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This conference was the seventh one on quadratic forms in Oberwolfach. It was orga­
nized by M. Knebusch (Regensburg), A. Pfister (Mainz) and W. Scharlau (Münster).
The lectures covered many topics from the theory of quadratic forms mainly over
fields but over algebraic varieties and schemes, too.

Although. many interesting new results were reported, perhaps some main emphasis
was laid on the "results on index reduction formulas (confer the talks of Merkurjev,
Panin and Wadsworth) and on the isotropy of quadratic forms over function fields
of a quadric, which was dealt in thc lectures of Hoffmann, Kahn and Laghribi. This
topic got new stimulation by arecent result of Izhboldin, showing the non-excellence
of n-fold multiplicative forms for n ~ 3.
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Vortragsauszüge

Jon Arason
The Witt Ring of an Elliptic Curve over a Local Field (joint with R.
Elman and B. Jacob)

Let X be an elliptic curve over a field K, char(K) =F 2. In an earlier work of ours we
constructed a natural epimorphism EtlT W(K(T» -+ W(X), where T runs through
the closed points of the kerneI 2X of multiplication by 2 on X. In fact, we showed
that the natural morphism W(X) -+ W(X) is an epimorphism, where W(..X) is the
Witt ring of spaces over X that become diagonalizable after an algebraic base field
extension, modulo the hyperbolic ones. We then constructed a natural isomorphism

W(X) ~ $T W(K(T)).

Let i(X) be the kernel of W(X) -+ W(X). We also constructed a natural epimor­
phism El)p W(K(P)) -4. i(X), where P runs through the closed points of X. .

We consider the case that K isa Iocal field.

Theorem: [3(X) =I- 0 if and ooly if X has split multiplicative reduction. In this
case 1/3(X) 1= 2: (]3(X):= W(X) n ]3(K(X».)

Theorem: If X has three rational points of order 2 then W(X) is diagonalizable.
Furthermore, j(X) i= ivC'C) if and only if K is dyadic and X can be described by
a Weierstraß equation y2 = x(x - l)(x - e) with v(e - 1) = 4v(2) - 1. (v is the
normalized valuation on K.)

Theorem: If ~~ has no rational point of order 2 then i(X) = iv(X). Furthermore,
W (X) is diagonalizable if and only if K is not dyadic.

We also have a complete description when X has exactly one rational point of order
2, except for a few sporadic cases where the residue dass field has 2 or 4 elements.
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R. Baeza
Positive Definite Quadratic Forms over Number Fields (joint with M.I.
Giasa)

K /Q totally real number field, m = [K : Q], dK = discriminant, OK = inte­
gers. A Humbert form of rank n is a m-tuple S = (SI, ... , Sm), where each Si
is n X n pOS. def. symmetrie real matrix. Let Pm,n C Rimn(n+l) be the space
of such forms. GL(n, OK) acts on Pm,n by: U E GL(n, OK), S E Pm.n define
S[U] = (SdU(I)], ... , Sm [u(m)]), where U(1), ... , u(m) are the eonjugates of U under
the embeddings (Tb' •• , (Tm : K ~ R (here AlB] means B tAB whenever it is defined).
Then det S = rr det Si, and m(S) = min{S[u] 10 -=F u E 0K} are elass-invariants of

S (here S[u] := fi Si[u(i)] for u E O'/.;. The number fK(S) = m(S/d(S)I/n is boun-
i=}

2m

ded for all Sand it holds fK(S) :$ 4mw~-;;- I dK 1 (wn = vol. of n-sphere). Define
_2m

iK,n = sup iK(S) = Hermite Humbert CODstant of K, n. Then 'Y{<.n :$ 4mWn n IdK I
(for m = 1 we get Minkowski's bound). Let M(S) = {u E 0i< I S[u] = m(S)}
be the set of minimal vectors of S. We define a constant MK,n with the pro­
spects: AIK ,n = 1 ~ each S ha~ unimodular minimal vector. For u E M(S)
set N(u) =1 NK / Q ( n Uj) I, N(S):= inf N(u), N[S] := inf N(T). Then

Wj#:-O uEM(S) . T=::S

Prop.: There is a constant C = C(K, n) with N[S] :$ C for alt S E Pm,n.
We define then: MK,n = sup N[S]. With this notations we have

5

Th
n-2 2(n-l) n-l

eorem: IK.n:::; (MK.n) 2 IK.n-}·

Ir h(K) = 1, then MK,n = 1, and we get Mordell's theorem: fK~;::; 'YK~:-l·

Tom Craven (University of Hawaii)

Witt groups of hermitian forms over Baer ordered *-fields

Let D be a. skew field with involution * and assume the spaee of Baer orderings,
Yv , of D is nonempty. Define WS(D, *) to be the subring of C(Yv , Z) [the ring of
eontinuous functions from YD to the integers] generated by the image of the Witt
group of anisotropie hermitian rorms W(D, *).

One can then see that the Baer orderlngs of (D, *) are naturally bijeetive with
the ring homomorphisms WS(D,*) -+ Z and with the group homomorphisms
T: W(D,*) ~ Z such that u« 1 » = 1 and 0'« a » E {±l} for any sym­
metrie element a -=F o.
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We can also give a nice characterization of the kerneis of the group homomorphisms.

When [D : ZD] is odd~ we can reduce the computation of WS(D, *) to the ring
WS(F)~ where F is the field of central symmetrie elements.

Define (D, *) to be pythagorean if for any symmetrie r ~ any di E D, there exists
d E D such that L dird; = drd*. Then a formally real (D, *) is pythagorean iff
W(D,*) -+C(YD~Z) is H.

Jean-Louis Colliot-Theli~ne

Hasseprinzip und schwache Approximation für homogene Räume über
reellen FUnktionenkörpern

. Sei K = R(Y) der Funktionenkörper einer glatten projektiven Kurve Y/R. Für'
P E Y(R), sei K p die Komplettierung von K im Punkt P. Sei GI K eine zusam­
menhängende lineare Gruppe über K, und sei X / K ein homogener Raum für G.
Anhand von Ergebnissen von Witt (1934, 1937), J. Knight (1969), Thaing (1993)
hatte ich Anfang 1995 folgende Vermutungen gemacht:

Vermutung 1. (starkes Hasseprinzip) Falls X(Kp ) f 0 für fast alle P E };(R),
dann ist X(K) =1= 0.

Vermutung 2. (schwache Approximation) Falls )(K) =F 0, dann liegt. X(K)
dicht im Produkt der X( K p ), P E Y(R) (Bewertungstopologie auf K p ).

Diese Vermutungen könnte ich für prinzipielle homogene Räume von Tai beweisen.
Für beliebige X = G könnte ich Vermutung 2 auch beweisen.
Vermutung 1 für prinzipiell homogene Räume könnte ich auf den Fall von einfach
zusammenhängenden halbeinfachen Gruppen reduzieren, und in einigen Fällen be- _
weisen. Inzwischen hat A. DUCROS die Vermutung für prinzipiell homogene Räume •
von klassischen Gruppen bewiesen, und C. SCHEIDERER hat dann eine einheitli-
che Methode entwickelt, und beide Vermutungen ganz allgemein bewiesen. Durch
ein Gegenbeispiel wird gezeigt, daß die Vermutungen z.B. für Varietäten, die ein
Büschel von homogenen Räumen besitzen, falsch sind.

4

                                   
                                                                                                       ©



Dorothea Diers, Münster

Counter-Examples to the Strang Hasse-Principle

The strong Hasse-Prineiple is an important loeal-global principle in the theory of

quadratie forms. It holds over global fields of eharacteristie not 2 for quadratic forms

of dimension 2:: 1 as weIl as over algebraic function fields of transcendence degree

one over real closed and algebraically closed fields for quadratic forms of dimension

2:: 3. In other cases it probably do~s not hold, however not many counter-examples

are known.

In my talk counter-examples to the strong Hasse-Principle over algebraic function

fields F of transcendence degree one over discretly valued fields K of characteristic

not 2 are constructed. Some counter-examples of Hsia and Johnson over rational

function fieldsK(X), K sorne quadratic number field, are given and generalized. By

Elman and Prestel, there exist counter-examples of arbitrary:-dimension 2:: 4 over .~.

K(X), if K is agiobai field with at least two orderings. If Fis an arbitrary function

field in one variable over sorne base field K then we can construct sorne counter­

examples over F if their Hasse-numbers satisfy certain conditions.

If K is a finite extension of Qp or Fp«(t», p > 2 prime and < 1,1 > is anisotropie ."';

over K t hen t he form

f :=< -x, -x, 1,11'", -1I'"(x2 + 1) >, where 11'" is the prime element of K,

is a 5-dimensional counter-example to the strong Hasse Principle over K(X).

Martin Epkenhans (Paderborn, Germany)

Trace forms of algebraic number fields and of Galois extensions

We consider the trace form of a finite field extension LIK which is given by < L >:

L -+ K : x ---+ traceLI K x 2
• Ir t/J is a quadratic form over the number field K, then

there is a field extension LIK with < L >~ t/J if and only if t/J ~< 1 >, t/J ~<

2,2D >,D ~ K*',.,p ~< 1,2,D >,D E K*, or the dimension of t/J is ~ 4 and

all signatures are non-negative. For dirn tP 2:: 4 we improve this result as folIows:

Let t/J be a quadratic form with non-negative signatures and set ram( t/J) := {p, p is

a finite spot of K which ramifies in K( y'detK tf;)1K or for which the Ioeal Hasse

invariant satisfies HptP =F (2, detK tP)p}. Let Ju , J6 be finite sets of finite spots of K

with J u n J6 = 0 and (Ju U Jr ) n ram(1,&) = 0, then there is a field extension LIK

with t/J ~< 2 > and all p E Jr ramify in LIK and all p E Ju are unramified in LIK.
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In the seeond part of the talk we investigate traee forms of Galois extensions with

eyclie Galois group over an arbitrary field of char( /() f; 2 with dirn '1./' = 2' ~ 4.

Detlev HofFmann

N on-excellenee of function fields of quadratic forms

Let F be a field with charF =I 2, and let KIF be a Held extension. Let c.p be an

anisotropie form over F. Knebusch showed that if F(cp)1F is excellent then r.p is a

Pfister neighbour. The eonverse is known to be true always if dirn lP :::; 4 (dirn 'P =
3,4 due to Arason). Reeently, Izhboldin proved that if c.p is an anisotropie Pfister

neighbour, dimc.p ~ 5, then there exists a field extension ElF such that E(c.p)1 E is

not excellent. We eoneeptualize and generalize Izhboldin's examples and obtain an

interesting elass of anisotropie n-fold Pfister forms (j, T, an anisotropie rn-fold Pfister

form 1r ,such that (j and 1r are (m - 1)-linked (m < n) and such that <.p ~ (T 1.. -1r )an

beeomes isotropie over F(T). We give neeessary and sufficient conditions for (<f"F(r)an

to be defined over F. Thp,se examples have further interesting eonsequences. If t.p

is a neighbour of '"'( then F( c.p) and F( I) are (place-) equivalent over F. One might

eonjeeture that if c.p and tf; are such that F( r.p) and F( t/J) are equivalent, then there

exists an anisotropie form I such that r..p and tP are neighbours of /. Using examples

of the type deseribed above, one obtains counter examples to this somewhat naive

conjeeture (cf. also Bruno Kahn's talk).

Bruno Kahn

Quadratic forms isotropie over the function field of a quadric: a survey

This "survey" talk also wanted to provoke some eonceptualization of the elassical

problem: let q, q' be two anisotropie quadratie forms over a field F of charaeteristic

# 2. When is q' isotropie over the function field of q?

Consider the Witt ring W(F) simply as the set of classes of anisotropie quadratic

{orms. The relation·

q ~ q' if q' beeomes isotropie over the function field F( q) of q

defines a preorder on W(F) (it is transitive). We denote by ~ the associated equi­

valence relat ion

q ~ q' if q ~ q' and q' ~ q .
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Understanding the relation $ in elementary terms means finding a complete set of
cO!1ditions implyiog $, such that for q, q' E W(F), q ~ q' if and only if one can pass
from q to q' by applying these conditions a finite number of times. In the talk, we
gave some exampies of elementary conditions, implying ~ and ~.

One can ask: do these conditions suffice to generate ~ (resp. :::::)? The answer is 00,

thaoks to constructions used by Izhboldin in his disproof of excellence of function
fields of higher Pfister forms. However, the answer is yes for q ~ q' with dimq' ~
6 (Leep, Hoffmann) and dimq' = 8, d±q' = 1 (Laghribi), except perhaps in the

remaining open cases.

Nikita Karpenko (Universität Münster)

Cycles of codimension 4 on a quadric

Over a field of char :f:. 2 take a non-degenerate quadratic form cp and consider the
projective quadric Xr.p defined by cp. One likes to compute for any p the p-th Chow
group C HP(.Jl[r.p), i.e. the group of p-codim"ensional algebraic cycles on Xep modulo
rational equivalence. Take the embedding Xq; C P of Xep ioto the projective space
(as a hypersurface) and call the image of the pull-back

C HP(P) --+ C HP(Xr.p)

11

Z

tohe "elementary part" of CHP(.l{fi')'

Question; is it true that for a fixed p the group CHP(Xr.p) is elementary (i.e. coincides
with its elernentary part) if dim'P is large enough?
The aoswer is known to be positive for 0 ~ p ~ 3.
We are going to answer the question for p = 4:

Theorem: if dirn Cf' > 24 theo the group CH 4 (Xr.p) is elementary.

Remark: the "biggest" known example of f{J with non-elementary CH4(Xep) has
dimension 16; so, there is a "gap" between dimension 16 and dimension 24.

Remark: if dirn cp =1= 7,8 then the 000- elementary part of CH 4 C'Crj1) is finite.

7

                                   
                                                                                                       ©



M.-A. Knus (ETH Zürich)

Central simple algebras of degree 3 and their trace forms (joint with M.
Rost, D. HaHe and J.-P. Tignol)

Let B be a central simple algebra of degree 3 over a field K of characteristic =f 2,3.
The trace form Qq : x 1----+ TrdB (x2 ) is a nonsingular quadratic form with values in
F, the fixt:d field of (7 in K. We show:

(1) Qq is of the form< 1,1, 1 >~< 2 > . « 0: » . < -b, -c, bc > for some
b,c E F· and K = F(y'O).

Let 13(U) = [0] U [b] U [cl E H3 (F,1J2) be the-Arason invariant of the Pfister
form« o:,b,c ». Then

(2) If (7, u' are involutions of second kind on B, u ~ u' {:::::> Qu ~ Q(7' {::::::}
« 0, b, c »~« 0, b', d »<==::? 13«(7) = /3(U').

Involution u with 13(u) = 0 form a distinguished class. We prove that

(3) any c.s.a. of degree 3 over K, which admits an involution of second kind, ad­
mits a distinguished involution.

We sketch three proofs of (3), with Jordan algebra techniques, using a crossed­
product construction and using cohomological teehniques. Finally we give

(4) a complete set of cohomological invariants for e.s.a. of degree 3 admitting
involutions of the seeond kind.

M. Krüskemper

Bihomogeneous Nullstellensatz ror ~fields

Let p be a prime number and K a p-field, that is there exist only finite field ex­
tensions of p-power-degree. Then any system of forms 11, ... , Ir E K[Xo, ... , Xr]of
degrees d., ... , dr, (di , p) = 1 for i = 1, ... , r is isotropie (Pfister, Terjanian). An ele­
mentary proof was given by Fendrich. This result ean be generalized for systems of
bihomogeneous polynomials. As an application one can show that over K there exist
only division algebras of p-power-degree (where non-associative division algebras are
also considered). Modifying the arguments of Fendrieh (and van der Waerden) it is
possible to give an elementary proof of the bihomogeneous Nullstellensatz. The proof

8
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ean be modified to obtain same elementary intersection theory. Furthermore, other
results of Hopf (1940) ean be generalized by applying tbe result above.

Ahmed Laghribi
The isotropy oe quadratic forms of dimension 8 over the function field of
a quadric .

Let F be a field of eharacteristic not 2 and q be an anisotropie quadratie form in
12 F of dimension 8. Question: For which quadratic form t/;, q becomes isotropie over
F( t/J)? If we take K be the function field of the Severi-Brauer-Variety of C(q), we
can summarize the answer as folIows:

Theorem: For a quadratie form 1/J of dimension;::: 5, we have:

1. If iod C(q) = 1, then (qF(1b) is isotropie) {::::::> (at/; < q, a E F*).

2. If iod C(q) = 2, then (qF(t/;) is isotropie) {::::::> - either 1/J is a Pfister neighbour
of a 3-fold Pfister form q' and q contains a Pfister neighbour of q' - or 1/J is not

and at/J < q,a E F*).

3. If ind C(q) = 4, then (qF(f/J) is isotropie) {:::::} - either t/J is a Pfister neighbour
of a 3-fold Pfister form q' and q eontains a Pfister neighbour of q' - or t/; is not
and there exists ~" such that t/J' > t/J, dirn t/J' = 8, d±1/J' = 1 and q J.. a'I/J' E 1

4
F

for some a E F*).

4. If ind C(q) = 8, then t/J is not a Pfister neighbour ~nd:

i) if qK 'f 0 : (qF(tP) isotropie) <=> there exists 1/J' such that
dirn ~" = 8, d±t// = 1, 'l/J' > 'l/J and q J.. a'l/J' E [4F for some a E F*).

ii) if qJ\ "J 0:

a) if t/J is an Albert form, then: (qF(1b) isotropie) {:::::} iod (C(q) 0F
C(1J!)) = 2)

b) if not, then (qF(f/J) is isotropie) <=? there exists 1j;' such that
t/J' > t/J,dimt/J' = 8,d±t/J'= 1 and ind (C(q) 0 F C(tI")) = 1.).

9
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David Lewis

Scaled trace farms of central simple algebras

Let A be a central simple algebra of degree n over a field F of characteristic :f= 2.

Let tr : A --t F be the reduced trace map. Let z E A, z =F O.

Define the scaled trace form qz : A -----+ F by qz(x) == tr(zx2
).

Necessary and sufficient conditions on z are given for qz to be a non-singular qua­

dratic form.
A diagonalization is given for qz when

(i) A is a quaternion algebra

(ii) A = MnF and z is a triangular matrix.

It is shown in general that if qz is non-singular then its determinant is

(-I)n(n
2
-1)nr(z)(modF2 ) where nr : A ~ F is the reduced norm rnap. Some

formulae for the signature of qz can be ohtained for F formally real.

Finally scaled trace forms are related to transfer theory of quadratic forms and some

results about Witt kernels and Witt images are obtained.

Murray Marshall (University of Sask., Canada)

Axioms for abstract real spectra

Let T be a proper preordering in ring A and denote by X T the set of all orderings P

of A with P 2::: T. For a E Adefine aT : X T -. {-I, 0,1} by äT(P) = 1 if a E P \

-P, 0 if a E pn-p, -1 if a E -P\P, and let GT :== {aT la E A}. The structure

of the pair (XT , GT ) can be axiomatized, generalizing the axioms for aspace of

orderings in the field case. The resulting objects (X, G) are called abstract real

spectra. An axiomatization will appear in "Constructible sets in real geometry" by

Andradas, Bröcker, and Ruiz. Here we indicate two other axiomatizations equivalent

to this one. Various local-global principles are known in this ahstract setting relating

(X, G) with the residue spaces (Xp, Gp), p a prime in G, and these residue spaces

are spaces of orderings. In particular, results on minimal generation of constructible

sets carry over. Finite abstract real spectra (more generally, real spectra of finite

chain length) are classified. (XT , GT ) has a P- structure respecting specialization

coming from the real places. Any finite (X, G) having such a P-structure can be

realized as (XT, GT ). There are two sets of examples known of abstract real spectra

which cannot be realized as (XT, GT ).

10
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Alexander Merkurjev (St. Petersburg University)

Maximal indexes of Tits algebras

Let G be an adjoint semisimple group defined over an arbitrary field F, <p : G--+ G

he the universal covering, Z = kerf.,? = center of G, C = hom(Zsep, Gm) be the cha­

racter group of the center. Tits has constructed a homomorphism

ß: C(F) --+ BrF, X~ [Ax,c]

and algebras Ax.G are known as Tits algebras. It follows {rom the description of ß

that indAx•G divides the number nx = gcd(dirn V) where V runs over all represen­

tations p of corresponding inner quasi-split form eq such that the restrietion of p

on zq coincides with X.' .

The goal of the talk is to present the notion of a "generic" algebraic group of a given

inner type and prove that for any inner type of adjoint groups over an arbitrary field

F tbe generic group G defined over the function field L of corresponding classifying

variety satisfies the following property: for any X E C(L) the index of the Tits

algebra Ax,G coincides with n x .

I. Panin (St. Petersburg)

K-theory of twisted ftags and a general index reduction formula

Fis a field, D is a CSA/F.

LIF is a field extension, indL(D 0F L) =?

We give an answer for the' case, ,when L is the function field of a G-homogeneous

projective variety X for a simply-connected S.-s. algebraic group G.

Tits constructed certain algebras associated with such a gioup G. This algebras are

parametrized by the character group eh of thc center Z of G. So every element

X E eh determines CSA Ax.a, which is unique up to tbe Brauer equivalence.

Let RF(G) be the representation ring of the group G over the algebraic closure F

of F. Let R}(G) 'be the direct sunlmand of RF(C) respecting to the representations

V s.t. the center Z acts on V by the character X.

11
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Let x E X(F) be an F-point on a G-homogeneous projective variety X. Let
P = StabcF(x). Then set

This theorem is based on

Theorem 2: Kg(X) -. Ko(X) is surjective,
K~(X,D) --+ Ko(X,D) is surjective.

Merkurjev, Panin and Wadsworth deduced from 2 explicite and "best possible" index
reduction formulas for all G-homogeneous projective varieties.

R. Parimala

Hasse Principle ror the classical croups over fields of virtual cohomologi­
cal dimension two (joint with E. B"ayer)

Let k be a field of characteristic not 2. Let G be a semi-simple simply connected
linear algebraic group defined over k. Let ks be a separable closure of k and set
rk = Gal(ks / k), H 1 (k, G) = H 1(f k , G(ks »' .
If k. is a number field, the Hasse principle holds for k; i.e. the natural map

BI (k, C) ---+ TI H 2(kv , C)
v real

is injective (Kneser - Harder - Chernousov).
If k has no real places, Hasse principle implies that Hl(k, C) = O. More generally,
Serre conjectured in 1962 that for any perfeet field k, cdk ~ 2, H1(k, C) = O. We
recently proved this conjecture for classical groups.

We say that a field k has virtual cohomological dimension ~ n if cdk(A) ~ n. In
the talk, we present the following

Theorem: Let k be aperfeet field of virtual eohomological dimension ~ 2. Let G
be a semi-simple simply connected group of elassieal type defined over k or of type
G2 or F4 • Then the natural map

H1(k, C) -+ rr H 1(kv , C)
v

12
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is injective, a.s v runs over the real orderings of k.

Colliot-Thelene conjectured that this holds for all semi-simple simply connected
groups.

A. Prestel (Konstanz)

On 'Soler's characterization of Hilbert spaces

We gave a sketch of the proo! of the follo\Ying characterization of Hilbert spaces
obtained by M.P. Soler (see: Communications in Algebra 23 (1995), 219 - 243 or
manuscripta math. 86 (1995), 225 - 238):

Let K be a division ring, • : K --+ K an involution, E an infinite dimensional
K-vector space and<, >: E x E --+ K a hermitian form on E. Then (E, < » is
a Hilbert space with K = R, C or Hand the obvious involution on K if and ooly
ifaxioms (1) and (2) hold:

(1): if a subspace U of E satisfies U = (ljol)ol then E = U EB ljol,

(2): there exists a sequence (In)nEN in E such that In .l.. Im for n '# m,
and < In, in >= 1 for alt n E N.

(here X 1. y is clear1y defined by < x, y >= 0).

We also mentioned some applications of this characterization in infinite dimensional
projective geometry, orthomodular lattices and Quantum Mechanics (see: S. Hol­
land, Bull AMS 32 (199S), 205 - 234).

s. Pumplün

Composition algebras over rings of genus zero

In contrast to composition algebras over fields little is known about composition
algebras and their norm forms over arbitrary (commutative) rings. The only promi­
sing line of attack here seems to be considering special classes of rings. In partieular
one can look at eomposition algebras over a ring R where SpeeR is an open den·
se subscheme of some curve ~X" of genus zero over k (k a field). With the help of
results from algebraic geometey, the theory of eomposition algebras over locally rin­
ged spaces by Petersson, the theorem of Hurwitz by van Geel as weIl as with some
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elementary lattice theory the strueture of these algebras is eharaeterized. They are

elassified for certain base fields k, when SpecR = X - {Po, ... , Pn }, t deg Pi = 2.
i=p

earl Riehm

Absolutely irreducible orthogonal representation of finite groups

K is a field of ehar 0, b : V x V --+ K a non-degenerate symmetrie bilinear form,
and cp : G --+ O(b) an orthogonal representation of the finite group G.

It was shown that if c.p is absolutely irreducible as a linear representation, then the
orthogonal equivalenee classes of orthogonal representations whieh are linearly equi­
valent to <p, are in bijective corresponclence with K*/K*2 , while those whose bilinear
form is equivalent to be eorrespond to the subset M(b)/K*2 where M(b) is the group
of multipliers {o E K* : ob "-i b}.

It follows at once that if the degree of <p is odd, orthogonal equivalenee is the same
as linear equivalence (assuming absolute irreducibility).

Assume the degree of <p is even. Then it was shown that in many eases, the Clif­
ford invariant of A. Fröhlich distinguishes the orthogonal representations linearly
equivalent to 'P; finally these results were applied to the case G = Sn.

Markus Rost

On THE H 3 -invariant for simply connected groups

Let G be a simply connected algebraic group over some field k. Then there is an
invariant

with the following property: For x E H 1
( k, G) let Px / k be the corresponding

G-torseur. Then the kernel of the restrietion map

is generated by e (in case when the Lie algebra of G is simple). There are various
definitions of e due to J.-P. Serre and the lecturer (see also Serre's Bourbaki-talk
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in March '94). In the lecture we discussed the possibility of defining e using motific

cohomology. This way gives an immediate interpretation of e as a torsion-variant

ov~r fields of the standard H4(_tZ)-characteristic class, wellknown e.g. in topology.

C. Scheiderer

Sums of squares' and etale cohomology

Let A be a ring with 1/2 E A, let H*(A) = ffi~oH~t(A, Z/2). For n E .A* let (n) be

the image of nunder the boundary A* --+ H 1(A) coming from 1 -+ 112 -+ Gm 2.

Gm ~ 1. Let 0 be an element in the symbolic part of H*(A) (which is the subring

generatedby the (n"),n E A*). It is known that oU(-l)N = °for N'~ _O,iff 0K = 0

in H*(K) for every homomorphism. A --..:... K into areal closed field .J(~ We give

some quantitative versions of this' fact. For example, if u E A* satisfies anequation

um = 1+n in A (where m stands for a surn of m squares) then (u)m+n == O. At least

in the case n = 0, this bound is best possible in general. If the sums of squares satisfy

suitable Tl transversality" conditions, the general bounds can be improved. All these

upper bounds are. obtained using the existence of (etale) Stiefel-Whitney classes of

quadratic forms (over rings). We also have localization theorems like the following:

If n E A* satisfies u = nmodI, I C A being an ideal, then, (u)n annihilates kernel

and cokernel of the restrietion maps H:t ( A)~ H:t ( U), q ~ 0, U := complement of

Spec(A/ I) in SpecA. '.

Tara Smith (University of Cincinnati)

Subgroups of W-groups and Witt rings

Let F be a field of characteristic # 2, and let F(3) denote the composition over

F of all quadratic, cyclic of order 4, and dihedral of order 8 extensions of F.

Let GF = Gal(F(3)/F), the so-called W-group of F. Then it is known that

WF ~ WK ===? GF ~ GK , and CF ~ GK ====? WF ~ WK under the additio­

nal assumption t~at if < 1,1 >F is universal, then s(F) = s(K). Thus one would

expect that the subgroup structure of GF would yield information about the qua­

dratic structure of F.

A first question is which groups can be subgroups of CF. It is not hard to show

that the quaternion group cannot be. Ir one consider only "essential subgroups", i.e.

R s.t. ~(H) = H n ~(GF) (4) = frattini subgroup), then no group having Z/2Z
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as a direct factor occurs as a subgroup. So far, aB known essential subgroups can
themselves be realized as W~groups. Observe that if K is the fixed field of H, then
H is also a quotient of GK. H is the W-group realization of the image of WF in
W K. The question when H is itself a W-group is related to when the image of WF
is again an abstract Witt ring in the sense of MarshalI.

R. S~jatha, TIFR, Bombay

On the Hasse principle for Witt groups (joint with R. Parimala)

Let X/k be a smooth projective curve over a number field k of char =1= 2. Assurne
that X(k) # 0. Let W(k(X)) denote the Witt group and P(k) the set of places of
k. For v E P(k), let kv denote the completion of k at v. We prove that the kernel

K = Ker(W(k(X») -+ II W(kv(X))
vEP(k)

is isomorphie to 2III(J(X». Here 2III(J(X» is the 2-torsion subgroup of the Tate­
Shafarevich group of the Jacobian J(X), X = X Xk k. This group (2III(J(X») is
finite.

As anapplication, we show that if E is an elliptic curve over a number field: elements
in the kernel K are quaternion norm forms of the type « x, a > or ~ ~ - aT, T ~

where a, T E k* and a I D, the discriminant of the curve.

Finally, we note that the hyothesis X(k) =1= 0 is necessary by considering the example
of an anisotropie conie over a number field.

N guyen Quoc Thang

On certain corestriction maps

Let G be a linear algebraic group defined over a field k of char O. If G is commutative
one can define corestriction maps for all finite extensions k' of k.

Cor: Hi(k', G) --+ Hi(k, G), where Hi(k, G), ... stands for usual Galois cohomolo­
gy groups of G, (i ~ 0). However, if G is not commutative, perhaps there is no func­
torial definition oI such corestriction maps for cohomology sets Hi(k, G)(O :::; i :::; 1).
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Here we consider tbe {ollowing weaker variant for the corestriction "situation": As­
surne we are given a map 0k :' HP(k, C) ---+ Hq(k, T) wbich is functorial in k, where
G is a non commutative k-group, T a commutative k-gro~p. One has similar maps
01;: : HP(k', C) -:-+ Hq(k', T) for all finite extension k' of k, and also corestriction

maps Hq(k', T) ~ Hq(k, T).

Question: When does Cor(Jm(O'k')) C I mOk? If the question has an affirmative
answer for all k', we say that the Corestriction Principle holds for the Im of map
01;:. One can define similar notion for Kernel of a map ßk : HP(k, T) -+ Hq(k, G),
which is functorial in k.

In this talk we show that over local or global fields, the Corestriction Principle holds
for the image or kernel of maps 01;:. Also a reduction theorem for tbe case of arbitrary
fields of cbar 0has been stated.

Jean-Pierre Tignol

The Witt kernel of a finite field extension

Let F be a field of charaeteristic =I 2. For any monic separable polynomial1f E F[t] of
degree 2n, define an F - algebra M 1r as the quotient of the free algebra in 2n variables
f {at, , an; b17 • •• , bn } by the relations which make 1r = (t n +attn

-
t +:-.. +an)(tn+

bttn
-

t + +bn ). This algebra carries an· involution U'fr such that O'1r(ai) = bio Using a
generalization of the Cassels-Pfister theorem for algebras with involution, we prove
that an involution t7 on a central simple algebra A over F becomes hyperbolic under
scalar extension to F[t]/(1r) if and only if there is ahomomorphism of" F-algebras
with involution (M:r,u tr ) --+ (A,u). This result is used toparametrize the 2-fold
Pfister forms which become hyperbolic under a scalar extension of degree 4.

Adrian Wadsworth (University of Ca~ifornia, San Diego)

Index Reduction Formulas and Discriminant Algebras

This is areport on joint work with A.S. Merk'urjev and LA. Panin. Let G be a
semisimple connected linear algebraic group over a field F, and let X be a projective'
varietyon which G/Z(G) acts over F, with the action transitive over F~. Let C =
character group of the center of G x F Fa, and Ka the smallest field extension of F
so that the absolute Galois group of K a acts triviallyon the Dynkin diagram of G.
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The general index reduction formula says that for any central simple algebra D over
F,

ind(D 0F F(x)) = gcd( gcd nt/;,E [E: F] ind(D 0F AG(1/J)E)).
tPeC Efield,FtJI '5 E '5 K G

The talk concerned determining the algebras AG(1/J) (the Tits algebras) and the
integers nw.E appearing in this formula for specific groups G and varieties X. We
have determined these for all the classical almost simple groups G and all their
associated varieties X. This was illustrated with the following example: Let L / F
be a Galois field extension of degree 2, let A be a central simple L-algebra of even _
degree n = 28, and G an L/F involution of the second kind on A. Let .,

G = SU(A,O') = {a E A* IO'(a)a = 1 and ind(a) = I},

and

2

X ={/ I / is a right ideal ofA, dimL(I) = ~, and u(I)/ = O}.

For this case, the index rcduction formula. becomes

ind(D 0F F(x)) = gcd(ind(D), ind(D 0F V(A, 0')),

Here V( A, 0') is the "discriminant algebra of (A, 0'))" .

L. Walter

Reduced forms of higher level on a commutative ring

The reduced theory of quadratic forms over a formally real field K is the study
of the reduced Witt ring W(K)/Nil(W(K)) and its natural embedding as a sub­
ring of C(X(K), Z), the ring of locally constant integer-valued functions on the
space of orderings of K. One may identify X (K) with the closed set of characters
0' : K --+ S· of order 2 whose kerneIs are additively closed. The evaluation maps
a : K* --+ {±1}, a E K*, defined by Cf t------+ O'(a), generates the reduced ring as a .
subring of C(X(K), Z).

By replacing the condition "(j has order 2" with "(j has finite even order", one de­
fines the notion of a signature of higher level of K. Reduced Witt rings of higher
level are then defined to be a subring of C(X, Z) generated by the evaluation maps
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a, a E K*, taking X to be the set of characters with additively closed of order 2s,
wbere s divides a given positive integer n. All of the notions, methods and results
of tbe reduced theory ofquadratic forms have been successfully extended to this
higher level setting.

One can consider quadratic forms over semilocal rings. In this case there is a na­
tural embedding of the reduced Witt ring in C(X(A), Z) where X(A) is tbe space
of maximal orders of A. Recently, it has been shown that the reduced theory of
quadratic forms can be extended to an arbitrary commutative ring by replacing the
space X(A) with the subspace XT(A) of maximal orders lying over a given preorder
which is "well-behaved".

In this paper, we continue these two directions, developing a higher level theory for
commutative rings, where maximal orde"rs are replaced by the notion of a maximal
signature of higher level.

Roger Ware

On the Quaternion Group as Galois Group

Let Hs denote the quaternion group of order 8. A well-known theorem of Witt states
that Hs can be realized as a Galois group over a field F{charF =1= 2)~ the form
< 1,1, 1 >~< u, v, uv > where u, v represent independent square classes-over F. In
this talk conditions are given for the non-realizability of Hs in terms of the structure
of the max. pro-2-Galois group GF (2) = Gal(Fq / F), where Fq is the quad. closure
of F.

Let A be the class of torsion free abelian pro-2-groups and let i be the class of pro­
2-groups generated by involutions. erven pro-2-groups Gt , G2 , let GI *2 G2 denote
the free pro-2-product and if G acts on A E A, let A x G denote the semidirect
product. Defi"ne a class J of pro-2-groups as folIows: Jl = {Z/2Z, Z2} and having
defined Ji , let

Ji+t = J i U {GI *2 G2 t GI, G2 E J i , GI
U {A x G I A E A,G E Ji };

or G2 E i}
J = U~lJi'

i

I.
Theorem: Suppose F has at most a finite number oIorderings.
Then Hs does not occur a.s a Galois group over F <=? GF (2) E J.
Cor 1: F is non real and Hs does not occur <=? either GF (2) is torsion free abelian
Q!. has generators {Yi, x }ie! with relations YiYj = YjYi and XYix-t = yrm for aB i,
where m = 2n

, n ~ 0, is fixed. Here n is the largest integer s.t. F contains a primitive
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2n +2 th fOOt of 1.
(Examples: C((tl)) ... (t n)); Qp((t 1 )) ••• ((tn)),p == Imod4).

Berichterstatter: M. Meurer
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