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The conference was organized by Wolfgang Arendt (Ulm) and Jan Prüß (Halle). There

were 44 participants from 14 countries. The main subjects of the meeting were t~e following:

a) Hoo·Calculi of Operators and Maximal Regularity

b) Heat Kernel Estimates and G30ussian Bounds

c) IntegrodifferentiaJ Equations and Viscoelasticity

d) Nonlinear Evolution Equations

To present the state of the art in each of these fields, four survey lectures were given, namely

by A. McIntosh (30), E. B. Davies (h), M. Renardy (c), and H. Amann (d). 16 further

plenary talks on very recent results showed the dynamic development in these subjects and

the interesting interplay. The long breaks between the talks and ample free time were used

for direct communication, resea.rch, and many interesting discussions. There were also a few

spontaneously organized informal sessions on special subjects and problems.

Abstracts oe Plenary Lectures
H. AMANN

Remarks on Evolution Equations and Fourier multipliers

In this survey we indicate the usefulness of the theory of Banach-space-va.lued distribu­

tions for the study of linear and nonlinear evolution equations. In particular we present a

Fourier multiplier theorem for operator-va.lued symbols that applies to general Besov spaces

of Banach-space-valued distributions without any restrietion on the underlying Banach space.

Applications to maximal regularity results are indicated.

C. J. K. BATTY .

Local spectrurn, asympto~ behavior and Tauberian theorems
/

Let f : R+ --+ X be bounded and uniformly continuous, and suppose th30t the Laplace

transform of f has only countably many singular points in iR, and for each singular point if],

.~~ ~ 111' e-'QU f(s +U)dull =0 ,
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uniformly for s ~ O. It is shown that II/(t)1I~ 0 aB t~ 00.

This result is derived from a loeal version of a theorem of Arendt and Batty, Lyubieh
and VÜ concerning st30bility of uniformly bounded Co-semigroups. In turn, the result can be
applied to extend that loeal theorem to eertain orbits of unbounded semigroups.

Related results have been obtained by Vü, Ruess and de Laubenfels.
(Joint work with Jan van Neerven and Frank Räbiger.)

P. BENILAN

Singular limit of semigroups

We eonsider the abstract general problem:

X Banach space

(Am )m=1.2, ... ,oo m-accretive operators in X, Am ---+ Aoo in the sense cf graphs as m -+ 00

(/m)m=l,2, ... with Im E D(Am) and Im ---+ I in X aB m ---+ 00

If I E D(Aoo ), the Trotter-Kato-Br~zis-Pa.zytheorem states that

e- tA ,. Im ---+ e-tA- I in X uniformly for t ~ 0 bounded.

Problem If I ~ D(Aoo ), wh30t can be said 3obout limm_ oo e-tA
,. Im ?

Remark In general there is na limit for t > 0 as shown by the example :

X =]R2 =C , Am = -mi , D(Aoo ) ={O} , AooO =X .

In the linear case, one has convergenee cf the funetian um(t) = e- tAna Im to ~ in
V'(]O,oo[;X) where Uoo is the mild solution of~ + AooUoo :3 Ion (0,00), Uco(O) = Q.

In particular, the following are all equivalent:

i) for same 0 > 0, (um(t» converges in X for 30.30. tE (0,0)

ii) for any 0 > 0, there exists t E (0, 0) sach that {um(t); m E N} is relatively compact in
X and nmeN {uJ:(t); k ~ m} C D(Aoo )

iii) Uoo E Ci(]O, 00[; X) and Um ---+ U~ in C(lO, 00[; X).

In the nonlinear case, no general result seems to be known. We cansider the particular

problem

{

Ut = ~um + g(u) on Q =]0, T[xn
(Pm) U = 0 on (O,T) x an

u(0, .) = f on n '"

where n is a. bounded open set in RN, I E LOO(O), I ~ 0, 9 : lR+ .-:..... R is continuous with
9(0) 2: 0, dg/dr ~ K with K E C(R.+) and the solution of AI = g(M), M(O) = 11/1100 is
defined on [0, T). (Pm) has a unique weak solution, denoted by Um' One has

Theorem (P. Benilan, N. Igbida) As m ---+ 00, Um ---+ U oo in C(]O, T[; L i
( nn where U co is
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the unique solution of variational problem:

{

Uoo E L~e([O, T) x Ö) n C([O, T); LI(O», 0 5 Uoo ~ 1 ,
there exists W oo E C(]O, T[, HJ(O», W OO ~ 0 ,

woo(uoo - 1) = 0 I a;; = Awoo +g(uoo ) in 1>'(Q) I

uoo(O,·) = l =!X(w>O] + X[w=O] ,

where w is the unique solution of

{

W E HJ(O) , ßw E LOO(n) , °5 f +ßw ~ 1 ,
w ~ 0 , w(f +ßw - 1) = 0 .

e This result is obtained by combining the result in the case 9 == 0 (cf. P. Benilan, L. Boccardo,
M. Herrero 1989) and an abstract perturbation result (cf. P. Benilan, N. Igbida 1996).

Corollary (P. Benilan, N. Igbida) If g(l) ~ 0, then Um ---... !l in C(]O, T[; L 1(n», where !l is
the solution of the o.d.e. il = gC!l) on Q, 1[(0, .) = 1 given above.

D.BOTHE

A reaction-diffusion system with moving boundary

We study a mathematical model desribing the regeneration of exhausted ion exchangers.
In this chemical process we have a number of pellets carrying a chemical B with uniform

_ concentration CB, placed in the (liquid) bulk phase of a reactoT. The bulk phase carries a.
chemical A with concentration c~ which diffuses into the pellets, where it reacts with B to
produce a certain substance. Since this is a fast reaction, we study the limit case of an
instantaneous reaction in which case A and B cannot coexist, i.e. CA· CB = 0 where CA ia the
concentration of A in the pellets. Consequently, A and B are separated by a moving interface
and, since the pellets are of spherical shape, the interface has spherical shape too. Moreover,
the model can be reduced to one space dimension. We assume the bulk phase to be ideally
mixed exept near the surface of the pellets, where we use the so-called film theory. Fina.lly,
balance of mass for the bulk phase yields a dynamical boundary condition at the tilIii surface.
This leads to the following mathematical formulation.

OtCA = D~Or(T20rCA) t > 0, u(t) < r < R CA(t, r) = 0 on [0, u(t)]
if u(t) > 0, lJ,.CA(t,O) = 0

OtCA = D/~{},.(T2a"CA) t > 0, R< T< R+ 6 cA(t,R-) =cA(t,R+)/HA

CB OtU3 = -3DU20rCA(t, U(t)+) t > 0 Dß"CA(t, R-) =D'O,.CA(t, R+)
VLatC~ = vI (c~ - c~) - AD'8"CA(t, R + 6) t > 0 CA(t, R +ci) =c~(t) .

CA(O, r) =0 on [0, R], .CA(O, T) =CA,O(t) ~ 0 on [H, R +6], g(O) =R, c~(O) =c~,o ~ 0 .

Here flet) is the position ofthe moving boundary at time t and its dynamit behavior is modeled
by the third equation where we used e3 instead of U, since tms is the right formulation to
have conservation of mass to be incorporated into the model.

We write this aß a nonlinear evolution equation and the canonical setting is to work in
Ll-spaces, in order to be able to exploit conservation of mass. In fact, it turns out that the
corresponding operator is dissipative and also satisfies the range condition. Consequently, we
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get existence of a unique global mild solution from the Crandall·Liggett-theory. Ta obtain fur­
ther regularity we characterize the generalized domain and prove that solutions immediately
enter this set, given that the initial values (corresponding to CA) belong to L2.

Concerning the asymptotic behavior we finally show that every mild solution tends to the
unique stationary solution uoo(t) == (c~/HA, c~, O,~)

(Joint work with J. Prüß, Universität Halle.)

D.DANERS

Domain perturbation for parabolic equations

We study convergence properties of solutions of the nonlinear parabolic equation

1
a'Un - A(x, t)Un= fex, t, un) in On X (0, Tl
tLn = 0 on ann X (O,T]
tLn(O, .) = UOn in On

as On --+- n und UOn --+- Uo weakly in L 2 • Here A(x, t) is a uniformly strongly elliptic
operator of second order in divergence form with real bounded and measurable coefficients.
Convergence of domains is strongly singular and includes cutting small holes or a dumbbell
with shrinking handle. We show that the existence time t+( Uo) of the solution is lower
semicontinuous with respect to the domain and initial values, and that the solution of (*)
converges to the solution of (*) with n deleted in L q (q E (1,00» uniformly with respect
to compact subintervals of (0, t+(uo). In a periodic setting one can prove results on the
existence of periodic solutions cf (*) near a periodic solution of the unperturbed problem.
This can be used to construct examples of parabolic equations having an arbitrary number
of periodic solutions.

E. B. DAVIES

Heat kerneis cf self-adjoint elliptic operators

If K(t, x, y) is the heat kernel of a self-adjoint elliptic operator of order 2m on L2(JRN)
one can often prove an upper bound of the type

for a1l t > 0 and x, y E ]RN. This type of estimate is standard for uniformly elliptic divergence _
form self-adjoint operators of order 2 with real measurable symmetrie coefficients. .,

For higher order uniformly elliptic operators with measurable coefficients, or for second
order operators with complex coefficients one needs a dimensional restriction N ::; 2m for the
bound to be valid. For strictly elliptic second order operators with LP coefficients the natural
distance associated with the coeflicients may be identically zero, so no Gaussian bound need
exist. For Laplace operators on manifolds the long time behaviour of K (t, x, y) for fixed x,
y is independent of x, y aB far as the order of magnitude is concerned, but the actual rate of
decay is not simply related to the geometry of the manifold.

4
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J. ESCHER

Classical Solutions to some Multi·Dimensional Moving Boundary Problem

Let J and f o denote two compact disjoint hypersurfaces in Rn and consider the following
moving boundary problem: Find a function u and a family of hypersurfaces r = ur, such
that:

~u =0 in {}t}
a"u = b on J
u=u", on f t (*)
V = -a"u on f t

ft=o =f o .

eHere, b E CI(J) is given, U E R is the surface tension, " is the mean curvature of rT , V is
the normal velocity of r. We prove that :

(i) If u > 0 then (*) is classically well-posed.

(ii) If u < 0 then (*) is linearly ill-posed.

(iii) Ir u = 0 and b ~ 0 then (*) is c1assically well-posed.

(iv) If u = 0 and b < 0 then (*) is ill-posed.

(Joint work with G. Simonett, Vanderbilt University, Nashville.)

G. R. GOLDSTEIN

Smoothing for Nonlinear Parabolic Problems

Of concern are equations of the form

au n Ö
8t = ~ 8Xi [tPi(X, Vu») (x, t) E fl x (0, Tl ,

-?$(x, u) . ii = ß(x, u) (x, t) E an x (0, Tl ,
u( x, 0) = f( x ) x E n .

Here n is a bounded domain in Rn with smooth boundary, ;; is the outward unit normal to
n and 1$ = (1/;1' ... , .,pn)' Under suitable conditions it is shown that for f E LI(n) and t > 0,
one has u(', t) E LOO(!1) and

IIu(" t)lIoo ~ C(T)t-tllflh

lIu(" t)1I2 ~ C(T)t-( '+1)lIflh
for n ~ 3.

Analogous estimates are obtained with other powers of t in dimensions n = 1,2. On addition
our estimates show that sUP(z,')EOx(O,T] lu(x, t)1 < 00, and IIUt(', t)1I3 ~ 0, IIVzu(., t)1I2 ~ 0
as t --+ 00.

(Joint work with Jerome A. Goldstein. )
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P. E. T. J0RGENSEN

Asymptotics cf periodie subelliptic operators

We establish that heat diffusion with periodic conductivity is governed by two scales,
referring to .time, t ---+ 0+, and t --+ 00. The small time diffusion is described by the
geodesic distance dc where

d.{3:, y) := sup {.p(X) - .p(y) It: .pie;;.p; ~ 1 }

with Cij E Loo and C = (Cij) real and symmetrie defining the 2nd order term in the heat
equation. The large time behavior, on the other hand, is dictated by a different and simpler
distance associated with a certain homogenized system c, and a diffusion semigroup {St} , _

tEB+ •
where C= (Cij) corresponds to a constant coefficient problem, and scaling c:j(x) := Cij(X/i).
We show limf_o S: = St. Our main result is

lim liSt - S.II = 0'-00 p_p

where p ---+ p refers to the V·to-V operator norm, and St is the diffusion semigroup cor­
responding to the initially given variable coefficient problem. Our methods are general and
apply to stratified Lie groups, and we solve a problem raised by E. B. Davies.

(Joint work with C. Batty, O. Bratteli, and D. Robinson.)

V. LISKEVICH

Dominated semigroups with singular complex potentials

We develop perturbation and approximation theory for Co+semigroups on V-spaces (1 ~

P < 00) with singular complex potentials.
In the first part of the ta.lk for operators H associated with Dirichlet forms and complex

locally integrable potentials q with negative real part in the Kato dass we construct an
extension of H +q which generates a Co-semigroup on V and prove an approximation theorem
for this semigroup approximating q in the sense of Lloc-convergence. This result is a joint
work with P. Stollmann. The main tool we use in the proof is the Feynman-Kac formula.

In the second part we are in a more general context. Namely, we consider a Co-semigroup
(S(t); t ~ 0) on IJ'(M,p.), (M,p.) is an arlltrary measure space. The only assumption we
make on S(·) is that there exists a positive Co-semigroup (U(t); t ~ 0) which dominates S(·). ..
This part is a genera.lization of the perturbation theory by J. Voigt, which was developed ,.
for positive semigroups with real potentials. We construct the perturbed semigroup with
the same conditions on the real part of the potential aB in Voigt's theory, and with "regular"
imaginary part. For tms semigroup we prove a. dominated convergence theorem assuming that
the corresponding approximating sequence of the potentials converges almost everywhere.
The main example considered is the Schrödinger operator with singular magnetic field and
complex potential. We prove also a new domination criterion for this operator. This is a
joint work with A. Manavi.
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8.-0. LONDEN

Fractional conservation laws

Estimates of the difference between the entropy solutions of the single conservation law
Ut +div g(u) = 0, u(O,·) =uo, and of the evolutionary integral equation

are given in terms of k, 9, and uo. A corresponding result is obtained for more general
evolution equations with an accretive nonlinearity.

A. LUNARDI

Optimal Hölder regularity for elliptic and parabolic equations with unbounded coefficients
in Rn

We consider the problems

(E) AU - Au = I , x E Rn, (P)

where

{
Ut-AU=g(t,X) O~t~T,xE;Rn
u(O, x) = uo(x) X E Rn

n n

Au(x) = E qij(x)Diju(x) + Ebi(x)Diu(x) = Tr(Q(x)D 2u(x» + <B(x), Du(x»
i,j=l i=l ~

Q(x) = (Q(x)t ~ 0, qij bounded, bi Lipschitz continuous (possibly unbounded).
We give sufficient conditions in order to get optimal Schauder type esti~ates for the

solutions of (E) and (P), and precisely:

(1) VA > 0, VI E e8 (Rn), (0 < 8 < 1), (E) has a unique solution u E C2+8(Rn) and

lI u llc:l+f(Il"> ~ Cll/llc'(IIl")'

(2) Vg E C([O, Tl x Rn) such that g(t,·) E e8(Rn) and sUPO<t<T IIg(t, ·)lIc'(lIl") < 00;

Vuo E C 2+8(JRn) (0 < () < 1) problem (P) has a unique solutiön- u E el.2([O;~:T] x Rn);
moreover u(t,·) E C 2+8(]Rn) Vt E [0, T] and -

sup lIu(t, ·)lIc:l+l(IIl") $ C (lIuo Il C :3+'(Ba) + sup IIg(t, ')lIc,(s.») .
O~t:S;T O:S;t:S;T

e The simplest case in which (1) and (2) hold was described by Da Prato - Lunardi (JFA 1995),
in the case Q(x) == Q > 0, B(x) = B . x, B any matrix.

A second situation in which (1) and (2) hold is when qij, bi are Lipschitz continuous
and bounded, qij are differentiable and moreover Q(x) ~ ZII, x .-... <Dqij (x ), B(x)> is
bounded [Lunardi. Vespri, preprint]. Ther~ are similar results also in the degenerate case
Det Q(x) = O. In [Lunardi, preprint] it is studied the case where

Q(x) =Q =Q. , B(x) =B· x , det Q =0

under the hypoellipticity assumption

Rank [Ql/2, BQl/2, .... Bn
-

1Ql/2] = n .
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Then it is possible to deeompose IRn = Eo EB EI E9 •.. EB E", k ::; n - 1 in such a way that
setting

C:(lRn) = {cp E Loo(Rn) : VXo ERn, cp(xo + ·)IE• E C 8/(2l:+I)(E.:)}

I!cpI!C:(lI ft
) = z:~f.1I ep(xo + ·)IE.llc,,<n+l)(E.)

the results (1) and (2) are true with C~, C:+2 replacing C', C IJ+2 , respeetively (in this ease,
however, there are distributional solutions, not classical ones).

The proofs are based on the estimates for the semigroup T(t) associated to problem (P),

in the nondegenerate ease, and

in the degenrate case, which allow to prove (1) and (2) by an interpolation proeedure.

A. MclNTOSH

Functional caleuli, quadratic estimates, and interpolation theory

This is a survey talk about holomorphie funetional calculi of operators of type w in
a Hilbert space. We consider the connections with quadratic estimates and interpolation
theory. These results will be considered in the eontext of proving that the operator -bß.
has a bounded holomorphic funetional caleulus in Lp(f!), 1 < p < 00, if b E Loo(O) and
Re b ~ K. > O. (The more recent results were obtained in collaboration with Pascal Auseher
and Andrea Nahmod.)

M. PIERRE

A tridimensional inverse shaping problem and an Hamilton-Jaeobi equation on a closed sur­
face

We discuss a question whieh arises in the following tridimensional inverse shaping problem:
Can one find a distribution of eurrents around a levitating liquid metal bubble so that it takes
a given shape? It leads to the resolution cf a Hamilton-Jaeobi equation of eikonal type on the _
surface of the bubble which has a self-contained interest. We answer the question for closed •
smooth surfaees which are homeomorphic to a sphere. We give a necessary and sufficient
condition on the data for existence and uniqueness of a Cl-solution. It follows that small
analytic perturbations of admissible surfaces may not be admissible.

(Joint work with Elisabeth Roisy.)

M.RENARDY

Some Mathematical laBues in Viscoelastic Flows

The lecture reviews a number of topics in viscoelastic fiows which present challenges to
mathematics and open problems. In particular, the following issues are diseussed:

8
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1. Stability of viscoelastic ßows

In stability studies, two premises are often taken for granted: First that linear stability
implies stability to small disturbances, and second, that linear stability can be determined
from the spectrum. There are abstract results which imply this for Newtonian ßows. However,
viscoelastidty introduces a hyperbolic component to the equations of motion, and there are
actually counterexamples of hyperbolic PDEs where linear stability is not determined by the
spectrum. The talk shows such a counterexample and also presents some positive results for
hyperbolic PDEs in one space dimension and for flows of fluids of Jeffreys type.

2. Corner singularities in viscoelastic fiows

Problems with reentrant corners have long caused difficulties for numerical simulations. In
contrast to the Newtonian case, where corner behavior is dominated by the Stokes equation,
corner singularities in viscoelastic flows are highly nonlinear. Recent results have shed some
light on the corner singularity for the upper convected Maxwell fluid, and also on the souree
of numerical problems. Future challenges include the analysis of other constitutive models as
weIl a.s the possibili ty of a more generalprogram of high Weissenberg number asymptotics.

3. Problems with open boundaries

Computationa.1 problems often involve truneation of the domain, leading to boundaries which
are crossed by the fluid. The memory of viseoelastic fluids leads to the need for extra.
boundary conditions at inflow boundaries. The talk reviews results on the well-posedness
of such boundary value problems for steady flows of differential fluid models of Maxwell or
Jeffreys type. There are many open problems such as a more complete characterization of
admissible boundary conditions and a satisfactory analysis of time-dependent ßows.

D. W. ROBINSON

Complex elliptic operators: Gaussian bounds and Hölder continuity

We review the theory of second-order elliptic operators with complex measurable coeffi­
dents.

The theory for real coefficients developed vigorously in the period 1955-70: Di Giorgi
and Nash independently proved boundedness properties and Hölder continuity of solutions
of the corresponding elliptic and parabolic equations, in 1957; Aronson established':- Gaussian
bounds for the parabolic solution, the heat kernei, in 1967. Then Di Giorgi ga.ve an example
of an elliptic system for which boundedness and continuity fall, in 1969.

Since 1980 renewed interest in these problems has developed both in the classical context
and for operators on Lie groups or general manifolds. In 1985 Davies developed aperturbation
technique for deriving near optimal Gaussian bounds from appropriate crOSS-Darm estimates
of the evolution semigroups from L 1 to L oo • Hölder continuity inquires similar estimates from
L 1 to Co. The cross-norm estimates on the Lp-spaees have then been established by various
techniques: Sobolev, log-Sobolev, or Nash inequalities. (For manifolds the validity of these
inequalities, or the cross-norm estimates, are equivalent to geometrie growth properties.)

In 1985, an example of Maiya, Nazarov and Plemenskii established that Di Giorgi esti­
mates can faH for complex operators in spatial dimensions five or more; so Gaussian bounds
and Hölder continuity also fail. In 1994, Auseher, McIntosh and Tchamitehian proved, how­
ever, that the bounds and continuity are valid for dimensions one and two. Then in 1995,
Auscher showed that uniform continuity of the principle coefficients suffices for both Gauss­
ian bounds and Hölder continuity. This proof is based on elliptic Di Giorgi estimates and
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cross-norm estimates for Morrey spaces.
In 1995, ter EIst and Robinson established Gaussian bounds and Hölder continuity for

the heat kerneIs associated with complex subelliptic operators on Lie groups. Their methods
extend Auseher arguments by use of parabolic techniques.

H. SOHR

A perturbation theorem for the sum cf two operators with applications to partial differential
equations

Consider some Banach space X which possesses the UMD-property and two operators A
and B densely defined and with dense ranges in X. Then under some assumptions on their
resolvents and imaginary powers it can be shown that the norms

are equivalent for all 0 :$ er :$ 1. This result yields same new properties of weak solutions
.of the Navier-Stokes equations in exterior domains in particular concerning their asymptotic
behavior as t --+ 00. Furthermore it yields the praof of the Helmholtz decomposition in L9,
q > 1, for infinite cylinders.

(Joint work with Y. Giga and M. Giga.)

O. J. STAFFANS

Coprime Factorizations and Optimal Control of well-posed L2-systems

We study the infinite horizon quadratic cost minimization problem for well-posed L2.
systems (= abstract linear control systems). First we show that the transfer function of every
jointly stabilizable and detectable L2-system has a doubly coprime factorization in 1l00

• The
converse is also true: every function with a doubly coprime factorization in 1/.00 can be realized
a.s the transfer function of a jointly stabilizable and detectable L2-system. We then solve the
quadratic cost minimization problem in state feedback form, and tie the solution to a coprime
factorization with an inner numerator. Moreover, under an extra regularity assumption, we
show that the optimal cast operator satisfies an algebraic Riccati equation. This Riecati
equation is nonstandard in the sense that the- positive definite· weighting operator in the
quadratic term differs from the expected one, and the computation of the correct weighting
operator is a nontriviaJ task.

Definition of well-posed L 2-system:
u = control, x(t) =A(t)xo + BT(t)u = statej Y=Cxo + V1r+ U = observation;
A(t + s) = A(t)A(s), A(O) = Ij A(t)8 = 8T(t)lf_i CA(t) = lf+T(I)Ci r(t)V = Dr(t) , e
1r_V1r+ =0; 1T+D1r_ =CB. .

K. T. STURM

Dirichlet forms, diffusion processes and geodesie spaces

Every regular Dirichlet form (H i u, Hj 11) defines in an intrinsic way a metric f} on the
underlying state space. This metrie turns out useful to describe several properties of the heat
semigroup e- Ht or of the Markov proeess associated with the Dirichlet form. For instance, if
the volume growth r ........... m(B r (xo)) of balls in this metric is ::; C . r 2 (for T --+ (0) then the
semigroup is recurrent.
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1

H the volume growth is ~ eC .,.2 then the semigroup is conservative, in particular,

If the volume growth is subexponentiaJ, then !Ie- HC 112.2 = 1.
Other topics are Gaussian beat kernel estimates cf the type

and capacity estimates of the type

cap F ~ (1'" m(~~[F)))-1

The latter can be applied to the problem cf hitting the noda! lines {t,O = O} of the weight
function c.p ~ 0 on Rn by·the diffusion process associated with the operator H =-ß +27V.

A. F. M. TER ELST

Weighted subcoercive operators on Lie groups

Let U be a continuous representation of a Lie group G on a Banach space X and 41' ... , adl

an algebraic basis of the Lie algebra g cf G, i.e., the ab' .. , ad' together with their multi­
commutators span g. Let A. = dU{a.) denote the infinitesimal generator cf the continuous
one-parameter group t ~ U(exp( -ta.» and set Ao = Ail ••. A•• where er = (i lt .•• , in) with
i j E {I, ... , d'}. We analyze properties of m·th order differential operators

dU(C) = E coAo

lolSm

with coefficients Co E C.
If L denotes the left regular representation of G in L 2 ( G) then dL(C) satisfies a Ga.rding

inequality on L 2(G) if and only if the closure of each dU(C) generates a holomorphic semi·
group S on X in an open representation independent subsector of the sector of hol6morphy,
the action of 56 is determined by a smooth, representation independent, kernel K z which,
together with its derivatives AoK z , satisfies m·th order Gaussian bounds and, in case U is
unitary, (SZ)6 is quasi·contractive on a subsector.

Alternatively, dL(C) satisfies a Gärding inequality on L,(G) if, and only if, the closure cf
dL(C) generates a holomorphic, quasi-contra.ctive, semigroup satisfying bounds IIAi ScII2_2 ~

c t- 1
/

m ewt for all t > 0 and i E {l, ... , d'}.
These results extend to operators for which the directions al, •.• , ad' are given different

weights. The unweighted Gärding inequality is astability condition on the the principal part,
i.e., the highest order part, of dL(C) but in the weighted case the condition is on the part of
dL(C) with the highest weighted order.

(Joint work with D.W. Robinson.)
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H. TRIEBEt

Fractals and spectra

n bounded, smooth domain in Rn
r compa.ct set in Rn ,r c n

r is said to be a d-set, 0 < d < n, if 'H.d Ir (Hausdorff measure restricted to r) has the
property (1ld lr ) (B(x, r» f'\J rd

, 0 < r < 1, Vx E r.
(tr~1L) (cp) =Ir (trrU ) (")') (CPlr) (")')1ld (d")') generates on r an operator from D(n) in Dien). a

The extension of tr~ from B:f"(n) ---. B~:r-(n) is possible. trI' generalizes the multiplica- .,
tion operator Au = (-A)-1 0 trI', where -d means the Dirichlet Laplacian with respect to
fi.

Theorem: Let A be ~ 0, selfadjoint, compact in BI (fl). Let IJJ: > 0, k E N be the positive
eigenvalues. There are two positive constants Cb C2 such that Cl k - 2-(;:-") ~ IJJ: :5 C2 k - 2-<:-d) .

Remark: Classical Weyl exponent: 2/n. Fractal Weyl exponent: (2 - (n - d»/d.
Extension to other (non-symmetrie) PDE, ",DO is possible.

Informal Session on Schrödinger Semigroups

P. STOLLMANN

Perturbation of semigroups with applications to spectral theory

Starting from trace norm estimates of the effect of an obstacle in terms of the capacity
of the obstacle we present results dealing with absence of absolutely continuous spectra for
Schrödinger operators with barriers.

After a discussion of the relevance of such spectral behaviour in connection with random
models we briefiy touch upon recent results establishing localization near the band edges for
Anderson type random perturbations of periodie operators.

EI-M. OUHABAZ

Absence of the maximum princlple for complex elliptic operators

Consider on L2(R.N) the elliptic operator

N

A =- L DI:(al:jDj )
tJ=1

with coefficients satisfying al:j E LOO(RN, C), 1 :5 k, i :5 N. Consider the Cauchy problem

~; = -Au , u(O) =/ .
We are concerned with the following maximum principle

(PM) 1/(x)l:5 1 a.e. => lu(t, z)1 :5 1 (a.e.) \/t ~ 0 .

12
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It is well known that if QJ:j, 1 ~ k,j ~ N are real-valued then (PM) holds.
We show that if (PM) ia satisfied then the operator A has rea.l-valued coefficients.

Informal Session on Singular Interaction Problems

G. LUMER

Singular interaction problems (of parabolic type), ud applications

We treat in Bana.c.h space and classical context, via asymptotic solutions, the singular
parabolic interaction problems (equations) of the type

u' = Au+ F(t)
u(O_) =/
(si u)(O) =q

Bu(t) = cp(t) , t > 0 ,

where X is a Banach space (A = Laplacian in the typical classica.l situation), "(si·)(O)"
means "singular interaction . 30t time t = 0", (J E E~ (Le. E' with supp(.) =0 or 0~~'on Bo =
{X-valued hyperfunctions on R with support 0 or 0}. (q =0 for "mild" singular transitions
without "interaction" such aB heat shocks, while for example (J = e6 (e E X, 6 = 6(t» for
"heat explosions". The solution u of (.) is obtained as limit of regular solutions u" ('1 --+ 0).
The situation where q E E~ is mathematically weIl understood by now, and has 'a. number
of physical and engineering applications, in particular (I, u) ....-.. solution of (.) u(·, /, u) is
injective, (but problems remain on fully understanding certain re1ated physical aspects). On
the other hand it was very recently shown tha.t the just above mentioned injectivity may fall
to hold when (J is a.llowed to be a hyperfunction in Bo \ E~, although a unique solution also
exists in the latter general situation. There are indeed at this time many interesting open
problems in the situa.tion where u E Bo \ E~.

Informal Session on Hoo-Calculi

s. MONNIAUX ._::.~.

p

Analytic generators

In 1987, G. Dore and A. Venni proved their famous theorem on maximal regularity of
the sum of two operators A and B. They used, in particular, the imaginary powers of those
operators. The classical wa.y to define these objects ia to consider sectorial operators for
which we can apply a functional calculus giving the complex powers.

The approach here ia slightly different. For a Co-group (U(s»'EB on a Banach space X, we
define its analytic continuation (Ca)aEC' consisting in - unbounded - operators in X. It turns
out that those operators are closed, densely defined and verify a semigroup property. The
operator C = Cl is called the analytic generator of U; its spectral properties are remarkable in
the case where the type of U is less than 1f'. Moreover, if the space X has the UMD-property,
the analytic generator C of U is sectorial ~d verifies Ci' =U(8) for all 8 E R. This theory
was developed by I. Cioränescu and L. Zsid6 (1976) in the case of bounded Co-groups. Our
- more general - case allows us to prove, quite easily, the theorem of Dore-Venni.

13
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G. SIMONETT

Bounded Hoo-calculus for elliptic differential operators with non-smooth coefficients

Let A = Llol=m aoDo be an elliptic operator with constant coefficients and consider a
small perturbation B = Llol=m boDo with Loo-coefficients."

Then A + B has a bounded holomorphic functional calculus on Lp (Rn) for 1 < p < 00.

The praof uses Calderon-Zygmund theory, multilinear expansion and the T( 1)-theorem.
(Joint work with X. T. Duong)

Berichterstatter: F. WEBER
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