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Set Theory Meeting

07. - 13.01.1996

The meeting was organized by Ronald Jensen (Berlin), Menachem Magidor (Jerusalem),
and Ernst Jochen Thiele (Berlin). Tbe subject of the meeting was set theory, and talks
were given on many subjects within set theory as weH as connections of set theory to
other branches of mathematics. ?

Vortragsauszüge

Sv D. FRIEDMAN

Generic Saturation

A forcing over L·is a p.o. P, definable with parameters over (L, A,) for some amenable
A such that P-generics preserve ZFC. P is relevant if P has a generic definable aver
L[O#) and almost relevant if it has one definable over a set-generic extension of L[O#].

Relevance Conjecture If 0# exists and P has a generic tlien P is almost relevant.

Thm 1 Ij 0# exists and P has a generic G s. t. there is a set X 0/ strang indiscemibles
for (L[O#, G], G), o.t. X > w then P is almost relevant.

P is co.dablf1 if it has a generic G s.t. for some real R in L[O#], G is definable in L[R],
R generic over L. P is almost codable if the same holds with "in L[O#]" replaced by
"in a set-generic extension of L[O#]".

Thm 2 P is almost codable iff P has a generic G s.t. for some Ao, A : 1>'0>' = {iQ 10'=
Ao+A· ß some ß} is a class of strong indiscernibles for (L[G], G, A), where io < i 1 < ...
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is the increasing enumeration 0/ I = Silver indiscemibles. P is codable iff Ao, A can
be chosen to be countable in L[O#].

Periodicity Conjecture If 0# exists and P has a generic then P is almost codable, i.e.,
P has a generic G S.t. for same Ao, '\, 1).0). is a class of strong indiscernibles for
(L[G],G, A).

Thm 3 If 0# exists and P has a generic G s. t. fOT some X, X is a set 0/ strong
indiscernibles for (L[O#, G], G) I O.t. X > w then Pisalmost codable.

Cor 4 1f there is an (w + 1)-Erdös cardinal then the Periodicity Conjecture is true.

ANDREAS BLASS

Subgroups of ~w

This talk was about some applications of Baire category to the study of subgroups of

To fix notation, let

E .- {x E 111 (VOOn) x(n) = O},
D .- {x E 111 (\:Iq E w \ {O} )(VOOn) q divides x(n)}, and

B .- {x E 111 Range of x is finite}.

I began with a quick review of some known results: All countable subgroups of II are
free hut II itself is not; no uncountable pure subgroup of D is free; all homomorphisms
II ~ ~ are finite ~-linear combinations of projections, and similarly for D -+ ~; and
B is free. Then I presented the following new· results.
11 is not the union of any directed system of fewer than cov(B) proper, analytic suh­
groups. (cov(B) means the covering number for Baire category.)
D is not the union of any directed system of fewer than add(B) pure, proper, analytic
subgroups.
The minimum number of isomorphs of n whose umon is D equals the domin*g
number, and so does the minimum number of isomorphs of II whose union is EW.
Every Borel homomorphism B -+ ~ is a finite Z-linear combination of projections.
II has a pure, non-free subgroup H such that H n G is free for every analytic subgroup t_

G of rr except for G's that include a group of the form

Vk,q := {x E n I (\:In< k) x(n) = 0 and (\:In) q divides x(n)}.

(The exception is unavoidable. If H n Vk,q is free for eve~ one k E w, q E w \ {O}, then
H is free.)
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HEIKE MILDENBERGER

Non-existence of Borel morphisms

The combinatorical core of this talk was

Thm 1: n > m ~ 1. There is no Baire measurable 0 : nW --+ m~, such that there is
aß: [w]W -+ [w]W s.th.
Yf E nW VX E [w]w: If o(!) is constant on X, then f is constant on ß(X).

We conjecture that an analogons theorem for "almost constant" instead of "constant"
is also true. Yet we have

Thm 2: n ~ 2, m ~ 1. There is no Baire measurable a : n'" -+ m W such that there
is aß: [w]w-+ [w]W s.th.
'Vf E n"'VX E [w]"': 11 a(f) is almost constant on X, then f is constant on ß(X).

A theorem maybe closely related to the conjecture is

Thm 3: n > m > 1. There is no Bair~ measurable 0 : nW -+ m W
, such that there is

some ß : [w]w -+ [w]W s.th.
'V fa, I. E n'" VX E [w]"': If 0(/0) rX= 0(!1) rX, then 10 r ß(X) =* 11 r ß(X).

ALESSANDRO ANDRETTA (joint work with John Steel)

Iterability for non-tarne mice

Tarne mice were introduced by Steel in "Inner models for many Woodin cardinals".
They are structures of the form J! and although they can have many Woodins they
cannot satisfy

"There is '" which is 6 + I-strong and Dis Woodin".

We introduce an iteration game Q(M), for coarse premice M, and prove that 11 wins
Q(M) if M is countable and M -< V~, some IJ. The game Q(M) is stronger than
the weak iteration game and allows us to prove a comparison theorem for non-tarne
mice containing strong cardinals and Woodin cardinals above. Recently we proved a
comparison process for mice satisfying tbe so-called ADR-hypothesis:

3(Dn ) 3("'n) "0 < 60 < Itl < 61 < ... such that "'n is < 6-strong and ä = sup fJn

(hut the deta.ils of the proof have not been checked carefully!)

JAMES CUMMINGS

Collapsing successors of singulars

Let '" be singular of cofinality w, It a cardinal. A good scale for '" is a sequence
(fOt: a < ",+) where Ja. E n "i (lti an increasing sequence of regular uncountable

i<w
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cardinals, /Ci -+ /C) which is increasing and cofinal in (11 /Ci, <-) with the additional
property (goodness) that for 0" < IC+, cf a > w, there exists A ~ a unbounded and
m < w S.t. ß" E A, ß<, and m < n -+ fp(n) < f...,(n).

Thm If cf(K.) = wand there is a good scale for K. then there is no extension of the
universe in which K.t is the successor 0/ an uncountable regular cardinal.

JEAN A. LARSON

Multicolored graphs

In the notation of Erdös and Rado, the partition relation

holds if and only if for every graph on a vertex set wn whose edges are colored with m
colors, either there is an independent set A ~ wn of type w3 (one with no edges) or for
some q, there is a set B of size i q all of whose pairs are joined by edges of color q.

In joint work with earl Darby, the following theorems have been proved:

Theorem: Suppose lt, i2, ... ,im are positive integerswith 2ti < ii for i = 1, ... , m
and suppose t = t 1 + t2 +... + tm' If n ~ t + 2, then wn f-+ (w3

, lb l2" .. ,lm)2.

Theorem: Suppose ib i 2 , ••• ,im are positive integers with 2ti < ii ~ 2t ,+1 for
i = 1, ... , m and suppose t = tt +.. ·+tm . Ifn > t+2, then wn ---+ (w 3 ,l), l2, ... ,lm)2.

T. JECH (joint work with Saharon Shelah)

A complete Boolean algebra without complete atomless subalgebras

We show that there are forcing conditions which add a definable real of minimal degree
to a ZFC model. By a theorem of McAloon this gives a Boolean algebra as above.

PETER KOEPKE

Extenders

Elementary embeddings of models of set theory are a central feature in large cardinal
theory. To code such embeddings into sets, normal measures and extenders have been
used. We suggest to substitute such ultrafilter-based notions by initial segments of the
maps to be coded. If the initial segment is chosen properly, the same information is
captured. Now the usual extender properties may be transferred to this setting. An
extender would now be a specific set-sized elementary embedding. An ultrapower-like
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construction with a natural Los-theorem is possible, and a closure criterion for exten­
ders ensures the well-foundedness of the image model. We gave the characterisation of
measurable, strong and Woodin-cardinals in this setting. Another use of such exten­
ders is in constructibility theory, where the components of the constructing predicate
are taken to be embeddings of initial segments of the hierarchy to be constructed. By
this method, coherency and amenability of the hierarchy is easily guaranteed.

LEE J. STANLEY (joint work with Saharon Shelah)

Consistent negative and positive partition relations for singular cardinals of

uncountable cofinality

By adding Cohen subsets of Nt to a model of ONll we produce a model where NW1 f+
(Nw1 , W +1)2, thereby answering, negatively, Question 11.4 of [EHMR]. By then adding
Cohen reals, we can obtain this simultaneously with, for example, 2~~ = NW1 • This was
announced in [419]. We present more general versions of the first construction. Also,
starting from situations where ( < I\, = cf A > w and I\, is weakly compact, we show that .
in the model obtained adding Cohen subsets to K, the positive relations A -+ (;\, ()2
hold.

MENACHEM MAGIDOR

Some soft remarks about covering

We try to analyse the situations in which two models of set theory W ~ V are similar,
for instance have the same cofinalities etc.

Example

Theorem: W ~ V, W F G.C.H V and W agree about cofinalities. Suppose also
that every countable set of ordinals in V can be covered by a set in W 01 cardinality
~ A then every set 01 ordinals X E V can be covered by a set Y E W such that
IYI :5 max(IXI, A).

MOTI GITIK (results of joint paper with Saharon Shelah)

Density of box products

Let d<Nl (K) denote the density of the space ~2 with topology generated by 9's, 9 E Q2,
a C K, lai ~ No. We sketch a construction of a model with a strong limit K, of cofinality
w such that (1) 2" > K+, (2) d<Nl (I\,) = K+. The same may hold for K, = Nw •
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MENACHEM KOJMAN

ZFC Dowker space in Nw+1 and some open problems

Thm: (ZFC) There exists a Dowker space in Nw+1 .

Problem: Is there a linearly Lindelöf not Lindelöf normal space? Such space is
Dowker.

Thm: There is a Födor Lemma for IINn which implies non-countable paracompactness
of various X ~ ll(Wn +l)'

PATRICK DEHORNOY

Applications of set theory to braids

The canonical well-ordering of the ordinals leads to alinear ordering on true algebraic
structure involving a left self-distributive operation, which in turn leads to a linear
ordering on Artin's braid group B oo • The latter leads to a new, very efficient algorithm
for comparing braids, improving classical results by Artin, Garside, Morton, Thur'ston
and others.

JOAN BAGARIA

Forcing axioms as generic absoluteness principles

We present some results about tbe relationship between Forcing Axioms and generic
absoluteness, i.e., absoluteness under forcing extensions. Some of the results are: MA is
equivalent to the statement that the universe is absolute under ccc generic extensions for
EI sentences with elements of H(W2) aB parameters. This is also true for the Bounded
Proper Forcing Axiom, and bounded forcing axioms in general (see [1]). Also, MA
implies that the universe is E~ absolute under ccc extensions. (This answers a question
in [2].) More generally, given any poset P, F AIC(P) implies E~ absoluteness under
P-generic extensions. •
In view of these results we formulate the following general conjecture: Every for~
axiom is a generic absoluteness principle. i.e., given a class of posets rand a cardinal
"', one can find a (natural) class of sentences E and a set X such that FAIC(r) is
equivalent to the statement that the universe is absolute under generic extensions with
posets from r, for sentences from I; with parameters in X. The conjecture is open for
PFA and MM.

References

[1] M.Goldstern and S.Shelah: The bounded Proper Forcing Axiom. JSL. 1995.
[2] H.Judah and A.Roslanowski: Martin's axiom and the continuum.
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ARTHUR APTER

Laver indestructibility and the class of compact cardinals

Using an idea developed in joint work with Shelah, we show how to redefine Laver's
notion of forcing making a supercompact cardinal indestructible uoder It-directed closed
forcing to give a new proof of the Kimchi·Magidor Theorem in which every compact
cardinal in the uDiverse satisfies certain indestructibility properties. Specifically, we
show that if K ~ V is the class of supercompact cardinals, then it is possible to
force and construct a model in which the only strongly compact cardinals are the
elements of K or their measurable limit points, every It E K is a supercompact cardinal
indestructible under ,,-directed closed forcing, and every " a measurable limit point
of K is a strongly compact cardinal indestructible under ,,-directed closed forcing not
changing P(It). We then derive as a corollary a model for the existence of a strongly
compact cardinal '" which is not ,,+ supercompact hut which is indestructible under
K-directed closed forcing not changing P(,,) and remains non-",+ supercompact after
such a forcing has been done. :~:~".

ALAIN LOUVEAU

Descriptive aspects. of logie actions

The talk was devoted to the descriptive set theoretic properties of the Borel actions of
the Polish group 800 (of permutations of IN), which are the oues that oceur in Model
Theory when studying isomorphism between countable structures. Report was given
on an on-going joint work with G. Hjorth and A. Kechris about the possible descriptive
complexities of the associated orbit equivalence relations, and the relationships with
more structural properties of these actions.

MATTHEW FOREMAN

Weak square principles and reßection properties

The talk discussed joint work with M. Magidor and J. Cummings on weak square
properties. We prove the consistency of weak square on Nw and the simultaneous
reflection of stationary' sets in Nw+1 • This implies the non-existence of a very good
scale on IINn/Frechet, a consequence of 0Ne.,,"\ for A < Nw •

7

                                   
                                                                                                       ©



HUGH WOODIN

Chang's Conjecture and the nonstationary ideal

Theorem 1 Assume ADL(fl)+ there exists a countable set u C IR such that
HODL(R)[u] F= AD +De. -
Then L(IR)Qmu F= Chang's Conjecture + NS is wt-dense.

Theorem 2 (Con( There exists an wt-dense ideal on Wt+ Chang 's Conjecture) ::=:}

Con(ZFC + there exist w Woodin cardinals + there exists an Wt dense ideal on Wt).

Thus ADL[R] f+ L[IR]Qmu F= Chang's conjecture.

I also discussed general properties of the Pmax , Qmax extensions of L[lR].

MARTIN GOLDSTERN

Projective measurability does not imply Baire property

A set X ~ IR is projective if there is a natural number n and a Borel set B ~ lRn+1

such that X = {x : 3Xl VX2 3X3 ... : (x, x., ... , Xn) E B}. In a joint work with Saharon
Shelah we show that it is consistent that all projective sets are measurable, while there
is a projective set without the Baire property (i.e., not equal to a Borel set modulo a
first category set).
The proof uses amalgamation of forcing notions, and coding of arbitrary sets by reals.

ARNOLD W. MILLER (joint work with Juris Steprans)

Orthogonal families of real sequences

For x and y sequences of real numbers define the inner product

(x,y) = E XnYn
n<w

which may not be finite or even converge. We say that x and y are orthogonal iff (x, y)
converges and equals O. Abian asked what are the possible cardinalities of maximal
pairwise orthogonal families (MOF)? Kunen proved that there exists a MOF of cardi­
nality c. We prove that it is consistent that the continuum be arbitrarily large and for
every cardinallt with W ~ K. ~ c there exist MOF of cardinality K.. We also show that
MA implies there are no MOF's of cardinality less than c which contain only finitely
many elements of 12 ,
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KAI HAUSER (ongoing joint work with Hugh Woodin)

An application of eore model theory to descriptive set theory

We generalize a result of Leo Harrington to the third level of the projective hierarchy
(making use of tbe E~ eorrectness of the one-Woodin K).

Theorem. (Assume there are two measurable cardinals.) If for every real x any
non-empty Il~(x) set 0/ reals contains a n~(x) singleton then either

1. a~ determinacy

or
'. e 2.

I~-

For any real z for which ß~(z) determinacy fails, all reals are contained in K z

and there is such areal z which is a II~ singleton.

The background assumptions ean be weakened to "The reals are closed under sharps"
by factoring a result of Philip Welch into the statement of the theorem and by modifying
the models K z •

I brießy discussed some open questions related to the "converse" of the theorem.

LEV BUKOVSKY (joint work with N.N. Kholshch~vnikova and M. Repicky)

A-sets for Rademacher and Walsh orthogonal 'systems

A set A ~ [0,1] in an AR-set (Rademacher A-set) if there is an increasing sequence
{Uk}~o s.t. {vu~(:t)}~o converges for .all x E A ({vu } in the Rademacher orthogonal
system).

Every AR-set is meager, negligible and q-porous. Every perfeet set contains a perfect
AR-subset. The smallest size of a non-AR-set is the splitting number ~~ and the covering

number of the family of all AR-sets is the refining (~reaping) number r,.
The family of AR_permitted sets is the ideal

PRM(AR ) = {A ~ [0,1]; (VB AR - s~t)A U B is AR - set}.

There exists aperfeet AR-permitted set. We denote

r'

Then we have

min{IK:I; (V'L E [w]W)(3.1" E A:)(.1" dense in [wr6l,~· and

(VK E .1")(K c· L Of K ~. w - L»)}.

non(PRM(AR ) = :!"eov(PRM(AR)) = ~',

h 5 add(PRM(AR
)) ~ :".

Similar results were obtained for Walsh A-sets.
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ITAY NEEMAN

eontinuously coded determinacy

The talk attempted to convey the general idea of the proof that. continuously coded
games are determined.

Der: Given a set A ~ "'(IR x IR) x IR, the eontinuously coded game GA is played a.s
follows:

LI xc, no Xt, nt ... Zer, n Q

III Yo Yt Ya

Rules: At round Q, player I plays areal x o , and an integer n o • Player 11 then plays a

real y". e
Player I must ensure that er =1= ß~ n o =1= n{J (o.w. 11 wins). Given that, the game ends
once \In E IN, 30 s.t. na = n (The game therefore has eountable length).

Onee the game ended, we let f : w -+ IR x IR be the funetion given by

J(n) = (Xo, Yo) for the unique er B.t. no = n.

We let w E IR be the w.o. of w given by n Q $ nIJ iff Q $ ß.
Then I wins iff (/, w) E A.

Thm: Assume that there exist K. < T < A s. t.

- K, is T + I-strong,

- T is a Woodin cardinal, and

- .A is measurable.

Let A ~ '"(IR x IR) x IR be U~. Then GA is determined.

ALAN Dow

Two questions of set theory from topology

Motivated by the question of whether w U {p} for an ultrafilter p embeds in a nice~
we pose the problem of the existence of a stationary subset of [W2]'" with the prop~
that the sup function is 1·1 and such that it reßects stationarily often.'

Secondly we prove that it is consistent to have p = Wl < c and the following principle:
Given ideals A, B c [w]'" such that lAI + 181 < c and A n B = [w]<'" , then there is
aCe w such that IC n AI = w for all A E A and le n BI < w for all BEB. In
fact there is a u-centered poset which adds a set C as required and which does not
"till" any tower. This model was constructed so as to produce a model in which every
compaet, separable radial spa.ce is Frechet. (A spa.ce is radial if x E A ~ there is a
well-ordered sequence from A converging to x - and Frechet if the sequence can always
be eountable.)
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JÖRG BRENDLE

Cardinal invariants related to ultrafilters on w

Given a free ultrafilter U on w, let us define the following four cardinal invariants:

p(U) = min{IFI; F ~ U, ...,3A E UVB E F(A~· B)}

p measures the P-pointness of U; in particular U is a P-pt iff p(U) ~ Wl

1Tp(U)
1TX(U)

the 1r-character of U.

min{IFI; F ~ U, ...,3A E [w]WVB E F(A ~. B)}
min{IFI;F ~ [w]W, VA E U3B E F(B ~/ A)}

xCV) = min{IFI; F ~ U, VA E U3B E :F(B ~. A)}

the character of U. We discuss the relation between these cardinals and some of
the classical cardinal invariants of the continuum, like the unbounding number, the
dominating number, the splitting number and the reaping number, we also state several
consistency results showing that the cardinal coefficients may be different for different
ultrafilters, and sketch the proof of the following result.

THM.
(a) CON (there are Ramsey ultrafilters U and fJ S.t. p(U) = W2 = c and 1rp(fJ) = Wt).
(h) CON (there are Ramsey ultrafilters U and {} s.t. X(U) = Wl, and 1rX({}) = W2 = cl·

TOMEK BARTOSZYNSKI (results of joint work with Saharon Shelah)

Strongly meager sets

Der. A set X S; 2w is strongly meager if X + H f. 2w for every measure zero set
H ~ 2w •

Let SM = the collection of all strongly meager sets.

Theorem 1. Suppose that K, > No is a regular cardinal. It is consistent that

Theorem 2. Suppose that K, > No. lt is consistent that SM = [lR)<IC. In particular,
ij cfek) = No then SM is not au-ideal.

Berichterstatter: I. Neeman
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