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An der Tagung über Jordan-Algebren, die unter der Leitung von W. Kaup (Tübingen),
K. McCrimmon (Charlottesville) und H. P. Petersson (Hagen) stattfand, nahmen 46
Mathematikerinnen und Mathematiker aus Deutschland, England, Frankreich, Irland,
Israel, Kanada, Neuseeland, Österreich, Rußland, Schweden, der Schweiz, Spanien, Swa­
ziland und den USA teil.
Die während der Tagung gehaltenen Vorträge sind den Gebieten

- Algebraische Theorie der Jordan-St"rukturen"")

- Jordan-Strukturen und Analysis

- Graduierte Strukturen und Wurzelsysteme

- Allgemeine nichtassoziative Algebren

zuzuordnen.
Neben 25 Übersichtsvorträgen, in denen der aktuelle Stand der Forschung in Teildiszi­
plinen zusammenhängend dargestellt wurde, gab es eine Reihe von informellen "work­
shops", in denen in kleinerem Kreis neue Ergebnisse präsentiert und diskutiert wurden.

VORTRAGSAUSZÜGE

B. ALLISON: "
.,/'

Extended affine Lie algebras

We report on some recent results on extended affine Lie algebras (EALA's) which were
introduced by Hoegh-Krehr and Turresani 1990 as a generalization of tbe important
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class of affine Kac-Moody Lie algebras. This work is joint work with S. Azam, S. Ber­
man, Y. Gao and A. Pionzeta. By definition, any EALA possesses a nondegenerate
invariant form. We have shown that this form is positive semidefinite, as conjectured
by V. Kac. Using this fact, we can attach a. root system called an extended affine root
system (EARS), to any EALA. We have given an abstract definition of EARS and then
shown how any EARS defined in this way an be constructed using semilattices. These
constructions of EARS suggest several constructions of EALA'8 that use Jordan alge-
bras and other structures which are finitely generated modules over the ring of Laurent _.
polynomials in several variables. •

J. A. ANQUELA:

Primitive Jordan pairs through local algebras I

Dur aim is to outline the proof of the following theorem:

"If V is a strongly prime Jordan pair having a primitive Iocal algebra Vh+
(b E V-) then V is primitive at b."

This, together with D'Amour and McCrimmon's result which establishes the converse,
provides a so-called Iocal characterization of primitivity for Jordan pairs. According with
Zelmanov, D'Amour and McCrimmon's results on strongly prime Jordan systems, the
task can be divided into two cases: The case when ~+ is PI, called homotope-PIcase,
where finite-dimensional techniques can be used, and the non-homotope-PI or hermitian
case, in which Zeimanov polynomials are needed. Hermitian polynomials, introduced by
Zelmanov wben studying strongly prime Jordan algebras, are one of the most powedul
tools in Jordan systems. Tbe hermitian or Zeimanov polynomials needed in this case are
homotope-eaters, whose construction is based on previous constructions of Zelmanov,
D'Amour, Montaner and the authors. These polynomia.ls are special-jordan-algebra
polynomials which, when evaluated in the homotope of a Jordan pair, give rise to _
elements which "eat" associative pair products and put them inside the original Jordan •
system or even in a given inner ideal of the homotope. They are used to create primitizers
in a Jordan pair from primitizers of a local algebra.

J. ARAZY:

Contractive projections in CI' (joint work with Y. Friedman)

For 1 :5 p:5 00 let Cp be the von Neumann-Schatten class, i.e. the Banach space of alt
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compact operators x on a sepa.t:ab1e infinite dimensional complex Hilbert space H, for
which 11 x 111' := (trace(x·x)P/2)1/P is finite.
In this work we establish the following result.

Main Theorem. Let X be a el08ed subspace of CI" < p < 00, p :/: 2. Then the
following four properties are equivalent:
(1) X is the range of a contra.ctive projection from C,;
(2) X is the lp-sum of subspaces, each of which is canonically isometrie to the CI' ideal
of a Cartan factor of one of the types I-IV;
(3) X p - 1 := {v(x)lxIP- 1; x E X} is a closed linear subspace of Cq , (p-l +q-l = 1) where
x = v(x)lxl is the polar decomposition of the operator x;
(4) V := spanw• {v(x); x E X} isclosed under the tripie product

{u,v,w} = (uv·w +wv·u)/2,

and is an atomic JCW·-subtriple of B(H). Moreover, X is a module over V, namely
{VVX} ~ X and {VXV} ~ x.

As a eorollary we obtain that tbe category of CI' ideals of atomic JCW·-triples is stahle
under eontractive projections.

G. BENKART:

Raot graded Lie algebras

Let g = 1-l EB E ga be a finite-dimensional split simple Lie algebra over a field , of
aE4

characteristic o. A Lie algebra List ß-graded if i) L = EB L...,·; (ii) L 2 0; (iii)
..,e4U{O}

L..,. = {x E LI [h, x] = ,(h)x for all h E 1-l} 2 g..,; and (iv) La = E [La, L_a]. Examples
aE4

of ß-graded Lie algebras include the affine algebras, the toroidal Lie algebras, the Tits-
Kantor-Koecber construction of a unital Jordan algebra, all finite-dimensional simple
Lie algebras over F containing a nontrivial toral subalgebra, and many others.
In this talk we discuss the recent classification of ~-graded Lie algebras, their deri­
vations, &8soeiative forms, and central extensions, with an eye towards developing a
representation theory for them.
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C.-H. CHU:

Some functional analytic aspects of Jordan structure

Let Z be a. J B*-triple and let u = u(Z, Z·) be the weak topology on Z.

Theorem 1 (Bunce and Chu [1]) The following conditions are equivalent:
(i) The map Q(a) : z t-+ {aza} is u-compact for every a E Z;
(ii) The map D(a,a) : z 1-+ {aaz} is u-compact for every a E Z;
(iii) Z is an inner ideal of Z·*;
(iv) The spectrum Ba for any a E Z is discrete.

A map between subsets of Z is called sequentially weakly continuous (s.w.c) ifit preserves
u-convergence of sequences.

Theorem 2 (Chu and Mellon [2]). Tbe following conditions are equivalent:
(i) The map z 1-+ {zza} is s.w.c. for every a E Z;
(ii) Z has tbe Dunford-Pettis property..

Theorem 3 (Chu and Mellon [2]). A JBW·-triple Z has the Dunford-Pettis property if
and only if Z = 100 - EI) LOO(no)®Co where Co is a Cartan factor and sup dirn Ca < 00.

o a

[1] L. J. Bunce and C.-H. Chu, Pacific J. Math. 153 (1992) 249-265.

[2] C.-H. Chu and P. Mellon, J. London Math. Soc. (to appear).

T. CORTES:

Primitive Jordan pairs through local algebras 11

We consider hete the main applications of the so--called local characterization of primi­
tivity for Jordan pairs.

The main result is the description of primitive Jordan pairs in the spirit of the classifi­
cation of strongly prime Jordan pairs given by Zelmanov, D'Amour and McCrimmon.
The characterization is used to establisb the transfer of primitivity between a Jordan
pair and its nonzero ideals, aB weIl as between an associative pair with involution and _
its ample subpairs, from the oorresponding known results for algebras.
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We next remark that a subquotient of a primitive Jordan pair inherits primitivity from
it, as a consequence of the local characterization of primitivity, so &nswering affirma­
tively the question posed by Loos and Neher.

Primitivity of a tight envelope of a primitive Jordan pair can also be obtained with the
direct use of the bermitian polynomials involved in tbe proof of tbe above mentioned
characterization.

Finally, we consider the case of primitive Jordan tripie systems, which may have local
algebras that are not primitive. Here we manage to take the problem of their description
into the language of pairs, defining what we call "tight double pairs", which can be
associated to any Jordan tripie system and inherit from it regularity con~itions.

C.M. EDWARDS and G.T. RÜTTIMANN:

Structural projections and Peirce inner ideals in JBW*-triples

Let A be a JBW·-tripie. A linear subspace J of A is called an inner ideal in A provided
that the subspace {JAJ} is contained in J. A subtripie B in A is said to be comple­
mented if A = B ffi Ker(B), where Ker(B) = {a E A : {BaB} = O}. A complemented
subtripie in A ia a weak*-closed inner ideal. A linear projection on A is said to be
structural if, for a11 elements a, b and c in A,

{PabPc} = P{aPbc}.

The range of a structural projection is a complemented subtripie and, conversely, a
complemented subtripie is the range of a unique structural projection.
We analyze the structure of tbe weak*-closed inner ideal generated by two arbitrary
tripotents in a JBW*-tripie in terms of the simultaneous Peirce 8pace8 of three suitably
chosen pairwise compatible tripotents. This result is then used to show that every weak*
closed inner ideal J in a JBW*-triple A is a complemented subtripIe in A and therefore
the range of a unique structural projection on A. As an application structural projections
on W·-algebras are considered. (Joint work with K. McCrimmon.)

Tbe annihilator J J. of a weak* closed inner ideal J in A is tbe weak* closed inner ideal
consisting of elements A in A such that {JAA} is equal to {O}. Tbe JBW*-triple a can
be decomposed into the direct sum of J, ker(J) \ nker(J.l) and J.L. Modulo five of the
generalized peirce relations, tbis decomposition is a grading of a of peirce type and an
example is given of a weak* closed inner ideal in a JBW*-triple A for which al1 five
fail to hold, thereby showing that the result is tbe best possible. It ia also shown that
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the condition that a weak- closed inner ideal in a JBW--tripIe A leads to a grading of
A which is of peirce type ia equivalent to several other conditions, all of a topological,
rather than algebraic, nature.

J. R. FAULKNER:

Elementary groups for Kantor pairs (with B.- N. Allison)

. A pair algebra (K+, K_) with product Kt1 x K_t1 X Kt1 -t Kt1 satisfying
(KPI) [VZ,y, ~,w] = VcZJ/z},w - ~,{yzw}

(KP2) Ka,bVZ ,1I + ~,zKatb =KKQ ,b%,lI

where V:r,tlz = {xyz} and Ka,bX = {axb} - {bxa} is called a Kantor pair. A standard
construction gives a graded Lie algebra

The group generated by all exp(ad(x + A» with (x, A) E (Ja x 02t1, u
p~jective elementary group G.

±, is the

A· study of elements of G tbat either preserve or reverse the grading of 0 leads to notions
of invertibility and quasi-invertibility in Kantor pairs, and also to generalizations of tbe
quadratic operator and the Bergman operator of Jordan pairs.

For Kantor pairs which can be embedded in a certain way in 3 x 3 matrices, the cal­
culations are considerably simplified. In particular, for the Kantor pair of a hermitian
form, the Bergman operator, in a special case, reduces to an Eichler transformation.

G. HESSENBERGER:

Harnes idempotents and cocapacity in Jordan pairs

We caU an element (x, y) of a nondegenerate Jordan pair V quasi-Fredholm, if it ia
quasi-invertible modulo the socle. For arhitrary (x, y) the cocapacity of (x, y) is defined
by

coc(x, y) := inf{IC{lt2(e)) : e E Soc V is an idempotent, B(y, x)V- 2 ltQ(e)-},

6
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where K. denotes the capacity [2], and l'i(e) are the Peirre-spaces of e. Note that the
cocapacity is a non~negative integer or 00. H e E Soc V is an idempotent such that
B(y,x)V- 2 Vo(e)- and coc(y, x) = 1t(\f2(e»), it is called a (Jordan) Barnes idempotent
to (x,y).

We show that the following conditions are equivalent:
(i) (x, y) is qua.si~Fredholm,

(ii) (x, y) has finite cocapacity,
(iii) (x, y) possesses a Barnes idempotent.
This generalizes a well-known theorem of aBsociative Fredholm-theory, which says that
for invertibility modulo the socle the existence of a Ba.rnes idempotent is necessary and
sufficient [1]. Furthermore, finiteness of thc.' cocapacity is the Jordan-theoretic counter~

part of finiteness of tbe nullity "nul" and tbe defect "der', tbe dimensions of the kernel
resp. cokernel of the image of an element oI an associative algebra under a faithful
representation [1].

Thus it is DO surprise that in the case where V = (A, A) is the Jordan pair of an
associative algebra tbe cocapacity can be calculated with the help oI nullity and defect:
For a quasi-Fredhoolm element (x, y) we have

coc(x, y) = max{nul(lA - xy), def(lA - yx)}.

[1] Barnes et al., "Riesz and Fredholm theory in Bana.ch algebras", Pitman (Boston,
1982)

[2] Loos, "Finiteness conditions in Jordan pairs", Math. Z. 206 (1991L_

N. C. HOPKINS:

Some nonassociative algebras associated to differential equations

We construct a class of Zrgraded commutative algebras in the following fashion: Let 8
be a commutative nonassociative algebra over lR, V a vector space over R, C asymmetrie
bilinear form on V, f : 8 -+ IR linear, Q E B and M E End(V). We let M = 8 EI) V

(%)2 (X2 +C(~ Y)Q)
a.s a vector space and define the product on M by y = f(X)M(Y . Then

A is a Zrgraded algebra with .Ao =8 and Al = V. This class includes all Zrgraded
algebras over IR for which dirn Ao = 1 or dirn At = 1 and hence all Zrgraded algebras
of dimension 2 or 3. As we are interested in the solutions to the differential equation
~ = z2 for Z E A, we consider two algebraic properties known to be important to the

7
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study of such differential equations, namely nilpotence and simplieity. For both we give
necessary eonditions and sufficient conditions for .A to have the property. We close by
outlining some open problems. This· is joint work with Michael Kinyon.

A.ILT'YAKOV:

On polynomial and rational invariants of simple exceptionallinear algebraie groups

It is known that minimal linear representations of simple exceptional algebraic groups
are related to certain simple nonassociative algebras. Using this connection, we describe
generators of the algebra (field) of polynomial (rational) invariants in several vector
variables. Also rationality of the field of rational invariants is proved in the ease of
groups of type F4 and E6 •

I. KANTOR:

A generalization of Jordan approach to symmetrie Riemmanian spaces

By abisymmetrie spare we understand a homogeneous fibrebundle with symmetrie fiber
and symmetrie base. .

Theorem 1. Given a Jordan tripie system of second order "p tbe subalgebra L(",)
U- 2 + U- t + Uo + U1 + U2 contains a subalgebra 8(",) = Ho + Et + E2 , whieh has
the structure of the Lie algebra of abisymmetrie spare. Moreover an orbit of 8(",) on
an R-space (corresponding to a Lie algebra L(r.p)) is a domain on M which has the
structure of abisymmetrie spare.

We will say that a Lie algebra S-(cp) =Ho + iEt +E2 whieh has the same space and
the same commutators but where the commutators [Et , E2] have opposite signs ia a Lie
algebra 0/ a dual bisymmetric space.

Theorem 2. Among all Jordan tripIe systems of second order with tbe same L(cp) there
is one for whieh the domain coineides with tbe whole M. The orbit of tbe Lie algebra
s- (<p) of a dual bisymmetrie spare ia a projectively bisymmetrie domain.

8
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G. LETAC:

Reeent results on Wishart distributions on Euelidean Jordan algebras

Wishart distributions are here defined as probabilities on the assoeiated symmetrie cone
Oby

e'e exp(-Trace 8x)p,,(dx);

where e is in n and Pp is the measure on nwith Laplace transform (det a)-p, and p be­
longs to the Wallach set {~, ... , der;I)} u (der;!), +(0) (r = rank, d = Peirce constant).
We survey some results about these distributions:
1) Continued fractions (XI + (X2 +(X3 +...)-1 )-1 )-1, where Xi are Wishart (Bernadac).
2) Homogeneous quadratie varianees eharacterize Wishart (Casalis). :~~-

3) Peirce decompositions and expectations (Massam, Neher).
4) Quadratic conditional expectations characterize Wishart (Casalis, Letac, Massam).

A. F. LOPEZ:

Orders in Jordan pairs with DCa on principal inner ideals

In a joint work with Eulalia Garcia Rus, we have given a notion of order in Jordan pairs
which extends the definition of order in Jordan algebras given by Zel'rilanov, in the
following sense: ·If a Jordan algebra J is an order in a unital Jordan algebra Q then the
Jordan pair (J, J) is an order in the Jordan pair (Q, Q). Our notion of order in Jordan
pairs is "loeal" and it is inspired by our recent works on Jordan algebras sä.tisfying Ioeal
Goldie conditions. We prove that if a Jordan pair V is an order in a nondegenerate
Jordan pair W with dec on principal inner ideals, then
(i) V is nondegenerate and satisfies &Ce on the annihilators of its elements. Moreover,
V is strongly prime iff W is simple.
(ii) V is an essential subdirect product of Jordan pairs Vi each of which is an order in
a simple Jordan pair Wi with dcc on principal inner ideals.
(iii) If W is locally artinian then any element x E V~, (0' = +, -) has finite Goldie
dimension, i.e., the principal inner ideal [xl does not contain infinite direct sums of
inner ideals of V.

9
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C. MARTINEZ:

GK -dimension in Jordan algebras

If A is a finitely generated algebra (not necessarily associative) over a field K, V is afinite-dimensional vector spa.ce that generates A and V" denotes the linear span of allproducts of elements of V of length ~ n, then GK -dirn(A) = BUp lim ln(~m:n) (Gelfand
1'&-00Kirillov dimension). _It is known that the definition does not depend on V and that finite- dimensionalalgebras are those having GK -dimension O. If A is not finite-dimensional, then GK -dirn(A) ~ 1. Bergman proved that if A is associative and 1 :5 GK-dim(A) < 2 then GK-dim(A) = 1 and also tbe following result by Small-Stafford and Warfield is known inassociative algebras:

Theorem: Let A be a finitely generated associative algebra. Then: (a) N(A) js nilpotent,(b) A/N(A)is a finite module over & finitely generated subalgebra of the center.
Here it is proved that if J is a finitely generated Jordan algebra, then:
(a) If J is special and Ais an associative envelopingalgebra, GK-dim(A) = GK~dim(J).(b) GK-dim M(J) $ 2 GK-dim(J) where M(J) is a universal mult. enveloping algebra..(e) If J is special, then GK-dimM(J) =2 GK-dim(J)
Also the following result (with E. Zel'manov) is given:
Theorem: Let J be a finitely generated Jordan algebra and 1 S GK -dimeJ) < 2. Then(a) GK-dim(J) = l.
(b) N(J) is nilpotent, where N(J) denotes the McCrimmon radical of J.
(e) J/N(J) is a finite module over a finitely generated subalgebra of the associative
center.

J. MARTINEZ:

Inner derivations on ultraprime Banach algebras

We show that, for every ultraprime real Banach algebra A, there exists a positive number
'"'1 satisfying '"'1 11 a +Z(A) II~ 11 D tJ 11 for all a in A, where Z(A) denotes tbe centre of Aand Dca denotes the inner derivation on A induced by a. Moreover, the numer 7 depends
only on the nconstant of ultraprimeness" of A.

10
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F. MONTANER:

On Goldie theory tor Jordan algebras

A Jordan version of Goldie's theory was given by Zelmanov in the late 80's. In this talk

two related problems are considered. First, extending Zelmanov's results to quadratic

Jordan Algebras, and second, the extension to Jordan theory of some of the ideas

_ involved in Goldie's work, such as nonsingularity and uniform dimension.

Tbe results presented here have been obtained in joint work with A. Fernandez Lopez

and E. Garcia. Rus. Our main result states that a. Jordan Algebra ia a (elassical) order in

a simple (semisimple) artinian Jordan Algebra if, and only if, it satisfiesithe analogous

conditions to the ones giyen by Zelmanov in the linear case, if, and only if, it is strongly

prime (resp. nondegenerate), nonsingular, and has finite uniform dimension, with an

adequate defini tion of these concepts.

The proo! makes use, among other ideas, of a GPI-type theorem, which· js based on

recent work by D'Amour and McCrimmon, and same Jordan polynomials defined by

Anquela and Cortes. These ideas also allow a deeper study of the uniform dimension of

a Jordan algebra.-

E. NEHER:

Structures graded by root systems

The basic concept introduced in the lectures was that of a root system grading of a

Jordan pair V = (V+, V-): a decomposition.V = EBOER1VOl' Va = (VOl+, VOl-
), where R1

_ is the I-part of a 3-graded root system R = R1 Ü Ro Ü R_1 , such that Q(V:)Vp-~ c

_ lI;~-th {V:Vß-
C1 V;} c V:-fl+-y and D(V:, Vß-(1) = 0 for a.l.p (O' =±, 0:,13, 1 E R1).

If such a grading is induced by idempotents (Example: V is covered by a grid) there

is hope to obtain a classification, and in the talk the present stage of the classification

was discussed.

Lie algebras graded by root systems are related to Jordan pairs with a root system

grading via the following

Theore~: A Lie algebra L has a root system grading iE and only if L is a central extension

of the Tits·Kantor-Koecher algebra of a Jordan pair covered by a grid.

11
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The second talk reported on joint work with O. Loos on Steinberg groups for Jordanpairs. Let V = $OER1 VO be a Jordan pair with a root system grading 'R. = (R, R1 ). TbeSteinberg group St(V, 'R.) is given by a presentation: generators are XD'(V)' v E Va', andtbe relations are some of tbe basic relations valid in the projective elementary groupPE(V). Thus, one has a canonical epimorphism 1(' : St(V, 'R.) --. PE(V). Examples for
St(~ R) are the classical Steinberg groups St,,(A), A a ring [here V is a rectangularmatrix pair) and the unitary Steinberg groups [here V is a hermitian matrix pair].Among the theorems presented was tbe following:

Theorem: If the foot system grading is induced by a family of idempotents and if R is
irreducible of rank ~ 5, then St(V, 1(,) covers central extensions: Whenever G -!... PE(V)is a central extension there exists a unique homomorphism cp : St(V,~) --+ PE(V) such
that 1( = tP 0 'P.

Hence St(V, 'R.) is the universal central extension whenever 1(' : St(V, R) -+ PE(V) ia acentral extension. For example this is so if R has infinite rank (and is irreducible) - aresult proven earlier by Milnor for R of type A and by Bai< for R of type C. This is alsoso if V is simple, nondegenerate and Artinian (eacHer work of Steinberg and Deodhar).

J. M. OSBORN:

Lie algebras of class W*

Let F be a field of characteristic 0, and let B be the F -span of the monomials:crl
, xi2

••• ,x~n = XCI where Qi E ~i CF. Each ~i is either the nonnegative in­tegers, or is an additive subgroup 01 F containing 1. B is a commutative associati-
ve algebra using the product xQxlJ = x Cl+ß. The set A = {E I.ai IJi E B} whe-

i=1re 0. is the partial derivative with respect to Xi is a Lie algebra using the product[!iOi,gjOj] = !8i(gj)8i - gj8j (!i)Oi. The class of algebras defined in this way is calledW*.

For a fixed monomial hEB, define L(h) to be the linear span of tbe set {Db (I) =
haj(/)a. - hOi(f)oj}. Tbe derived algebra L'(h) = [L(h),L(h)] is simple, and tbe alge­bras defined in this way form the clus S·.

In this talk we discussed the derivation and automorphisms oi these algebras, and also
the question of when two of these algebras can be isomorphie to each other.

12
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S. PUMPLÜN:

Composition algebra! over a ring of fractions

Composition algebras over tbe Ring R = {~ E k(t) Ij ~ 0, 9 e k[t] with degg :5 2j},
with /ca field of characteristie not two, and f(t) E k[t] a monie irreducible polynomial
of degree two, are enumerated and partly elassified. Crucial steps include
1. a proof that every composition algebra Cover R without zero divisors or rank> 2
contains a composition subalgebra of half rank, and thus ia a generalized Cayley-Dickson
doubling of the latter,
2. a proof that for any composition algebra without zero divisors of rank :5 4 whieh
is defined over k there is up to isomorphism at most one non-elassical Cayl~y.-Diekson

doubling which results in a composition algebra without zero divisors not defined over
k.

After elassifying the composition algebras of rank 2 (the tori) over R it turns out tbat
every composition algebra of rank> 2 is the elassical Cayley-Diekson doubling of a
suitable torus.

Classifieation is facilitated by the fact that the subalgebra defined over k mentioned in
1. is uniquely determined up to isomorphism if C ia not defined over k.
It should be emphasized that results of this kind are not to be expected for arbitrary
rings. The most important feature of R used here is its elose relation to tbe projeetive
line, i.e. SpeeR = lPl- {(f(t»}.

......:r··

B. RUSSO:

On tbe Iwasawa decomposition of the automorphism group 01 a bounded symmetrie domain

Let G be tbe connected component of the holomorphie automorpbism group of a boun­
ded symmetrie domain D in C" with Lie algebra g. Let E, {',.,.} be tbe J B*-triple for
which D is the open unit ball, and let VI, ••• ,Vr be a frame for E with v = VI +...++vr.
Denote the joint Peirce decomposition with respect to this frame by E = E Ekl, and
for b E E, write b = r: b,eI. This decomposition could be refined by replacing the Peirce
projeetions by Pl , = PIe,(] +eQ(v»/2 (e = ±). Then bk, = p:,b.
Denote by G = PK,Q = 1(, + P the Cartan decompositions, so that 'P = {eb : b e E},
where eb(Z) = b - {zbz}, and let G = KAN, g = 1(, + A +.N be tbe Iwasawa de-

13
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compositions constructed by use of a regular element ebo, where bo = Lj SjVj with
SI > ... > Sr > o. Let L = AN and (, = A +AI' denote the corresponding solvable
components.

•( 1) (1)"1p{bo)b = E -- bkl E -- bt, + E -bo,.
t:5;kSISn St k + S, lSk<ISn Bk - SI 1=1 8'

Theorem L, = {Ro(bo, p(bo)b) + eb : b E E}, where Ro(a, b) ia the curvature tensor at
the origin of the Bergman metric: Ro(a, b)z = 2{abz} - 2{baz}, and p(bo) is a "refined'
, Schur multiplier with respect to the frame Vt, ••• , Ur:

This theorem describes, in algebraic and geometrie terms, the element of K., namely
&(bo,l'(bo)b)), which needs to be added to a given element eh of'P in order to obtain
an element of (,. The "correction term" Ro(bo, p(bo)b) can be shown to be independent
of tbe choice of bo. Moreover, this tenn ia a new "alternating curvature" with respect
to the frame {Vj}, acting on b E Ekl as Ra(Vk - cU" b).
There is aversion of tbe Theorem at the Lie group level: if 0- E L has Cartan decomp08i­
tion (J' = "1'00 Va with <Pa E P and Va E K, then Va can be expressed in terms of Q = 0-(0)
by means of the fundamental operators of a J B*-triple. For example, if a belongs to
tbe nilpotent group N and the domain D is of tube type, then Va = B(a, o)-! B(a, v),
where B(x, y) is the Bergman operator.
(This is joint work with Yaakov Friedman.)

1. SHESTAKOV:

Exeeptional Jordan superalgebras

New constructions for simple exceptional finite dimensional Jordan superalgebras ar~
given. Tbe simple Jordan superalgebras J12 and J21 of chara.cteristic 3 and of dimension..
12 and 21, respectively, are represented in the form H3(B, *) for a suitable simple
alternative superalgebra B with a superinvolution.
The Kac superalgebras KlO and K g are represented in the form J + U + V, where J is
a simple Jordan superalgebra of dimension 3 or 4, U and V are two isomorphie copi~

of a certain irreducible 3-dimensional superbimodule aver J, U2 =V 2 = 0, UV ~ J.

S: SKRYABIN:

Representation theory for a. class of Lie algebras of deriva.tions
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Representations of the Lie algebras of vector fields in tbe modules of sections of vector
bundles serve as a motivating example for a purely algebraic study of representations
in quite general settings. Let R be a commutative associative and unital algebra, W a
Lie algebra of its derivations which ia a projective R-module of rank n. I introduce a
eertain category of W -modules which earry additonal structures of an R-module and
a module over a certain Lie R-algebra 9 which is just the general linear Lie algebra
91(n, R) in tbe simplest case of height one representations. The general principle is
that every W -submodule of an object of this category is also an R-submodule and a
g-submodule and that every W-module homomorphism between two objects respects
the R-module and g-module structures als weIl. There is, however, a certain class of
exeeptional representations realized in tbe modules of differential forms whose theory
is more complieated.

A. SLINKO:

Linearly compact algebras and coalgebras

It is proved that a coalgebra is locally finite if and only if its dual algebra is profinite­
dimensional, Le., isomorphie to tbe inverse limit of finite-dimensional algebras.
We speeify a large cla.ss of vaneties for whieh alilinearly eompa.ct algebras are profinite­
dimensional.
This elass includes &11 Jordan and alternative algebras. Necessary and suffieient con­
dition for a linearly compact Lie algebra to be profinite-dimensional ia obtained. In
particular, linearly compact algebraic Lie algebras are profinite-dimensional': Moreover
they roust be algebraic of bounded degree.

e H. UPMEIER:

Semisimple Jordan algebras and quantization of non-convex tube domains

The classical theory of Toeplitz operators on tbe Hardy space H'(O) over the positive
cone n in a formally-real Jordan algebra X can be generalized as folIows: For any
semi-simple Jordan algebra X, a connected component {} of its re$Ular set is a non­
convex pseudo--symmetric space. The aBsoeiated tube domain T(O) is homogeneous
but not symmetrie. It has asymmetrie envelope 1'(0) recently contructed by Faraut
and Gindikin. The associated Hardy space H:(ö') consists of ~-closed L2-cohomology
classes of (0, q)-forms on T(ö'), where q is the concavity index of O. In joint work with U.

15

                                   
                                                                                                       ©



Hagenbach we have shown that the associated Toeplitz C*-algebra has a11 its irreducible

representations realized on the {aces (boundary components) of T(n).

E. ZELMANOV:

On graded Jordan superalgebras • 'A..

All algebras are considered over an algebraically closed field of characteristic O.

A superconformal algebra is a simple Z-graded Lie superalgebra L = E L, such that
'EZ

all dimensions dirn Li '8 are uniformly bounded and tbe even part of L contains the

Virasaro algebra. Vir. If Lo is not solvable then the even part of Lo contains a subalgebra.

8/2 =< e, /, h >. Tbe action adL(h) has finitely ma.ny eigenvalues. In the partieular (hut

important!) case when the eigenvalues are -2,0,2, L is isomorphie to a Tits-Kantor­

Koecher eonstruction K (J) of a simple graded Jordan superalgebra. J.

Theorem (V. Ka.c - C. Martinez - E. Z.) Let J = E J, be a simple graded Jordan

superalgebra such that the dimensions of J,'s are bounded from above and K(J)o ;2 Vir.

Then there exists a. Z/nZ-graded vector spare V = VO +... +Vn - 1 and a generalized

Poissoo superbracket [,) 00 the twisted algebra A of functioDs on odd variables from V

and one Laurent variable t such that J is the Kantor double of (A, [, ).

Then K (J) is a contact Lie superalgebra.

16
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