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Zusammenfassungen der Vortragenden:

Rudolf Ahlswede and Nirig Cai

The arbitrarily varying channel with noiseless feedback and maximal error
probability: a trichotomy of the capacity formula

Let W be the' set of transmission matrices of the AVe with alphabets X, Y . Denote its
capacity by C/(W). Define Yx = {Y E Y : w(Ylx) = 1 for some w E W} .

We need also the sets W = convex hull (W), W = row-eonvex hull (W), and W
set. of 0-I-matrices in W.

Positivity Theorem: Cf(W) > 0 <=>

Ci) CReW)!: max min I(PIW) > 0 and (ii) Yx n.Yx' = 4J for some x =F x'
PE'P(X) wEW

Capacity Theorem (with Trichotomy)

{

0, if (i) .or (ii) does not hold

Cf(W) = min(CR(W), C/(W»), if W,e 4J and (i), (ii) hold

CR(W),_ if W= tP and (i), (ii) hold

Here C/(W) was determined by the first author (1973).

Vladimir B. Balakirsky:

On interval linear complexity of binary sequences

We consider the problem of partial approximation of binary sequences by the outputs of
linear feedback shift registers. A generalization of the linear complexity profiles of binary
sequences leads to a sequence that is regarded as the profile of interval linear complexity.
Some properties of this sequence are examined.

Marat Burnashev and Leonid Bassalygo

Authent~cation, identification" and pairwise separated measures

We show that authentication and identification problems are equivalent to each other. Mo­
reover, both problems are majorized (in a c'ertain s.ense) by problem of pairwise separated
measures. The statement of the last problem is the following. .

Definition. A collection {IJi, i :::: 1, ... , M} of probability measures J1.i on a finite set A
is called q-separated if .

II/-Li - /-L; 11 ~ 2(1 - q) for any ~,e.J.

Let M{A, q) be the maximal possible number of q-separated prob. measures on a set
A of card A = A . We get a new upper bound for M(A, q) .
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Toby Berger and Xiahai Zhang

Asymptotics of tight typicality

XI, ... , Xn are i.i.d.r.v. with distribution {p(ai) = Pi, 1 ~ i ~ M} . The type, or
composition,of (XI, ... ,Xn ) is the vector K = (K1, ... ,KM) where Kj = I{i :
1 ~ i ~ n, Xi = aj} I. K is multinomially distributed with components satisfying
K 1 + K 2 + ... + KM = n . A realization !f = (k1 , •.. , km) will be called a tightly ty­
pical type if Iki - npil < n l +e for 1 ~ i ~ M , where E E. (O,~) is fixed. The
set Sen, E) of a11 tightly typical types has asymptotic probability 1 in the sense that
lim P{K E S(n,E» = 1 . We show the asymptotic formula

n-+oo

M

P(K = lf'> ,...., v21Tn rr
i=l

subject to !f E Sen, e), (*)

I

".

. . P(K=~ _-
in the sense that hm max f Ri ht hand aide of (.) 1 f - 0 .

n-+oo !ES(n,e) g

This equation (*) appea~s to imply that tbe M components of K areasymptotically·
uncorrelated. However, they are actually nega~ively correlated with one another for all n
and even in the limit n --t .00 . The reason why there is no contradiction here is that
tbe formula for P(K =~) is not a product of functioris of the individual components
ki because its domain is restricted to k1 + ... + kM = n which is not in product form.
It also should be noted that the terms in the product are not the asymptotic marginal
densities of the K i / Vii ; those would be N(npi, npi(l - Pi» whereas the terms in the
product in our formula are N(npi' npi) . Dur result can be derived either byeareful,
repeated applications of Stirling's formula or by deriving the asymptotic jointly normal
of any M - 1 components of K / Vii and then maniptilating the result by replacing
kt+···+kM - t by n-kM.

Robert A. Calderbank

A 2-adic approach to the analysis of cyclic codes

This paper describes how 2-adic numbers can be used to analyse the structure of binary
cyclic codes and of cyclic codes defined over Z2Q , a ~ 2 , the ringof integers modulo
2a . It provides a 2-adic proof of a theorem of McEliece that characterizes the possible
Hamming weights that can appear in a binary cyclic code. A generalization of this· theorem
is derived that applies to cyclic codes over Z2Q that are obtained from binary cyclic codes
bj· a sequence of Hensel lifts. This generalization characterizes the number of times a
residue modulo 2Q appears as a ~omponent of an arbitrary codeword in the cyclic code.
The limit of the sequence of Hensellifts is a universal code defined aver the 2-adic integers,
which is the main subject of this paper. Binary cyclic codes and cyclic codes over Z2Q are
obtained from this universal code by reduction modulo some power of 2 .

A special case of particular interest is cyclic codes over ~4 "that are obtained from binary
cyclic codes by means of a single Hensel lift. Tbe binary images of such codes under
tbe Gray isometry include the Kerdock, Preparata and Delsarte-Goethals codes. These
are nonlinear binary codes that contain more codewords tban any linear code presently
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known. Fundamental understanding of the composition of codewords in cyclic codes over
Z4 is central to the search for more families of optimal codes. This paper also constructs
even unimodular lattices from the Hensellift of extended binary cyclic codes that are self­
dual with an Hamming weights divisible by 4. The Leech lattice arises in this way as do
extremallattices in dimensions 32 through 48.

Imre Csiszar

On common randomness

The common randomness capacity of a two-terminal model is defined as the maximum
rate of common randomness that the terr.rlinals cau generate using resourees specified by ...
the given ~odel. In arecent work, R. Ahlswede and tbe author determined this capacity ..
for various models, including those whose statistics depend on unknown parameters. Here
it is shown that a key lemma of that paper about robust Uniform randomness, implies
a general existence resuit about a functioll. of a random variable which function is nearly
uniformly distributed on a large set and is almost independent of another random variable.

As a consequence, a substantial sharpening of the wiretap channel coding theorem is
obtained. Namely, the usual criterion that the wiretapper's mutual information about the
sent message grows slower than linearly with the block-Iength, is replaced by this mutual
information going to zero exponentially, and still the same secrecy eapacity is obtained.

Bernhard Dorsch

High-rate unit-memory-codes

Unit-memory (UM)-codes, resp. partial-unit-memory (PUM)-codes describe convolutio-
nal codes by algebraic structures with good free distance and extended distances, espeeially
the extended row distance, which give limits for the correctability of distributed errors.
Known good decoding procedures (U. Sorger & U. Dettmar) allow promising concatena­
tions of short, ML-decodable, inner block-e~des with outer (P)UM-Codes without much
delay by interleaving. One of the main problems is that outer high-rate PUM-Codes have
a relatively poor free distance and UM-Codes of rate > 1/2 are not know. Here new
construction methods for high-rate UM-Codes with good free and extended distance pro-e
perties will be discussed.

Thomas Ericson and Victor Zinoviev

On Fourier invariant partitions of finite groups and Mac Williams identity for
group codes

Partitions of finite abelian groups are considered. We introduce the concept of F-partition
and demonstrate that this concept can be used in order to formulate very concise necessary
and sufficient conditions for the existence of a Mac Williams identity with respect to a given
weight function.
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G. David Forney jr., Rolf Johannesson and Zhe-xian Wau

Minimal and canonical rational generator matrices for convolutional codes

A full-rank k x n matrix G(D) over thc rational functions F(D) generates a rate-k/n
convolutional code C. G(D) is minimal if it can be realized with as few memory elements
as any encoder for C, and G(D) is canonical if it-has a minimal realization in controller
canonicai form. We show that G(D) is minimal iff for all rational input sequences 1!(D) ,
tbe span of y(D)G(D) covers tbe span ~f y(D). Alternatively, G(D) is -minimal iff
G(D) is globally zero-Jree, or globallyinvertible. We show that G(D) is canonical if and
only if G(D) is minimal and also globally orthogonal, in the valuation-theoretic sense of
Monna.

Ernst M. Gabidulin

Metrics generated by ~ set of bases

A new family oe metries for coding is proposed. Let. F; be a vect<;)r spa~e.:over tbe field
Fq • Let :F = {ll' l2' ... ,LN : Li E F;J be a set of vectors such that: l}-:':.'N ;::: n ; 2) F
contains n linear by independent vectors."

Definition: The F -Dorm ia defined by

The weight distribution for any F is faund.

Some applications in communication theory and cryptology are considered.

Tor Helleseth

On exponential sums .in Galois ring and applications to the weight hierarchy
of Kerdock codes over Z4 . .~--"

The r-th generalized Hamming weight dr of the Z4-linear. Kerdock code is determined
for r = 0.5,1,1.5,2,2.5. In addition it is shown that it is possible to determine the
generalized ~eight hierarchy oE the Kerdock codes of larger length using -tbe results of
dr for a given length. We give a closed-form expression of tbe Lee weight of. a Kerdock
codeword in terms of the coefficients" in its trace expansion.

Tom H0holdt and Ruud Pellikaan

Aigebraic geometry codes, without algebraic geometry

Since Goppa's discovery of algebraic geometry codes a lot of effort has been put inta a
presentation of these" codes without using the full machinery of algebraic geometry, in
particular the Riemann-Roch Theorem.

We describe, by elementary means, a class of codes which includes the socalIed one-point
AG-codes using

1) An 1Fq algebra R
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2) A weight function g: R -t No U { -oo}

3) A surjective morphism t.p.: R -+ ur:;
We determine the parameters of the codes and present a decoding algorithm which decodes
up to half the designed minimum distance.

Henk D.L. Hollmann and Peter Vanroose

Entropy reduction, ordering in sequence spaces, and semigroups of non-negative
matrices

We develope a mathematical framework to investigate classification or ordering of sequen- a
tial input by means of finite-state algorithms, with the aim to reduce the "diversity" at.
the output, that is, to achieve entropy reduction.

Our main interest is in optimal time-varying strategies; here, given a (finite) collection
of algorithms sharing a common set of internal states, we consider ordering srategies re­
presented ·by sequences of this algorithms, where the action taken 'on tbe t-th input is
determined by the t-th algorithm in the sequence. So in asense we are considering a
programmable finite-state device and we are looking for tbe best program. Surprisingly,
there is a uniform method to handle questions of this type. Indeed, we first show how
to transform such a problem to a problem on eigenvalues in a related semigroup of OOD­

negative matrices, and then we present an approach to this eigenvalue problem which seems
to succeed most of the time. We apply our methods to a problem concerning ordering in
sequence spaces introduced by Ahlswede, Ye, and Zhang (1990), which motivated part of
this work. In particular, we show that 72(0,2,1) = ~3Iog(2 + J3) , as conjectured by
Peter Vanroose (co-worker on this problem) same years ago.

Rolf Johannesson, Zhe-xian Wan, and Emma Wittenmark

On systematic convolutional codes over rings

Convolutional codes over rings are motivated frorn phase-modulated signals.

A conyolutional code is defined to be honest if it has an encoding matrix which has a right.
inverse. The definition is independent of the chosen encoding metric. All convolutionale
codes over finite fields are honest but there exist convolutional codes over rings which are
not honest. If a b x c encoding matrix G(D) has a b x b subdeterminant which is
a unit in R(G) , the ring of rational functions, then the convolutional code encoded by
G(D) is honest. A convolutional encoding matrix "is said to be systematic if it causes the
information symbols to appear unchanged among the code symbols. A convolutional code
over a ring R is sys·tematic if it has a systematic encoding matrix. We have the following
little

Proposition: A convolutional code over a ring R is systematic if and only if it has an
encoding matrix, that has a b x b subdeterminant which is a unit in R(D).

Dur propositioIJ. is equivalent to a result by Massey and Mittelholzer [1).
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[1] J.L. Massey and T. Mittelholzer, "Systematicity and Rotational Invariance of Con­
volutional Codes over Rings", Proc. 2nd lot. Workshop on Alg.. and Comb~natorial

Coding Theory, Leningrad, Sept. 16-22, 1990.

Levon H. Khachatrian and Rudolf Ahlswede

Optimal anticodes

1. A system oE sets A c ([Zl) is called t-intersecting, if (Al n A 2 ) 2: t for a11 Ab A2 E

A ,and I(n, k, t) de'notes tbe set of all such systems. Let

M(n, k,t) ~ max lAI, 1 ~ t ~ k ~ n.
AEl(n,k,t) .

Theorem: For 1 ~ t ~ k :5 n with. ,~_

(i) (k - t + 1) (2 + ~+U < n < (k - t + 1) (2 + t~l) for sorne r-i N we have

M(n, k, t) = IFrl , and :Fr is up to permutations the unique optimal.

(ii) (k - t + 1) (2 + ~~~) = n for rEN U {O} we have M(n, k, t) =:=JFrl = l.1="r+11
"and an optimal system equals - up to permutations - either Fr ,". or F,.+l .

2. For a Hamming space (X:;, dH) , the set of n-Iength words over the alphabet Xe- =
{O, 1, ... , a - I} , we determine the maximal cardinality of subsets wi~h~a prescribed
diameter d or in another language, anticodes with distance d. .

Torleiv Kl0ve and Tor Helleseth

On the weight hi.erarchy of product codes

Barbers and Tena recently proved a conjectured expression for the weight hierarchy of the
product of two codes satisfying the chain condition.

_ Using this result we have deterrnined the weight hierarchy of sorne products:

simplex code ® simplex code

simplex code ® l--order Reed-Muller code

I-order Reed-Muller code ® I-order Reed-Muller code.

Janos Körner

Zero-error information theory

1.) We show that the only number k for which Da Hamming space can be partitioned into
k Hamming spheres is k = 3 . 'Furthermore, we conjecture that among the "numbers
l for which {O, l}n can be partitioned into l Hamming spheres there is a gap, in
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the sense that the smallest i larger, than 2 for which such a partition is possible is
i = n + 2 . (joint work with Emanuela Fachini.)

2.) We get a new upper bound for the Sperner capacity of arbitrary digraphs in terms
of a new entropy nation for digraphs. This concept generalizes the c9ncept of graph
entropy due to the author (1973).

Vladimir I. Levenshtein

Random Boolean functions, designs, and codes

A system of Boolean functions in n variables is called randomized if the functions pre­
serve the property of their variables to be independent and uniformly distributed randome
variables. Such a system is referred to as t-resilient if for any substitution of constants '
for any i variables, where 0 5 i ~ t , the derived system of functions in n - i varia-
bles will be also randomized. We investigate the problem of finding the maximum number
N(n, t, T) of functions in n variables of which any T form a t-resilient system. This
problem is reduced to the minimization of the size of certain combinatorial designs, whieh
we call split orthogonal arrays. YVe extend some results of design and coding theory, in
particular, a duality in bounding the size of codes and designs, in order to obtain upper
and lower bounds on N(n, t, T) . In some cases this gives rise to final results.

Jacobus H. van Lint, Henk D.L. Hollmann, and Ludo Tolhuizen

On codes with the identjfiable parent property

Let C be a code of length n over an alphabet V of size q. For any two codewords
Q, Q, we define the set of descendants 1J(Q, l!) .by

For a code C, we define the descendant code C· by

C·:= U V(g,q).
~ECJl!EC

Since Q and Q are in V (g,!!.) , we have C ~ C· .

We say that C has the "identifiable parent property" (IPP) if for every ~ E C· there is
a codeword 1T(f) E C such that

We define
F(n,q) :== max{IC! : C ~ Qn, IQI = q,C has [PP}.

We present ~he following results:

(I) F(l, q) = F(2, q) == q (easyexercise)
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(2) F(3, q) = 3q + o(q)

(3) F(4, q) ~ qvq + o(q) ,Conjecture F(4, q) ~ qJQ .

(4) q2 ~ F(5,q) ~ 3q2 for q ~ 7

(5) F(n, q) ~ 3q ri 1

(6) F(n, q) ~ c. (~) i

Simon Litsyn

New upper bounds far self-dual codes

Using a variant of tbe linear programming method we derive a new upper bound on the
minimum distance d of doubly-even self-dual codes of length n. Asymptotically it reads
5 = d/n :5 0.166315 ... , thus improving on the Mallows-Odlyzko-Slo~nebound, fJ ~ 1/6 .
Ta establish this we prove that in any doubly-even self-dual code the distance diStribution
is asymptotically upperbounded by the corresponding normalized binomiafdistribution in

the interval Icn, (1 - c)n] where cis! - J66-1±~t:f±32/,2 '~~

Hans-Andrea Loeliger

On J aynes' proof of the second law

A concise and general proof of the second law of thermodynamics was given by Jaynes.
Disregarding some details, the argument is as fo11ows. Let W =]Rn be the phase space
of sorne physical system. (we assnme classical mechanics.) For x E W r le~ g(x) be the
"macroscopic state" of the system. For x E W , let [x]g ~ {x' E W : g(x')" = g(x)} .

Definition: Hg{x) ~ log VoI([x]g) .

Let f: W --+ W : x(to) --+ x(t1 ) be the evolution of the system according to the laws of
mechanics.

Theorem: If (i) f is volume-preserving and (ii) x' E [x]g => f(x') E (f(x)Jg thene Hg(x) ~ Hg(f(x» .

Condition (i) is satisfied for auy Hamiltonian (Liouville's theorem).

Condition (ii) is satisfied for any reproducible experiment;

J ames L. Massey and Shirlei Serconek

Linear complexity of sequences with arbitrary period

Suppose So, 51,52, . .. is an N-periodic (i.e., Si = 5i+N for a11 i 2 0 ) sequence over
GF(~ where N = pVn and gcd(n,p) = 1 . The linear complexity L of this sequence
·is the degree of the polynomial C(d) = 1 + eID + ... + c2DL such that SN (D)C(D) =
P(D)(l-DN ) where SN(D)=sO+SID+···+SN_IDN-l and gcd(C(D),P(D)=l.
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But (1 - D)N = (1 - DM)PV . If 0 is a primitive N-th root of unity in (an extension
of) GF(pV) , it follows that the multiplicity mi of oi as a zero of C(D) is mi = 0 if
and only if a i is a zero of SN (D) of multiplicity at least .pll and is mi(> 0) if and
only if a i is a zero of SN (D) of multiplicity pV - mi . Letting SN[il(D) denote the
i.:...th Hasse derivative of SN (D) , it follows that L = mo + mi +... +mn-l is the "active
area" (i.e., the number of non-zero entries or entries below non~zero entries) of the matrix
whose (i + l)st column is (SN(ai),SN[l](Qi),~ .. ,SN[p"'-l](ai )) for 0::; i < n. This is
equivalent to a result proved recently by eh. Gunther.

Edward C. van der Meulen and V.V. Prelov

Asymptotics of Fisher information under weak perturbation and an asymptotice
generalizatioD of De Bruijn's identity

An asymptotic expression is derived for the Fisher information of the surn Y of two in­
dependent random variables X and Ze, when Ze is smalI. This asymptotic expression
is valid under some regularity conditions on the probability density function of X and
conditions on the moments of Z. The first term of the expansion is the Fisher infor­
mation of X . Higher order terms of the expansion are calculated as weH. A statistical
example cao be given concerning the asymptotic effic~ency of an unbiased estimator in a
certain parametric model. Using the main result for the case ZE = EZ , an asymptotic
generalization of De Bruijn's identity is obtained; 'which provides a relationship between
differential entropy and Fisher information. When Z has a Gaussian distribution with
unit variance, X has a proba.bility density function with finite variance, and X and Z
are independent, then De Bruijn's identity in integral form states that

l1E2

•h(X + cZ) - h(X) = 2" 0 J(X + 1}Z)d1}2,

where J(X) denotes Fisher information. We obtain that for non-Gaussian Z, ~ith

a11 moments of Z of order up to and including m coinciding with the corresponding
moments of a Gaussian distribution, the following generalization of De Bruijn's identity
holds

Thomas Mittelholzer

Fast maximum-likelihood decoding of group codes from finite reflection groups

Slepian-type group codes generated by finite Coxeter groups· are considered. Prom the
exceptional finite reßection groups new high rate codes with excellent distance proper­
ties are obtained. Tbe decoding regions for maximum-likelihood decoding are explicitly
characterized and an efficient ML-decoding algorithm is presented.
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Prakash Narayan, A. Kanlis .and S. Khudanpur

Typicaiity of a good rate-distortion code

We consider a good code for a discrete memoryless source with a specified distortion level
to be one whose rate is close to the corresponding rate-distortion function and which,
with large probability, reproduces the source within the allowed distortion level. We show
that any good code must contain an exponentially large set of codewords, of effectively
the same rate, which are a11 typical with respect to the output distribution induced by the
;rate-distortion achieving channel. Furthermore, the output distribution induced by a good
code is asymptotically singular with respect to the i.i.d. output distribution induced by the
rate-distortion achieving channel. However, the normalized (Kullback-Leibler) divergence
between these output distributions converges to the conditional entropy of the outpute under the rate--distortion achieving channel.

Alon Orlitsky

A pair of preposterous product problems :-;lz.

We show that the AND and OR products ofgraphs are special cases ofa general hypergraph
product arising naturally in problems combining source coding (with -an~' without side
information) and quantization.

Via the tlbook critic" problem, we show that for a11 c .(however smalI) and all 6- (however
large) there is a quantization problem where one instance requires ~ 6 bits but repeated
indep. instances require ~ c bits/instance. (This extends results with N. Alon.)

We describe the chromatic entropy H x (G) of a probabilistic graph and show that
~HX(Gk) ~ HK(G) , the graph entropy of G . We mention results showin~g that for large
classes of graphs, HK 2: Hx -log e and that for some graphs HK :::; H x -log H x - log e .
We end by mentioning a few ideas in proving that this ·is the largest possible discrepancy.

Mark Pinsker and Leonid A. Bassalygo

Codes detecting -Iocalized errors

We fouod the asymptotically optimal rate of a code which detects the linearly increasing
number t = rn, 0 < r < 1 of localized errors:

Ropt = 1 - T.

Ralph-Hardo Schulz

Check digit systems with error correction

Check digit systems are systematic block codes with Olle or two check characters which
allow to detect single errors, neighbour transpositions
(that are errors of the form al ... aiai+l ... aN ~ al . " ai+lai ... aN) or double errors.
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By Sethi, Rajaraman alld Kelljale (1978) it is clear that- detection of double errors and
correction of single errors and neighbour transpositions are possible with the same code.
We are ahle to generalize the" results of Sethi et al from Zp to finite· abelian groups and
to show the following theoreIll.

Theorem: Let (A, +) be a fi~ite ahelian group with ßi' 'Yi E Aut A a~d 'Yn+2ßn+2 =
ßn+2'Yn+2 such that there exists the inverse of 'Yn+2ßn+1 - ßn+2'Yn+1 . The check digit
system

n+2 n+2
An ~ An+i with a1 ... an -+ al ... anan+1.an+2 and E ßi(ai) = 0 = E 1'i(ai)

i=1 i=1

is double error detecting and single error and neighbour transposition correcting if the
following conditions are fulfilled: e
(1) ßi'Y;l"YjßjI is fixed point free on A for i < j ~ n.+ 2 = N

(2) ßi+l - ßi, 'Yi+1 - "Yi and ßi'Yjl('Yi+1 - "Yi)(ßi+"l - ßi)-l - 1 are invertible for
i = 1, ... , n + 1 and j = 1, ... , n + 2 . (Here 1 denotes tbe identity autoniorphism.)

(3) (ßj+1-ßj)('Yj+l-'Yj)-1('Yi+l-'Yi)(ßi+l-ßi)~1 operates fixed point freelyon A" for
a11 i, k with i < k ~ n + 1 . If lAI = pt with p 1= 2 prime W~ can give examples
as long as N ~ ~ .

ShioIllO Shamai (Shitz), Sergio Verdu and Ram Zamir

Communication ·with systematic transmission

We investigate the information theoretic aspects of "systetnatic" communication, where
the raw data, analogue or digital, is transmitted over the channel unencoded. Additional
resources such as power, banc:Jwidth, supplementary or shared channels, over which full
encoding is allowed, are used to either reduce the average distortion below that provided
by the unencoded systernatic link and/or increase the rate of the transmissable infornlation.
This generic model emerges in many applications where the unencoded link is to be retained
while attenlpting to enhance the communieation eapabilities of the system, exploiting the
additional resources.

The achievable average distortion in this model is fully characterized and the conditi­
ons under which the unencoded link does not ineur lass of optimality are identified and
explicitly stated.

This framework extends the results by Shamai and Verdu, where fully reliable communica­
tion (zero average distortion) is at foeus. In the model here, the Wyner-Ziv rate distortion
function plays a fundamental role, paralleled to that fulfilled by tbe Slepian-Wolf source
eoding for the zero average-distortion ease.

Tbe results are demonstrated for a Gaussian bandlimited souree and a Gaussian channel
where the invarianee of thc bandwidth-SNR (in dß) product is established, and whe­
re optimality of the systelnatie transmission is demonstrated. A binary Bernoulli source
transmitted over a binary symmetrie or a Gaussian channel is considered. Discussed is also
an overlayed uncoded/coded communication of a Bernoulli source over a single Gaussian
channel where no additional power or bandwidth are available. It is demonstrated that in
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(I

all the Bernoulli source cases described here, systematic transmission does incur Loss 01
optimality, hut for the extreme situation of zero average distribution [Shamai-Verdu].

PanI C. Shields

Lower bounds via coding

For each n 2: 1 let in (.) be the length function of aprefixcode on An, where lAI < 00 .

Let P be a probability measure·on Aoo

Lemma: (Barron) in(.Xi) + logP(Xi) ~ -210gn eventuallya.s.

Corollary: If P is ergodic' with entropy H then timinf ln(;i) ~ H , a.s.

Application 1 (String matching): Let L(Xi) be.the length of the longest string that
appears at least twice in Xl' . Assume P has finite energy, that is, 3K , 0 < e < 1 such
that P(X:tr'IXf) ~ Kern. Then 3D such thaf L(X}) ~ Dlogn, eventually.a.s.

Application 2: Eventually almost surely if Xi. == a(1)V(1)a(2)V(2) ... a(t)V(t)a(t + 1)
where i(V(i)) ~ ~(1+ c) and each V(i) appears earlier then Ei(V(i)) ~ En .

AppLication 3: If qk (·IXl ) == empirical k-block distribution and n 2:: 2kH then even­
tually almost surely any set B C A k of size almost 2k(l+t:l satisfies qk(BIXr) < E .

Yuri Shtarkov arid J. Justesen

Combinatorial entropy of discrete images

The existence of such entropy is proved for the case, when the only known properties of the
image source are arbitrary stationary (invariant to shift) constraints of values of picture
elements. The bounds of combinatorial entropy are discussed.

Juriaan Simonis

Almost affine codes, ideal secret sharing schemes, and MacWilliams identities

An almost affine code is a code C .with the property that the size of all codes obtained
by multiple puncturing of C is apower of a fixed integer. Almost affine codes are more
or less the same as ideal secret sharing schemes. An interesting tool in the analysis of their
properties is a kind of MacWilliams equations.

Geibor Simonyi

Recovering set systems

(A, B) ~ 2[n] is a recovering pair if

(i) A \ B = A' \ B' => A = A' 'VA, A'I EA, VB, B' E Band
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(ii) B\A==B'\A'=:>B==B' V'A,A'EA, V'B,B'EB.

It is a several year olrl conjecture that for a recovering pair (A, B) one has IAIIBI ~ 2" .

Here we consider the uniform version of the problem where an elements of A and B
have size k for some fixed k. The optimal configuration in this case is given and is
similar to the one conjectured to be optimal in the non-uniform case. Furthermore, we
generalize the problem in the following .way. Let G he a graph on {I, 2, ... , m} , and

.Al, A 2 , . •. , Am ::; 2[n] be assigned to its vertices. They forma recovering family for G if
(Ai, A j ) is a recovering pair whenever {i,j} E E(G) . 'This defines new graph invariants
for both the uniform and the non-uniform case. It turns out that the new invariant in the
uniform case is intimately related to an old invariant, namely graph entropy.

Ludo Tolhuizen

Diamond codes

We present a new method for combining two error-correcting codes, Cl and C2 • The
code so .obtained, called Diamond code, enjoys both the error correcting capabilities of
product codes'and the small memory requirements of CIRC, the code applied in tbe Com­
pact Disc system.
A word of the Diamond code is represented as a strip with a11 columns in Cl and all
diagonals (lines with a slope of 45 degrees) in C2 • Encoding is non-trivial, as a finite
number of non-zero information symbols may result in an infinite number of non-zero
parity symbols. We show that for conveniently chosen' Cl and C2 (e.g. both s~ortened

Reed-Solomon codes), this undesirable infinite impulse response behaviour does not oc­
cu~. We discuss block variations of these codes. One of these versions is a cylinder code,
consisting of all matrices of given width wit}l all columns in Cl and a11 diagonals, when
folded back cyclically, in C2 ·. Some results on the dimension of cylinder codes are given.

Peter Vanroose and Mikl6s Ruszink6

The collision channel with multiplicity feedback

Consider the follow.i~g communication situation, wh.ich is commonly called the (slotted~

multiple-access coll'ts'ton channel: ..

An unlimited number of users are allowed to transmit packets of a fixed length whose
duration is taken a.s a time unit. A slot is a time interval [t, t+l) ,where t E {O, 1,2,3 ... } .
All users send their packets through a common channel, such that each packet falls in
exactly one slot. There is a single common receiver. Senders of different packets cannot
interchange information. The packet arrival times are modeled as a Poisson process in time
with intensity A.

When two or more users send a packet in the same time slot, these packets "collide" and
the packet information is lost, i.e., the receiver cannot determine the packet'contents, and
retransmission will be necessary. However, a11 users can learn - from the feedback just
befoTe time instant t + 1 - the multiplicity of the collision in time slot [t, t + 1) . Thus,
multiplicity 0 means an idle slot, multiplicity 1 means successful transmission by a single
user, while multiplicity > 1 means that retransmission will be necessary.
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A conftict resolution protocol is aretransmission scheme for the packets in a collision. Such
a scheme roust insure the eventual successful transmission of a11 these packets.

Clearly, because of the Poisson arrival of messages, i.e., of new users, message packets
waiting for transmission will accumulate during the epoch. These packets will a11 be trans­
mitted in the time slot following the epoch.

It is of course important that the maximum transmission delay, i.e., the maximal expected
time between the generation and tbe successful transmission of a given packet, must be
finite. The supremum of tbe set of intensities ,.\ for which a certain protocol still gives
raise to a finite delay is called its throughput. The capacity of a certain collision channel is
the supremum of achievable througbputs, taken over a11 possible protocols.

A good overview on collision channels can be found in the special issue of March 1995 of
tbe IEEE Transactions on Information Tbeory. For the collision cbannel without feedback,
Massey aQd Mathys proved in tbat issue that tbe capacity is l/e = 0.36788 . In tbe "clas­
sical" situation of binary feedback (collision/no collision), the capacity is still unknown;
the best lower bound is 0.48775, tbe best upper bound 0.587.

Pippenger showed in 1981 (IEEE-IT-27(2):145-151) in a probabilistic wai~t~at the capa­
city of a collision channel with multiplicity feedback is one. Since then, nd· constructive
proof of this result was given. We have now derandomized Pippenger's proof, and also
provide an absolute upper bound on the expected packet delay, which only depends on A.

We modify Pippenger's protocol in the following way: instead of having "a single 'detecting'
matrix for a given number k of 'active' users, which corresponds to a parallel search
strategy for tbe identifiers, we first split the users into k/ log k groups and" then have
a 'detecting' matrix for each group separately, i.e., a two-step adaptive search. While no
construction exists for tbe detecting matrices used by Pippenger, we can use· the detecting
~atrices constructed by Lindström in 1965 (Can. Math. Bull. 8(4): 477-4~0).

We prove that the expected packet delay is upper bounded by 128e2 /("\)/(1 - A) , whe­
re f(A) = Lt t log log t/ log t , and where the sum extends to the value of t for which
log log t/ log t < (I - "\)/(32A) .

Sergio Verdu

The exponential distribution" in information theory

It is shown that the exponential distribution leads to information theoretic formulas which
are strikingly similar to their Gaussian counterparts:

a A saddle-point property satisfied by the mutual information between a Tandom varia-
ble and its surn with an exponential random variabie.

• Rate-distortion function of the Poisson process.

• Capacity of single-user and multiaccess channels with additive exponential noise.

• Capacity of Controlled Markov Processes.
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Zhe-xian Wan

On the. uniqueness of the Leech lattice

It was fouud that there is an error in Venkov's praof of tbe uniqueness of the Leech Lattice.
A construction of neighbours of even unimodular lattices is given and is used to modify
Venkov's proaf so that the error can be corrected.

Jan Willems

Representation of linear systems

Let lF be a finite field, or lR, or C. We will call a behaviour, Le., a subset of (Jrl)Z,
a convolutional code if it is linear, shirt-invariant and complete (meaning that wEB i~

W![to,h] E BI[to',td\fto, tl E Z ).

Let n E lR·xq[~, ~-1] and denote by D the delay. Cansider the set of diflerence equations
n(D, n-1)w == 0 . The set of solutions defines a convolutioD. code and conversely, every
convolutional code can be obtained this way. We will call this a kernel representation and
the rows of 'Tl are called syndrome formers.

There exist many other representations and specifications of convolutional codes. Let us
j ust mention one of them. We have just seen that every convolutional code is the kernel
of a polynomial operator in D. Is it also the image of such an operator? The answer is
yes, provided the code is controllable, i.e., if Wb W2 E B implies the existence of a wEB
and T > 0 such that w(t) = Wl (t) for t < 0 and w(t - r) = W2(t) for t ~ T .

Jacob Ziv and Neri Merhav

On the amount of statistical side information required far lossy data compres­
sion

Consider a vector quantizer that is equipped with N side information bits of an arbitrary
representation of the statistics of the input source. We investigate the minimum value of
N such that the rate-distortion performance of this quantizer would be essentially the
same as the optimum quantizer for the given source.

Berichterstatter: B. Balkenhol, U. Tamm
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