 2. (schwache Approximation)  Falls X(K) # @, dann liegt X (K)
Jicht im Produkt der X(Kp), P € Y(R) (Bewertungstopologie auf Kp).

Diese Vermutungen kdnnte ich fiir prinzipielle homogene Raume von Tai beweisen.
Fiir beliebige X = G kénnte ich Vermutung 2 auch beweisen.

" Vermutung 1 fir prinzipiell homogene Raume konnte ich auf den Fall von einfach

zusammenhangenden halbeinfachen Gruppen reduzieren, und in einigen Fillen be-
weisen. Inzwischen hat A. DUCROS die Vermutung fiir prinzipiell homogene Réiume
von klassischen Gruppen bewiesen, und C. SCHEIDERER hat dann eine einheitli-
che Methode entwickelt, und beide Vermutungen ganz allgemein bewiesen. Durch
ein Gegenbeispiel wird gezeigt, daB die Vermutungen z.B. fir Varietaten, die ein
Biischel von homogenen Riumen besitzen, falsch sind.
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Dorothea Diers, Miinster
Counter-Examples to the Strong Hasse-Principle

The strong Hasse-Principle is an important local-global principle in the theory of

" quadratic forms. It holds over global fields of characteristic not 2 for quadratic forms

of dimension > 1 as well as over algebraic function fields of transcendence degree
one over real closed and algebraically closed fields for quadratic forms of dimension
> 3. In other cases it probably does not hold, however not many counter-examples

are known.

In my talk counter-examples to the strong Hasse-Principle over algebraic function
fields F of transcendence degree one over discretly valued fields K of characteristic
not 2 are constructed. Some counter-examples of Hsia and Johnson over rational
function fields K(X), K some quadratic number field, are given and generalized. By

Elman and Prestel, there exist counter-examples of arbitrary- dimension > 4 over
K(X), if K is a global field with at least two orderings. If F is an arbitrary function : .. .:

field in one variable over some base field K then we can construct some counter-
examples over F if their Hasse-numbers satisfy certain conditions.

If K is a finite extension of Q, or F,((t)), p>2 prime and < 1,1 > is anisotropic
over K then the form

f =< -z,-z,1,m, —7r(z?+1) >, where = is the prime element of K,

is a 5-dimensional counter-example to the strong Hasse Principle over K(X).

Martin Epkenhans (Paderborn, Germany)

Trace forms of algebraic number fields and of Galois extensions

We consider the trace form of a finite field extension L/K which is given by < L >:
L — K : z — trace/xz? If ¢ is a quadratic form over the number field K, then
there is a field extension L/K with < L >~ 9 if and only if ¥ ~< 1 >, =<
2,2D >,D ¢ K* ¢ ~< 1,2,D >, D € K, or the dimension of ¥ is > 4 and
all signatures are non-negative. For dimy 2> 4 we improve this result as follows:
Let ¥ be a quadratic form with non-negative signatures and set ram(y) := {p,p is
a finite spot of K which ramifies in K(/detg $)/K or for which the local Hasse
invariant satisfies H,¥ # (2,detx ¢)p}. Let Ju, J, be finite sets of finite spots of K
with J, A J, = @ and (J, U J,) N ram(y) = 0, then there is a field extension L/K
with ¢ ~< 2 > and all p € J, ramify in L/K and all p € J,, are unramified in L/K.
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In the second part of the talk we investigate trace forms of Galois extensions with
cyclic Galois group over an arbitrary field of char(K) # 2 with dimy) = 2> 4.

Detlev Hoffmann

Non-excellence of function fields of quadratic forms

Let F be a field with charF # 2, and let K/F be a field extension. Let ¢ be an
anisotropic form over F. Knebusch showed that if F(p)/F is excellent then ¢ is a
Pfister neighbour. The converse is known to be true always if dimp <4 (dimy =
3,4 due to Arason). Recently, Izhboldin proved that if ¢ is an anisotropic Pfister
neighbour, dim¢ > 5, then there exists a field extension E/F such that E(p)}/E is
not excellent. We conceptualize and generalize Izhboldin’s examples and obtain an
interesting class of anisotropic n-fold Pfister forms o, 7, an anisotropic m-fold Pfister
form 7, such that o and 7 are (m — 1)-linked (m < n) and such that ¢ = (7 L —T)an
becomes isotropic over F'(). We give necessary and sufficient conditions for (@F(r))an
to be defined over F. These examples have further interesting consequences. [f ¢
is a neighbour of v then F(p) and F(v) are (place-) equivalent over F'. One might
conjecture that if ¢ and 1 are such that F(y) and F() are equivalent, then there
exists an anisotropic form 5 such that ¢ and ¢ are neighbours of 7. Using examples
of the type described above, one obtains counter examples to this somewhat naive
conjecture (cf. also Bruno Kahn’s talk).

Bruno Kahn

Quadratic forms isotropic over the function field of a quadric: a survey

This "survey” talk also wanted to provoke some conceptualization of the classical
problem: let ¢, ¢’ be two anisotropic quadratic forms over a field F of characteristic
# 2. When is ¢' isotropic over the function field of ¢?

Consider the Witt ring W(F) simply as the set of classes of anisotropic quadratic
forms. The relation-
g<q if ¢ becomes isotropic over the function field F (q) of ¢

defines a preorder on W(F) (it is transitive). We denote by = the associated equi-
valence relation

g=¢ if ¢<q¢ and d<gq.
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Understanding the relation < in elementary terms means finding a complete set of
conditions implying <, such that for ¢, ¢ € W(F),q < ¢ if and only if one can pass
from q to ¢’ by applying these conditions a finite number of times. In the talk, we

gave some examples of elementary conditions, implying < and =.

One can ask: do these conditions suffice to generate < (resp. a)? The answer is no,
thanks to constructions used by Izhboldin in his disproof of excellence of function
fields of higher Pfister forms. However, the answer is yes for ¢ < ¢' with dimgq' <
6 (Leep, Hoffmann) and dim¢’ = 8, diq’ = 1 (Laghribi), except perhaps in the
remaining open cases.

Nikita Karpenko (Universitit Miinster) A
Cycles of codimension 4 on a quadric ‘
Over a field of char # 2 take a non-degenerate quadratic form ¢ and consider the
projective quadric X, defined by . One likes to compute for any p the p-th Chow
group CH?(X,), i.e. the group of p-codimensional algebraic cycles on X, modulo

rational equivalence. Take the embedding X, C P of X, into the projective space
(as a hypersurface) and call the image of the pull-back

CHP(P) — CH"(X,)

Il
z

the "elementary part” of C H?(X,).

Question: is it true that for a fixed p the group C HP(X,,) is elementary (i.e. coincides
with its elementary part) if dimy is large enough?

The answer is known to be positive for 0 < p < 3.

We are going to answer the question for p = 4:

Theorem: if dimg > 24 then the group CH*(X,,) is elementary.

Remark: the "biggest” known example of ¢ with non-elementary CH*(X,) has
dimension 16; so, there is a "gap” between dimension 16 and dimension 24.

Remark: if dim¢ # 7,8 then the non- elementary part of CH*(X,) is finite.

7
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M.-A. Knus (ETH Ziirich)

Central simple algebras of degree 3 and their trace forms (joint with M.
Rost, D. Haile and J.-P. Tignol)

Let B be a central simple algebra of degree 3 over a field K of characteristic #2,3.
The trace form Q, : ¢ —» Trdg(z?) is a nonsingular quadratic form with values in
F, the fixed field of o in K. We show:

(1) Q. is of the form < 1,1,1 >1L< 2> - << a >> - < —b, —c, bc > for some
b,c € F* and K = F(y/a).

Let fs(0) = [a] U [5] U [] € H3(F,p2) be the Arason invariant of the Pfister
form << a,b,c >>. Then

(2) If 0,0’ are involutions of second kind on B, 0 ~ ¢/ = Qo ~ Qo' <
<< a,be>>x<< o, b, ¢ >>> fa(o) = fa(d').

Involution o with fs(¢) = 0 form a distinguished class. We prove that

(3) any c.s.a. of degree 3 over K, which admits an involution of second kind, ad-
mits a distinguished involution.

We sketch three proofs of (3), with Jordan algebra techniques, using a crossed-
product construction and using cohomological techniques. Finally we give

(4) a complete set of cohomological invariants for c.s.a. of degree 3 admitting
involutions of the second kind.

M. Kriiskemper )
Bihomogeneous Nullstellensatz for p-fields

Let p be a prime number and K a p-field, that is there exist only finite field ex-
tensions of p-power-degree. Then any system of forms fy,..., fr € K[Xo,..., X;] of
degrees d,...,d;,(di,p) =1fori=1,...,r is isotropic (Pfister, Terjanian). An ele-
mentary proof was given by Fendrich. This result can be generalized for systems of
bihomogeneous polynomials. As an application one can show that over K there exist
only division algebras of p-power-degree (where non-associative division algebras are
also considered). Modifying the arguments of Fendrich (and van der Waerden) it is
possible to give an elementary proof of the bihomogeneous Nullstellensatz. The proof

8
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can be modified to obtain some elementary intersection theory. Furthermore, other
results of Hopf (1940) can be generalized by applying the result above.

Ahmed Laghribi
The isotropy of quadratic forms of dimension 8 over the function field of
a quadric

Let F be a field of characteristic not 2 and g be an anisotropic quadratic form in
I2F of dimension 8. Question: For which quadratic form ¢, ¢ becomes isotropic over
F()? If we take K be the function field of the Severi-Brauer-Variety of C(g), we

can summarize the answer as follows:

‘1

Theorem: For a quadratic form 3 of dimension > 5, we have:
1. If ind C(q) = 1, then (qr(y) is isotropic) <= (a¥ < ¢,a € F*).

2. If ind C(q) = 2, then (qr(y) is isotropic) <= - either 1 is a Pfister neighbour
of a 3-fold Pfister form ¢’ and ¢ contains a Pfister neighbour of ¢’ - or ¢ is not
and ay) < q,a € F*).

3. If ind C(q) = 4, then (gr(y) is isotropic) <=> - either is a Pfister neighbour
of a 3-fold Pfister form ¢' and ¢ contains a Pfister neighbour of q' - or ¥ is not
and there exists ¢’ such that ¥’ > ¢, dim¢’ = 8,ds9' =1 and ¢ L ey’ € I*F
for some a € F*).

4. If ind C(q) = 8, then ¢ is not a Pfister neighbour and:

i) if g % 0: (gr(y) isotropic) <= there exists 3’ such that
dimy’ = 8,dey’ = 1,4’ > ¢ and g L a9y’ € I*F for some a € F*).

i) if gx ~ O:
a) if ¢ is an Albert form, then: (gr(y) isotropic) <= ind (Clq) ®F
C¢¥)) =2)

b) if not, then (gr(y) is isotropic) <= there exists ¥’ such that
¥ > ,dimy’ = 8,ds¢’ = 1 and ind (C(q) ®F C(¥')) = 1.).
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David Lewis

Scaled trace forms of central simple algebras

Let A be a central simple algebra of degree n over a field F of characteristic # 2.
Let tr : A — F be the reduced trace map. Let z € A,z #0.
Define the scaled trace form ¢, : A — F by ¢:(z) = tr(zz?).

Necessary and sufficient conditions on z are given for ¢. to be a non-singular qua-

dratic form.
A diagonalization is given for ¢. when

(i) A is a quaternion algebra

(ii) A= M,F and z isa triangular matrix.

It is shown in general that if ¢, is non-singular then its determinant is
(—-l)ﬂ"z;unr(z)(modlﬂ) where nr : A — F is the reduced norm map. Some
formulae for the signature of ¢. can be obtained for F formally real.

Finally scaled trace forms are related to transfer theory of quadratic forms and some
results about Witt kernels and Witt images are obtained.

Murray Marshall (University of Sask., Canada)

Axioms for abstract real spectra

Let T be a proper preordering in ring A and denote by X7 the set of all orderings P
of A with P > T. For a € A define ar : Xr — {-1,0,1} by ar(P) =1 ifae P\
-P, 0Oifae PN—P, -—lifac —P\P,andlet Gy :={ar |a € A}. The structure
of the pair (Xr,Gr) can be axiomatized, generalizing the axioms for a space of
orderings in the field case. The resulting objects (X,G) are called abstract real
spectra. An axiomatization will appear in " Constructible sets in real geometry” by
Andradas, Brocker, and Ruiz. Here we indicate two other axiomatizations equivalent
to this one. Various local-global principles are known in this abstract setting relating
(X, G) with the residue spaces {Xp,Gp), p a prime in G, and these residue spaces
are spaces of orderings. In particular, results on minimal generation of constructible
sets carry over. Finite abstract real spectra (more generally, real spectra of finite
chain length) are classified. (X7,GT) has a P- structure respecting specialization
coming from the real places. Any finite (X, G) having such a P-structure can be
realized as (X1, Gr). There are two sets of examples known of abstract real spectra
which cannot be realized as (Xr,GT)-

10
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Alexander Merkurjev (St. Petersburg University)
Maximal indexes of Tits algebras

Let G be an adjoint semisimple group defined over an arbitrary field F, ¢ : G—G
be the universal covering, Z = kerp = center of G,C = hom(Zsep, Gm) be the cha-
racter group of the center. Tits has constructed a homomorphism

B:C(F)— BrF,x — [Ax.c]

and algebras A, are known as Tits algebras. It follows from the description of 8
that indA, ¢ divides the number n, = ged(dim V) where V runs over all represen-

tations p of corresponding inner quasi-split form G9 such that the restriction of p
on Z9 coincides with x. '

The goal of the talk is to present the notion of a "generic” algebraic group of a given
inner type and prove that for any inner type of adjoint groups over an arbitrary field
F the generic group G defined over the function field L of corresponding classifying
variety satisfies the following property: for any x € C(L) the index of the Tits
algebra A, g coincides with n.

1. Panin (St. Petersburg)
K-theory of twisted flags and a general index reduction formula

Fis afield, D isa CSA/F.
L/F is a field extension, indz(D ©r L) =7

We give an answer for the case, when L is the function field of a G-homogeneous
projective variety X for a simply-connected s.-s. algebraic group G.

Tits constructed certain algebras associated with such a group G. This algebras are
parametrized by the character group Ch of the center Z of G. So every element
x € Ch determines CSA Ay, which is unique up to the Brauer equivalence.

Let Rp(G) be the represent#tion ring of the group G over the algebraic closure F

of F. Let R:(G) be the direct summand of Rp(G) respecting to the representations
V s.t. the center Z acts on V by the character x.

11
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Let € X(F) be an F-point on a G-homogeneous projective variety X. Let
P = Stabg,(z). Then set

nyp = g.c.d.{dimp W | W € Repy(P)}
Theorem 1:  ind(DF(z)) = g.c.d-x(ny,p - ind(D ®F Axc))-
This theorem is based on

Theorem 2: K§(X) — Ko(X) is surjective,
KS(X,D) — Ko(X,D) Iis surjective.

Merkurjev, Panin and Wadsworth deduced from 2 explicite and "best possible” index
reduction formulas for all G-homogeneous projective varieties.

R. Parimala

Hasse Principle for the classical croups over fields of virtual cohomologi-
cal dimension two (joint with E. Bayer)

Let k be a field of characteristic not 2. Let G be a semi-simple simply connected
linear algebraic group defined over k. Let k, be a separable closure of k and set

T = Gal(k,/k), H'(k,G) = H(T+, G(k,)).

If k is a number field, the Hasse principle holds for k; i.e. the natural map

H'(k,G) — ] H*(k.,G)

v real

is injective (Kneser - Harder - Chernousov).

If k£ has no real places, Hasse principle implies that H '(k,G) = 0. More generally,
Serre conjectured in 1962 that for any perfect field k,cdk < 2, HY(k,G) = 0. We
recently proved this conjecture for classical groups.

We say that a field & has virtual cohomological dimension < n if cdk(v/—1) < n.In

. the talk, we present the following

Theorem: Let k be a perfect field of virtual cohomological dimension < 2. Let G
be a semi-simple simply connected group of classical type defined over k or of type
G, or Fy. Then the natural map

H'(,G) — ] H'(k,, G)

12
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is injective, as v runs over the real orderings of k.

Colliot-Thélene conjectured that this holds for all semi-simple simply connected

groups.

A. Prestel (Konstanz)
On Solér’s characterization of Hilbert spaces

We gave a sketch of the proof of the following characterization of Hilbert spaces
obtained by M.P. Solér (see: Communications in Algebra 23 (1995), 219 - 243 or
manuscripta math. 86 (1995), 225 - 238):

Let K be a division ring, * : K — K an involution, E an infinite dimensional
K-vector space and <,>: E x E — K a hermitian form on E. Then (E, < >)is
a Hilbert space with K =R,C or Hand the obvious involution on K if and only
if axioms (1) and (2) hold:

(1): if a subspace U of E satisfies U = (UL) then E=U @ U*,

(2): there exists a sequence (I2)nen in E such that I, LI, forn#m,
and < l,,l, >=1foralln € N.

(here = L y is clearly defined by < z,y >= 0).

We also mentioned some applications of this characterization in infinite dimensional
projective geometry, orthomodular lattices and Quantum Mechanics. (see: S. Hol-
land, Bull AMS 32 (1995), 205 - 234).

. S. Pumpliin

Composition algebras over rings of genus zero

In contrast to composition algebras over fields little is known about composition
algebras and their norm forms over arbitrary {commutative) rings. The only promi-
sing line of attack here seems to be considering special classes of rings. In particular
one can look at composition algebras over a ring R where SpecR is an open den-
se subscheme of some curve X of genus zero over k (k a field). With the help of
results from algebraic geometry, the theory of composition algebras over locally rin-
ged spaces by Petersson, the theorem of Hurwitz by van Geel as well as with some

13
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elementary lattice theory the structure of these algebras is characterized. They are
classified for certain base fields k, when SpecR = X — {Po,..., P}, )E deg P, = 2.
<o

Carl Riehm
Absolutely irreducible orthogonal representation of finite groups

K is a field of char 0, b : V x V — K a non-degenerate symmetric bilinear form,
and ¢ : G — O(b) an orthogonal representation of the finite group G.

It was shown that if ¢ is absolutely irreducible as a linear representation, then the
orthogonal equivalence classes of orthogonal representations which are linearly equi-
valent to ¢, are in bijective correspondence with K*/K *”_ while those whose bilinear
form is equivalent to be correspond to the subset M(b)/K** where M(b) is the group
of multipliers {a € K~ : ab ~ b}. .

It follows at once that if the degree of ¢ is odd, orthogonal equivalence is the same
as linear equivalence (assuming absolute irreducibility).

Assume the degree of ¢ is even. Then it was shown that in many cases, the Clif-
ford invariant of A. Frohlich distinguishes the orthogonal representations linearly
equivalent to ; finally these results were applied to the case G = Sh.

Markus Rost
On THE H3-invariant for simply connected groups

Let G be a simply connected algebraic group over some field k. Then there is an
invariant

0 : HY(k,G) — H(k,Q/Z(2)")

with the following property: For z € H'(k,G) let P./k be the corresponding
G-torseur. Then the kernel of the restriction map

H3(k,Q/1(2)') — H*(k(P:); Q/1(2))

is generated by @ (in case when the Lie algebra of G is simple). There are various
definitions of © due to J.-P. Serre and the lecturer (see also Serre’s Bourbaki-talk
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in March '94). In the lecture we discussed the possibility of defining © using motific
cohomology. This way gives an immediate interpretation of © as a torsion-variant
over fields of the standard H*(_Z)-characteristic class, wellknown e.g. in topology.

C. Scheiderer
Sums of squares and étale cohomology

Let A be a ring with 1/2 € A, let H*(A) = 8%, i.(A,2/2). For n € A® let (n) be
the image of n under the boundary A* — H'(A) coming from 1 — p2 — G >
G,, — 1. Let a be an element in the symbolic part of H*(A) (which is the subring
generated by the (n),n € A7). It is known that aU(—1)N =0for N> 0iffax =0
in H*(K) for every homomorphism A — K into a real closed field ‘K. We give
some quantitative versions of this fact. For example, if u € A" satisfies an equation
um = 1+ in A (where 7 stands for a sum of m squares) then (u)™*" = 0. At least
in the case n = 0, this bound is best possible in general. If the sums of squares satisfy
suitable "transversality” conditions, the general bounds can be improved. All these
upper bounds are obtained using the existence of (étale) Stiefel-Whitney classes of
quadratic forms (over rings). We also have localization theorems like the following:
If n € A* satisfies u = AimodI,I C A being an ideal, then (u)" annihilates kernel
and cokernel of the restriction maps HY(A) — H{,(U),q 2 0,U := complement of
Spec(A/I) in SpecA. : ’

Tara Smith (University of Cincinnati)

Subgroups of W-groups and Witt rings

Let F be a field of characteristic # 2, and let F' (3) denote the composition over
F of all quadratic, cyclic of order 4, and dihedral of order 8 extensions of F.
Let Gr = Gal(F®/F), the so-called W-group of F. Then it is known that
WF =~ WK = Gr & Gk, and Gr & Gx = WF = W K under the additio-
nal assumption that if < 1,1 >F is universal, then s(F') = s(K). Thus one would
expect that the subgroup structure of Gr would yield information about the qua-
dratic structure of F.

A first question is which groups can be subgroups of Gr. It is not hard to show

that the quaternion group cannot be. If one consider only "essential subgroups”, i.e. ’

Hst. ®(H) = HN®(Gr) (@ = frattini subgroup), then no group having Z/2Z
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as a direct factor occurs as a subgroup. So far, all known essential subgroups can
themselves be realized as W-groups. Observe that if K is the fixed field of H, then
H is also a quotient of Gk. H is the W-group realization of the image of WF in
W K. The question when H is itself a W-group is related to when the image of WF
is again an abstract Witt ring in the sense of Marshall.

R. St{jatha, TIFR, Bombay
On the Hasse principle for Witt groups (joint with R. Parimala)

Let X/k be a smooth projective curve over a number field k of char # 2. Assume
that X(k) # 0. Let W(k(X)) denote the Witt group and P(k) the set of places of

k. For v € P(k), let k, denote the completion of & at v. We prove that the kernel

K = Ker(W(K(X))) — T[] W(k(X)
veP(k)

is isomorphic to LIII(J(X)). Here QIII(_J()—(_)) is the 2-torsion subgroup of the Tate-
Shafarevich group of the Jacobian J(X),X = X xj k. This group II(J(X))) is
finite.

As an application, we show that if E is an elliptic curve over a number field: elements
in the kernel K are quaternion norm forms of the type < z,a > or £ z —ar,7 >
where a, € k* and a | D, the discriminant of the curve.

Finally, we note that the hyothesis X (k) # 0 is necessary by considering the example
of an anisotropic conic over a number field.

Nguyen Quoc Thang

On certain corestriction maps

Let G be a linear algebraic group defined over a field k of char0. If G is commutative
one can define corestriction maps for all finite extensions k' of k.

Cor: Hi(K',G) — H‘(k,G), where H(k,G), ... stands for usual Galois cohomolo-

gy groups of G, (i > 0). However, if G is not commutative, perhaps there is no func-
forial definition of such corestriction maps for cohomology sets H'(k,G)(0 < i < 1).
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Here we consider the following weaker variant for the corestriction "situation”: As-
sume we are given a map ax : H?(k,G) — H9(k,T) which is functorial in k, where
G is a non commutative k-group, T a commutative k-group. One has similar maps
ax : HP(K',G) — HI(K',T) for all finite extension k' of k, and also corestriction

maps HI(K',T) £ HI(k,T).

Question: When does Cor(Im(ax)) C Imey? If the question has an affirmative
answer for all K, we say that the Corestriction Principle holds for the Im of map
ay. One can define similar notion for Kernel of a map Sy : H?(k, T) — H(k,G),
which is functorial in k. ' ’

‘ In this talk we show that over local or global fields, the Corestriction Principle holds
for the image or kernel of maps ax. Also a reduction theorem for the case of arbitrary
fields of char0 has been stated.

i

Jean-Pierre Tignol
The Witt kernel of a finite field extension

Let F be a field of characteristic # 2. For any monic separable polynomial = € F([t] of
degree 2n, define an F- algebra M, as the quotient of the free algebra in 2n variables
f{a1,...,@n; b1, ..., bs} by the relations which make = = (t"+at" '+ tan)(t+
bit"~1+...+b,). This algebra carries an involution o, such that o.(a;) = b;. Using a
generalization of the Cassels-Pfister theorem for algebras with involution, we prove
that an involution o on a central simple algebra A over F becomes hyperbolic under
scalar extension to F[t]/(r) if and only if there is a homomorphism of- F-algebras
with involution (My,0,) — (A, o). This result is used to parametrize the 2-fold
Pfister forms which become hyperbolic under a scalar extension of degree 4.

Adrian Wadsworth (University of California, San Diego)

Index Reduction Formulas and Discriminant Algebras

This is a report on joint work with A.S. Merkurjev and I.A. Panin. Let G be a
semisimple connected linear algebraic group over a field F, and let X be a projective’
variety on which G/Z(G) acts over F, with the action transitive over F,. Let C =

character group of the center of G' xr Fo, and K¢ the smallest field extension of F
so that the absolute Galois group of K¢ acts trivially on the Dynkin diagram of G.
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The general index reduction formula says that for any central simple algebra D over
F,

ind(D ®F F(z)) = ged( ged nye [E:F] ind(D ®r Ac(¥)E)).
VEC Efield Fy<E<Kg

The talk concerned détermining the algebras Ag(y) (the Tits algebras) and the
integers ny, g appearing in this formula for specific groups G and varieties X. We
have determined these for all the classical almost simple groups G and all their
associated varieties X. This was illustrated with the following example: Let L/F
be a Galois field extension of degree 2, let A be a central simple L-algebra of even
degree n = 23, and G an L/F involution of the second kind on A. Let

G = SU(A,0)={a€ A |g(a)a=1 and ind(a) =1},
and '
X ={I|I isaright ideal ofA,dim.(]) = 221, and o(I)I =0}
For this case, the index rceduction formula becomes
ind(D ®F F(z)) = gecd(ind(D),ind(D @ D(A4, 7)),

ged (Z5ind(D ©F A™))).

1<j<n

Here D(A, o) is the "discriminant algebra of (A,0))”.

L. Walter

Reduced forms of higher level on a commutative ring

The reduced theory of quadratic forms over a formally real field K is the study
of the reduced Witt ring W(K)/Nil(W(K)) and its natural embedding as a sub-

" ring of C(X(K),Z), the ring of locally constant integer-valued functions on the

Deutsche

space of orderings of K. One may identify X(K) with the closed set of characters
o : K — S! of order 2 whose kernels are additively closed. The evaluation maps

subring of C(X(K),Z).

By replacing the condition "o has order 2” with "o has finite even order”, one de-
fines the notion of a signature of higher level of K. Reduced Witt rings of higher
level are then defined to be a subring of C(X,Z) generated by the evaluation maps
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a,a € K~, taking X to be the set of characters with additively closed of order 2s,
where s divides a given positive integer n. All of the notions, methods and results
of the reduced theory of quadratic forms have been successfully extended to this
higher level setting.

One can consider quadratic forms over semilocal rings. In this case there is a na-
tural embedding of the reduced Witt ring in C(X (A),Z) where X(A) is the space
of maximal orders of A. Recently, it has been shown that the reduced theory of
quadratic forms can be extended to an arbitrary commutative ring by replacing the
space X (A) with the subspace X7(A) of maximal orders lying over a given preorder
which is "well-behaved”.

In this paper, we continue these two directions, developing a higher level theory for
commutative rings, where maximal orders are replaced by the notion of a maximal
signature of higher level.

Roger Ware
On the Quaternion Group as Galois Group

Let Hy denote the quaternion group of order 8. A well-known theorem of Witt states
that Hg can be realized as a Galois group over a field F(charF # 2) <= the form
<1,1,1 >=< u,v,uv > where u, v represent independent square classes over F'. In
this talk conditions are given for the non-realizability of Hg in terms of the structure
of the max. pro-2-Galois group Gr(2) = Gal(F,/F), where F, is the quad. closure
of F.

Let A be the class of torsion free abelian pro-2-groups and let € be the class of pro-
2-groups generated by involutions. Given pro-2-groups Gy, Gy, let Gy *; G, denote
the free pro-2-product and if G acts on A € A, let A x G denote the semidirect
product. Define a class J of pro-2-groups as follows: J; = {2/21,1,} and having
defined J;, let

Jn=Ji U {Gi1%:G2|G1,G2 € J;,Gy or Gy €t}
U {AxG|A€eAGeJ}; J=UZJ

Theorem: Suppose F has at most a finite number of orderings.

Then Hg does not occur as a Galois group over F < Gr(2) € J.

Cor 1: F is non real and Hg does not occur <= either G(2) is torsion free abelian
or has generators {y;,z}ies with relations yiy; = y;y; and zyiz~' = yi™ for all ¢,
where m = 2", n > 0, is fixed. Here n is the largest integer s.t. F contains a primitive
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" 9n+2¢h root of 1.
(Examples:  C((t1)) .- ((t2)); Qp((t1)) - - ((t)), P = lmod4).

Berichterstatter: M. Meurer
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