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Die Tagung fand unter Leitung von H.P. Schlickewei (Ulm), R. Tijdeman
(Leiden), M. Waldschmidt (Paris) und J. Brüdern (Stuttgart) statt. Im Mit­
telpunkt standen klassische Themen wie diophantische Approximation und
diophantische Gleichungen, Einheitengleichungen, Irrationalität 'und Tran­
szendenz, Linearformen in Logarithmen, diophantische Geometrie. Erstmals'
war aueh eine kleine Gruppe analytischer Zahlentheoretiker geladen; die vor.j
allem neuere Entwicklungen im Bereich der Hardy-Littlewoodschen Kreis­
methode vorstellte.

Vortragsauszüge

F. AMOROSO: Aigebraie numbers elose to 1
Given a rational function Rand areal number p ~ 1 define hp(R) as the
LP- norm of max(log IRI, 0) on the unit circle. We studied the behaviour of
hp ( R) and gave various bounds for it. Tbe results le'ad to an explicit con­
struction of algebrait numbers elose to 1 having small Mahler's measure and
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small degree. This shows that a lower bound for the distance 10' - 11 reccntly
given by Mignotte and Waldschmidt is almost sharp.

R.C. BAKER: Goldhach's problem in short intervals
It has been known since the 1930's that, for any A > 0,

E(X) = #{2n ::; X : 2n # PI + P2}

has O(X(log X)-A) members, so that almost all even integers are the surn of
two primes. Montgomery and Vaughan sharpened this to O(X l - 6 ) in 1975,
though subsequent efforts by J.R. ehen and others to give a numerical value -.
for J, e.g. &= 1/25, contain serious errors. Here the problem is considered
in short intervals. One asks for an estimate of the form

with a small value of (). This problem has attracted some attention since
Perelli and Pintz obtained () = 7/36 + f in 1993, and Mikawa, Jia and Li
Hong Ze have given better results, the latter being () = 7/81·+ (. In joint
work with Harman and Pintz it is now shown that f) = 11/60 is admissible in
this problem. The method requires the Hardy-Littlewood method, the sieve
of G. Harman and some new mean value results for Dirichlet polynomials
(although the latter are based on the usual principles of Montgomery and

Halasz).

A. BALOG: An additive property of stahle sets
An infinite set of positive integers A is called stahle if for any t > 1 fi-xed one
has

#{n ::; x : n E A but tn rt A, or in E A but n f/. A} = o(x).

Clearly any set of zero density is stahle. Typical examples of less trivial
stahle sets are

Qo = {n : P(n} > na},

here 0 < a < 1 and P( n) is the greatest prime factor of n. We are interested
in solving a binary linear equation inside a stable set. The following general-e
ization of a resuIt uf A. Hildebrand gives an affirmative answer to a question
of E. Fouvry.

Theorem 1 Let a > 0, b > 0 and c be integers such that (a, b) Ic. Let A be
a stable set with positive upper density d( A). The equation ax - by = c has
infinitely many solutions x E A, y E Aj-moreover d(aA n bA + c) > o.

J. BECK: Uniform distribution and the class number
Let {x} denote the fractional part of x. A proof of the following stat.enlent
was outlined:
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where 0' = [ao; al, a2, . ..] is the continued fraction expansion, and I is the
least index for which the denominator qt of the I-th convergent Pt / qt of 0'

exceeds N. This result has three interesting consequences.
I) We obtain a 3-line-proof of the famous Hirzebruch-Zagier-Meyer for­

nlula: if p == 3(4), p > 3 prime and h(p) = 1, then h(-p) = ~ 2:7=1 aj where
.JP = [[ .JP]; a., ... ,ak].

2) We can evaluate the diophar.~"ineseries

N 1
L . ( ) =ca logN+O(l)
n=l n sln 1T"nO'

where the constant Ca can be expressed in terms of the digits in the continued
fraction expansion of Q' and Ci/2.

3) A sufficient and necessary condition for the Central Limit Theorem"
about the series 2:{nCi}. Let Ci = [ao; at, a2, .. .]. Then

~I{l < n < N : 2:k=I( {kO'} - ~) - f(N) < A}I-* -1-1'" e-u2
/ 2 du

N - - g( N) ~ ~ ~ -00 .

as N --+ 00 holds if and only if

n a?
L---!"--+ex> (n-+oo).
i=l a~

Here f(N) is the mean value (Cesaro mean) and g(N) is the variance which
is between two constant multiples of 2:~=1 a; where l is defined by the re­
quirement N ~ qJ.

M.A. BENNETT: Simultaneous Pell equations
Ir a and bare distinct nonzero integers, then the equations

have at most 3 solutions in positive integers x, y, z. This result sharpens
work of Masser and Rickert (1995) and is not far from the truth in that,
given a ~ 2 there exists an infinite family of b's for which (*) has at least
2 positive solutions. The proof uses simultaneous rational approximation to
algebraic numbers via Pade approximation, gap principles and a lower bound
for linear rorms in two logarithms due to Laurent, Mignotte and Nesterenko
( 1995).

v. BERNIK: Khintchine type theorems on manifolds
l'here are two versions of the classical Khintchine theorems in metrical the­
ory of diophantine approximation (homogeneous and inhomogeneous). In
1964 Sprindzuk proved Mahler's conjecture, and W.M. Schmidt obtained
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the general metric theorem for curves in the plane. In 1989 the theorenl of
Sprindzuk (Beroik) and in 1995 the theorem of Schmidt (Dodson, Bernik)
were improved to the analogous Kintchine's theorem in the case of conver­
gence. There are two theorems in the case of divergence. Let 1/J(q) be a

nlonotone function with L~l t/J( q) == 00.

Theorem 1 (Dodson, Hernik). The inequality

la2zm +alz
n +aal< t/J(H)1/2

has for almost all z E C an infinite number of solutions for a set of positilJe e
measure. lfere H = max(laol, lall, ja21).

Theorem 2 (Beresnevich, Hernik) The inequality IP(x) + Yl < H- 11/J(H}
has for almost all (x, y) E R 2 an infinite number 01 solutions in quadratic
integraL polynomials P, and H == H(P) is the height.

D. BERTRAND: Diophantine problems on algebraic groups with
real multiplications
Let 0 be the ring of .integers of a totally real number field, and let G be the
universial vectorial extension of an algebraic variety A defined over areal
number field k. Assurne that End A ~ 0, and that dim(A) == rkzO. Then:

Theorem 3 A non-torsion k-rational point of G cannot lie in the maXirf1.11l
compact subgroup 01 G(R).

The proof consists in pushing out G to each of the extensions of A by G
which admit multiplication by 0, and in noting that the determinant of the
corresponding I-motive can be computed in terms of periods of differential
forms of the third kind on A which are eigenforms for the action of O. 'T'heir
non-vanishing then follows from Wüstholz's theorem on periods.

E. SOMBIERI: Heights ofalgebraic points on subvarieties ofabelian
varieties and linear tori

Let X C A be a subvariety of an abelian variety and let 11, be the Neroll- _
Tate height associ~ted to asymmetrie ample divisor. It is weIl known that .-
hex) = 0 if and only if x is a torsion point of A. Bogomolov asked whether
points of A(Q) of small height had special properties, and in particular if
points in X(Q) of small height were discrete in A(Q) with respect to thc

distance d(x, y) == jh(x - y) on A(Q)/ tors. Of course, for this to be true
one needs to remove from X all translates of abelian subvarieties.

Theorem 1 Let XO == X \ U{Y} where Y runs through all translates 0/
abelian subvarieties of dimension ~ 1 contained in X. Suppose that A ü; a
GM abelian variety. Then XO(Q) is discrete in A(Q) in the sense thai fo.,.
y E A(Q) the set of points x E XO(Q} with d(x, y) < c is finite provided c is
sufficiently smalI. The constant c > 0 and the number 01 points depend only
on the degree 0/ X and A.
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There are several generalisations. Prüofs are elementary and depend on
Fermat's congruence aP == a mod p.

P. BO RWEIN: The order of vanishing of polynomials of low height

Theorem 1 Every polynomial

n

p(x) = E ajxi (aj E C, lajl ~ I)
j=O

has at most cJn(1 - log lanD zeroes at I; here c is sorne absolute constant.

This is essentially sharp. Sharp estimates for the minimal norm of such
polynomials are also given.

D. BROWNAWELL: Some transcendence results in positive ~char­

acteristic
Let 7T be the period ofthe Drinfeld exponential function ec(z). Then ec(Tz) ==
Tec(z) + (ec(z))q.

Theorem 1 a) z, ec(z), e~t·](z), ... , e~n](z), ... are algebraically independent.
b) 1, tr, tr[l), ... ,tr[q-I] are linearly independent /Fq(T),
where [i] denotes the divided derivative given by (Tn)[i] == (7)Tn-i, n > O.

.1. BRÜDERN: Binary, quarternary and octary cubic forms
(joint work with T.D. Wooley). Let 4>t, ... , <1>4 be binary cubic forms with
integer coefficients and non-zero discrimants. Let N{P) be the number of
solutions of the diophantine equation -'

subject to lxd ::; P, IYd ::; P (1 ::; i ::; 4). Then, for any t > 0,

N{P) » p 5-,.

One expects an asymptotic formula for N{P) with main term about p5,
and can indeed show that N{P) « p5+' so that the result is elose to best
possible. The proof uses a p-adie iterative process within the framework
of the circle method. The same method also yields that almost all natural
numbers satisfying certain necessary congruence conditions can be written as

11. = <1>1 (XI, Yt) + et>2(X2, Y2), with integers Xi, Yi· These results improve work
of Chowla and Davenport (1961). They ha.d to assurne that <1>1 is diagonal,
and also missed the lower bound (*).

W.CHEN: A result of Lev in irregularities of distribution
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rrhe following surprising result of Lev was diseussed: Suppose that P is
a distribution of N points in the torus Uk = [0, l]k where k ~ 2. For every
x E U k let B(x) denote the aligned reetangular box with one vertex at 0 and
one at x, and wri te

D[P; B(x)] = #(P n B(x)) - Nvolume(B(x)).

Also, for y E U k let P + Y be the translation of P by y modulo U k
. For

q E {I, (0) write

Write also
Doo{P} = sup ID[P; B(x)]I.

XEUk

Theorem 1 (Lev) There exist positive constants A 1(k), A 2(k) such that for
every q E [1,00) we haue

A 1(k)Doo ep) ~ sup Dq(P +y) ~ A2(k)Doo (P).
yeUk

S. DAVID: Heights on abelian verieties
(joint work with J.B. Bost). In arecent work, Masser and Wüstholz

proved an estimate on the degree of the smallest abelian subvariety eontaining
aperiod of a given abelian variety in its tangent space. This theorem is weil
known to imply uniform isogeny estimates first establishes by Faltings. Our
aim was to clarify the effeetivity of the above stated result. In addition to
bringing down the exponents to essentially the best possible bounds, we solve
the question of effeetivity by proving a totally explicit comparison estimate
between the Falti ngs height of an abelian variety and same modular height.
This proof avoids recourse to the Satake compactification.

L. DENIS: Transcendence properties of Bessel-Carlitz functions
Let k be a rational function field over the finite field with q elements, koo

its completion with respect to the infinite place. and c a completion of an
algebraie closure of koo ' L. Carlitz has defined the analog of the classical
Bessel function J(z) and its derivative J'(z) in this situation. Call these
analytie functions J(z) and ßi(z) C.L. Siegel proved that if Q is a non-zero
algebraic number then J(a) and J'(a) are algebraically independent over Q.
It is now shown that if a is in the algebraic closure of k in c and is not zero
then 1(0) and ~j(a) are algebraically independent over k.

M. DODSON: Metric diophantine approximation on manifolds
The functional relations between coordinates of points on a manifold are
an obstacle to trans[erring classical results in Diophantine approximation to
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manifolds. In joint work with Rynne and Vickers it has been shown that
Khintchine's theorem on simultaneous diophantine approximation holds for
smooth (C 3 ) manifolds M embedded in Rn and satisfying some curvature
conditions. Similar results for the linear forms version of the theorem have
also been obtained and the Hausdorff dimension of the associated exceptional
sets determined.

In the case of convergence in Khintchine's theorem, the manifold is re­
quired to be 2-convex (this reduces to non-zero Gaussian curvature for sur­
faces in R 3 ) almost everywhere. In the harder divergent case, where quasi­
independence is needed, more severe restrietions are required, and certain
submanifolds of M have to be 2-convex. For simultaneous approximation, a
mild decay condition on the error has to be imposed; this has the effect of
forcing dirn M ~ !!fl. Although this might be a technical difficulty in the
arguments it might also be connected with the positive curvature of M and
the inadmissibility of the lattice {p/q : p E zn, q E N}. However, only a
slightly stronger decay condition gives an asymptotic formula for the number
of solutions of the system of inequalities, using a method of W.M. Sch-midt.

J.H. EVERTSE: Singular differences of powers of 2 x 2 matrices
(joint work with R. Tijdeman) For two matrices A, B E GL2 (C) let

SA,B = {(m,n) E Z2: Am - Rn is singular}

Two pairs of matrices (A, B), (At, Bd are said to be equivalent if there is a
Inatrix J E GL2 (C) such that (JAJ-1, J BJ- 1) is equal to one of the pairs
(AI, 8 1), (BI, Al), (AT, Br), (B;, AT) where cT denotes the transpose.

Questions by Polligton inspired us to determine the pairs (A, B) for which
... SA,B is infinite. It is easy to see that these pairs can be partitioned into

J equivalence classes with respect to thc equivalence relation defined 1tbove.
We determine all equivalence classes of (.A, B) such that at least one of A, B
can be diagonalised, and SA,B is infinite. Moreover a necessary condition for
a pair of non-diagonalisable matrices A, B with infinite set SA,B is given.

The basic tool is a result of Laurent on exponential polynomial equations
in several unknowns which is applied to det(Am - Bn) = O. Laurent's result
goes back to Schmidt's subspace theorem. These results were applied by
Pollington in his research on normality with respect to matrices.

E. FOUVRY: Gaussian primes

Theorem 1 (Fouvry-Iwaniec) Let AI E C with lAd::; 1. Then

L A/A(l2 +m2
) = L AI1P(l) + O(x(log x)-A)

12+m2 5x J2+ m 2$x

where A is von Mangoldt '8 function,

t/>(l) = II (I - x(p)),
pV p- 1
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X is lhe non-trivial character mod 4, A is any positive nurnber, and the
implied constanl in the error term depends only on A.

By choosillg for At the characteristic function of a dense set L (which
means #(.c n [-x, xl) 2:: x(log x)-C for some c > 0 and x tending to infinity)
we deduce that the number of Gaussian primes 1T such that 17r1 ~ x and Re
7f E C has the expected order of magnitude for x ~ 00. The proof uses large
sieve techniques and properties of the polynomial [2 +m 2

.

K. GYÖRY: The number of families of solutions of decomposable .A\
form equations -
(joint work with J .-E. Evertse) Consider the decomposable form equation

F(x) = ±b in x E zn

where F E Z[XI, ... , Xn] is a decomposable form and b E Z \ {O}. Using
a quantitative result of Schlickewei (1990) on S-unit equations the speaker
obtained in 1993 explicit upper bounds for the number of maximal families
of solutions of (*), as weH as for the minimal number of those families of
solutions whose union contains all the solutions. Considerable improvements
are now possible. An explicit upper bound for the number of solutions of (*)
is obtained provided that this number is finite. When the number of solutions
is infinite, an asmptötic formula of the form c{log Ny + O((log Ny-I) holds
for the number of solutions of (*) with max lXii ~ N. This generalizes a
result of Györy and Pethö (1977) on norm form equations.

Our results have been established in the more general situation when the
ground ring is the ring of S-integers of an arbitrary number field. The nlain
new tools are a general result of Evertse (1995) on Galois-symmetric S-unit
vectors and an improved and generalized version of some results of Schmidt
(1990) and Györy (1993) on decomposable form equations.

M. HATA: An application of Beukers' integral
Considering the double integral Jfs P(x)Q(y)(l-xy)-l- n dxdy where P{x) == _
Q{x) == (x(1- x))n, n E N and 8 == [0,1]2, F. Beuker's gave an elegant prüof _
of the irrationality of ((2) = f. It seems natural to modify his integral
in order to study arithmetical properties of .some other numbers. Here we
change the integration domain S to the new 8 1 = [1, 2] x [t, 1] and obtain a
non-qu'tdraticity measure for log 2:

Ilog 2 - {! 2:: H-25.051 (H ~ Ho, Ho effective)

where ~ is any quadratic number with height H. Although the double integral
over 52 diverges, it can be justified as the limit as z ~ 1 along a curve in
the upper half plane of

F(z) = J' ( P{x)Q(y) dx dy.
1s2 (1 - xyz)n+l
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•

Taking real and imaginary parts of limz-+l,lmz>O F(z) one obtains a simulta­
neous rational approximation to log 2 and log22. The choice

P{x) = {x - 1)n+[n/lO] (x _ 2)n-[n/lO], Q{y) = (y - 1)n-[n/lO]{2y - 1)n-ln/5]

gives the result. For the estimate a complex 2-dimensional version of the
saddle method is needed.

K. KAWADA: On the representation of numbers as the sum of
four cubes
Let E( N) be the number of natural numbers not exceeding N that cannot
be written as a sum of four cubes. Then, for any ( > 0 there is a TI > 0 such
that

E(N + M) - E(N) «Mt-Tl, providing M ~ N~~:~+t:.

This is an improvement of a result due to Brüdern and Watt who obtained
the exponent ~ in place of ~~:~. T.D. Wooley pointed out that the above
result can be improved by new results due to hirn which he described during
this conference.

M. LAURENT: Linear forms in two logarithms
Let 01,02 be two non-zero algebraic numbers, bt, b2 be positive integers.
Lower bounds for the absolute value (archimedian and p-adic) of A == b1 log 01­

b2 log 0'2 and O~l - 0~2 (which is roughly' the same) are obtained. We get
bounds of the shape

: .;J..

where 0 is an upper bound for the degree [Q(ot, (2) : Q], B is an upper
bound for bt, b2 , and log Ab log A 2 for the absolute logarithmic height of
0'1,0'2. Here C is a constant (absolute or depending upon p) which is fairly
sluall, around some dozens in the archimedian case.

H. MAlER: The size of the coefficients of cyclotomic polynomials
Let ~n(z) be the n-th cyclotomic polynomial, A(n) the absolute value of

its largest coefficient. The following result is obtained: Let t/J(n) -+ 00 for
n -+ 00. Then A(n) ::; n1j1(n} on a sequence of asyrnptotic density one.

The method of proof consists in the analysis of $n(Z) on the unit circle
in combination with techniques from probabilistic number theory.

T. MATALA-AHO: Irrationality results for p-adic logarithmic and
binomial series

In joint works with A. Heimonen and K. Väänänen we investigated some
lower bounds
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for the values Q of a dass of Gaussian series 2 F1 • Now irrationality measures
m'p(a) for p-adic logarithmic and binomial series are ohtained. Let 1 < 1·f.5 E
Q, p Vs, eTlrl~ < 1. Then

T S log lrlp
m p (log( 1 - -)) ~ 2 1 I I I .

s og r p + og r + 1

There exists a similar bound for r / s < 1. For binomial series (1 + z) l/k there
are analogous results.

B. OE MATHAN: Roth's theorem in positive characteristic
Let K be a field of positive characteristic p. It was proved by A Lasjaumias
and the speaker that Thue's theorem holds for every algebraic element 0: E
K((T-l)) which satisfies no(!) equation 0 = (Aap" + B)j(Cap" + D) where
sEN, A, B, C, D E K[T], AD-BC =I O. An example of such an element was
given by Bude and Robbins. For this element, Roth's theorem holds in the
form 10' - P/QI » IQj-2-f hut not in the stronger form 10' _ PjQI » IQI-2 .

E.M. MATVEEV: Elimination of the mulpile n! from estimates for
linear forms in logarithms

Let I< C C be a field. Suppose that 01, ... , On E K* satisfy the Kummer
condition [K(fi1,. "'~) : K] = 2n with fixed values of logaj. Puf,

D = [K : Q] if K c Rand D = ~[K : Q] otherwise. Now write

A j = max{l, Dh(oj), Ilogoil}, n =:: Al ... An,

p = rankR{log 0., ... ,log On}.

Consider a ho~ogeneous rational linear form in logarithms

A = b. log 01 + ... + bn log On

with bn E Z. It was shown that there exists an absolut constant C > 1 such
that

log lAI 2:: _cnpn D2 0log(eB) log(cnpn D 2njAn )

where B = maxj{lbjIAjjAn }.

M. MIGNOTTE: On the Thue equation axn - byn = c
We consider a binary form F(x, y) = ax n

- byn with n ~ 3, a, bE N*, a #- b
and the equation F(x, y) = c, C E N*. In 1937 Siegel proved

Theorem A. The inequality IF(x, y)1 :::; c has at most one solution (x, y) E
Z2 with gcd( x, y) = 1 provided

(ab)~-l 2: 4c2n - 2 (n II pl/(n-l))n.
pln
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Here, using arecent result on linear forms in two logs of Laurent-Mignotte­
Nesterenko we obtain a general lower bound of the form

IF(x,y)l;::: lyln-C2(logn)2 forn;::: C 1(a,b).

As a corollary of this result we obtain

Theorem 1 In the special case F(x,y) == (b+ l)xß
- byß, b 2:: 1, suppose

that 0 < IF(x, y)1 < min{(2ß
- 2)b, ~n2b3} with lxi # lyl, xy # O. Then x n

and yn are 0/ the same sign. I/ x > 0, Y > 0, then y > x > 1, Y ~ nb(y - x)
and n < 600.

In the special subcase (b + 1)xn
- byß == 1 combining Theorem A and

a refined version of Theorem 1 we get: if (x, y) # (1, 1) is a solution, then
n :s; 350 and b :s; 370.

H. MIKAWA: A· variant of the Eratosthenes sieve \"
Sieve methods seem to produce an ambiguity between integers with an

odd number of prime factars and ones with an even numher. From this point
of view it is of same interest to note that

p.(n) == 1 implies E p.(d) == O.
dln

d<vn

Thc relation to the sifting process and. the effect on finding primes has been
discussed. In particular, the problem of primes in almost all short intervals
has been considered.

v.v. NESTERENKO: Modular functions and transcendence prob­
lems

Let P(z), Q(z), R(z) be the functions introduced by Ramanujan in i916,

J (z) == 1728 Q(Z~(~~(z)2' and let j (T) = J (e21l-i'r) be the modular function.

Theorem 1 For any complex number q, 0 < Iql < 1, among q, P(q), Q(q), R(q)
there exists at least three numbers algebraically independent Qver Q.

Corollary 1 Let q be algebraic, 0 < Iqt < 1. Then the numbers in each
set

1) P(q),Q(q),R(q); 2) J(q),(}J(q),(}2J(q)

where () = z1;, are algebraically independent. In particular all these numbers
are transcendental.

The assertion 2) was conjectured by D. Bertrand in 1977.
Corollary 2 Let p(z) be a Weierstrass elliptic function with algebraic

invariants 92,93 and complex multiplication over the field k; let 4! be the pe­
riod of p(z). Then for any T E k, Im T # 0, the numhers rr,w, e21Tir are alge­
braically independent. In particular, the numbers in each set {11', e1T

, r( 1/4)};
{rr, evJ , r(I/3}}, {11', eVD} where D is a positive integer, are algebraically in­
dependent.
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Theorem 2 Let q E C, 0 < Iql < 1 be such that the transcendence degTce
0/ the field K == Q(q, P(q), Q(q), R(q)) equals 3 and let () = (01, ()2, (J3) bc fL

t1'anscendence basis of K. Then there exists a constant , > 0 depending only
on q and e such that for any polynomial A E Z(xt, X2, X3], A #- 0, one has

whert: t(A) == log H(A) +deg A. In partieuiar sueh an estimate holds fo1' the
set 01 numbers 'iT, e1T

, r{1/4).

Theorem 3 Let LI, L2 be positive integers. Then for any polynomial A E
Z[z, Xl, X2, X3], A #- 0, with degz A :::; LI, degxe A :::; L2 one has

ordA(z, P(z), Q(z), R(z)) < 2(1~)45L 1 L 2

where ord denotes the order 0/ zero at z == o.

P. PHILIPPON: Aigebraic independence and K-functions
Two applications of the new. construction-extrapolation of an auxiliary func­
tion invented by Barre-Sirieix, Diaz, Gramain and Philibert are given to solve
conjectures by Mahler and Manin on the transcendency of the values of the
modular j function. The first application to Eisenstein series generalizes this
resul t and contains the prüof of algebraic independence of the three numbers
1T, e7t' and f{1/4) obtained by Nesterenko. The second application gives the
expected lower bound for the transc"endence degrees of the fields generated
by certain values of functions satisfying functional equations. It generalizes
results of Mahler and improves a result of Amon. The new method applies
to an interesting sub-class of the G-functions ("K-functions").

M. POE: Distribution of solutions on S-unit equations
Consider the equation

•

(1)

Assume that a, ß" are fixed non-zero relatively prime rational integers,
Pt, . .. , pr are distinct rational primes, all not dividing aß,. All solutions
of (1) with

(2)

are considered. It is shown that with at most 2ss exceptions all solutions lie
in a smaller box

s2log sM
ai - äi:::; (1:::; i:::; s)

log Pi

where aj denotes the smallest exponent of Pi occuring in aB solutions of (1)
and (2).
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A. POLLINGTON: Riesz products and normality
(joint work with G. Brown and W. Moran) For () > 1 let B(() denote the set
of real numbers x for which {()n x } is uniformly distributed modulo 1. Then,
as shown by Schmidt, B(r) = B(s) (r, SEN) if and only if r n = sm for some
n,111. E N. For non-integer <jJ,.,p we have

Theorem 1 B(.,p) C B( 4» if and only if log .,p / log 4J E Q and either
1. .,p = a l / n , cf> = al/rn, a E N and Q(cf» C Q(.,p),
or
~. t/; = ()m,4> = /Jn,()k ± /J-k E Z and mln.

We employ the method of constructing a Riesz product measure JL on
a set of non-normal numbers with respect to one base and then show that
with respect to this measure J-l-almost all numbers are normal with re.spect
to the other base. This uses Davenport-Erdös-LeVeque and digit arguments
on transform space.

We are able to extend this method to the case of 2 x 2 almost integer
ergodie matrices settling a question of Schmidt in this case. The applica­
tion of Davenport-Erdös-LeVeque now requires a certain matrix identity to
have only finitely many solutions This result was obtained by Evertse and
rrijdeman, and was also reported on at this conference.

D. ROY: Algebraic approximation to transcendental numbers
and algebraic independence
(joint work with M. Laurent and M. Waldschmidt) The problem of prov­
ing algebraic in.dependence using interpolation determinants has been open
for some titne. Two solutions for this problem are proposed. The first. one
is based on the existence of good algebraic approximations to famili~s of
cornplex numbers in a field of transcendence degree one. The second uses
a generalization of Gelfond's lemma in whi~h multiplicities are taken into
account.

A. SCHINZEL: The Mahler measure for polynomials in several
variables
Let F E C[Zl, ... , z,,] and define the Mahler measure M(F) by

M(F) = exp { log IF(e2lriOl, ... , e27riOa)1 d(Jt ... dOs.
1[0,1]"

Theorem 1 Let F = Ei=l akz~kl ••. Z~k", where ak E C· and the vectors
ak = [akt, ... , O'ks] are distinct. 1I there exists 1 ::; 1, J ::; sand a vector
vERs such that

VQi < VOk < VOj for all k i= i,j

then

M(F)2 + la;ajl2 < t la 12
M(F)2 - k=l k .

13
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Equality holds if F( z., ... , zs) F(zll , ... ,Z;I) has exactly 3 terms.

This generalizes a result of V. Gongalvez.

H.P. SCHLICKEWEI: The equation x + y = 1
Let G C (C*)2 be a finitely generated subgroup of rank r. We study the
~quation x + y == 1, to be solved in elements (x, y) E G. Let N be the
number of solutions of this equation. Two years ago, the speaker derived thc
first bound for N that depends only on r, namely

N ::;" 2226+36r2.

This was improved in a joint paper with W.M. Schmidt to

N ~ 213r+63rr.

In recent joint work with F. Beukets we proved

N ::; 28r+8
•

W.M. SCHMIDT: The distribution of sublattices of zm
The similarity class of a lattice of rank n may be parametrized by the orbits
of the action of G Ln(Z) on "the generalized upper half plane 1-ln, cons·isting
of matrices

[

1 X12 Xl n 1
o Y2 X2n

Z ==. .. .. .
o 0 Yn

with Yi > 0 (i = 2, ... , n). Put differently , it may be paramerized by the
points of a fundamental domain :F for the action of GLn(Z) on 1-ln.

Now let 2 ::; n ~ m. Let V be an open subset of:F. Then the number
N(V, T) of sublattices of zm of rank n and determinant ~ T whose similarity
dass belongs to some Z E V has

N(V,T) ~ c{m,n)J.L{V)Tm

as T ---+ 00 where j.L{V) is the invariant measure on H n .

A. SHIDLOVSKI, Y.V. NESTERENKO: Linear independence of val­
ues of E-functions

Theorem 1 Let f.(z), ... , fm{z) be E-functions, satisfying the system 0/ dif­
ferential equations

·e

m

y~ == EQkiYi, Qki E C(z), k = 1, ... m,
i=1

(1)

and linearly independent ouer C( z). Then there exists a finite set A c
C} dependent on 11, ... ,1m such that for any ~ E A \ A the values 0/
I. (~), ... , fm (~) are linearly independent ouer A.

14
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Let p be a prime ideal, generated in C[z, Xl,· .. ) X m ] by al1 in Xl," . , X m

homogeneous polynomials Q with the property Q(z, JI(Z)"", Jm(z)) == O.
Denote by Pe the image of p in C[Xl,'" , x m ] under the spezialisation z -7

( E C. There exists only finitely many ~ (points of bad reduction) such that
Pe is not a prime ideal. The set A in the theorem contains zero, singular
points of the system (1) and points of bad reduction. We conjecture that the
theorem holds for any ~ E A distincL from zero and singular points of (1).

C. STEWART: On prime factors of integers of the form ab + 1
(joint work with K. Gyöty and A. Sarközy). For any integer n exceeding

I let P(n) denote the greatest prime factor of n. Denote the cardinality of a
set .\' by lXI. The following result is a multiplicative analogue of a result of
P. Erdös, R. Tijdeman and C. Stewart.

Theorem 1 Let ( > 0, and let k, 1 be integers with k 2:: 3 and2" ::;: 1 ::;:
Co~~~o~:k)I/2. There exists a positive number C(f) which is effectively com­

putablf'. in ternlS 0/ (, such that if k ~ C(() then there are sets 0/ positive

integers A, 8 with lAI =: k and 181 = l for which

p(II II(ab+l)) «Iogk)'+l+~.
aEÄ bEB

M. SKRIGANOV: Ergodie theory on homogeneous spaces, dio­
phantine approximation and lattice points counting polyhedrons
It. is shown that counting lattice points for polyhedrons can be reduced to
Sill1ultancous diophantine approximations for linear forms. These diophan­
tifle problclllS are then interpreted in terms of certain flows on homogeneous
spaces SL(n, R)/SL(n, Z). As a result, we derive from ergodie 'Üieorems
on semisimple groups that for any expanding polyhedron the lattice point
count.ing has a logarithnlically small error for almost aB lattices with respect
1.0 the invariant measure on SL(n, R)jSL(n, Z). Applications to algebraic
nUlnher fields, unifornl distribution and spectral theory can also be given.

J. THUNDER: Hermite's constant for number fields
Für Tl > I Hermite's constant is the smallest real number rn such that for
any positive definite quadratic form Q(x) in n variables there is a nonzero
integer point z satisfying Q(Z) ::; rnD1/n where D is the discriminant of Q.
This definition can be formulated using heights, and can then be used to give
adefinition for Hermite's constant over a general number field. Upper and
lower bounds for these constants are obtained.

C. VIOLA: A group-theoretic approach to irrationality results for
the dilogarithm
Let L2(z) = 2::=1 ;;. be the dilogarithm. In joint work with G. Rhin, for
L2 (1) = 1r

2 /6 the irrationality measure 5.441243 is proved, improving recent
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results of M. Hata. This is obtained by applying to double integrals of the
type

[I {I x h (1 - x)iyk(l - y)i dxdy

Jo Jo (1 - xy)i+i-1 1 - xy

the action of the permutation grollp related to the Gauss hypergeometric
function. The method extends to yield irrationality proofs and irrationa:lity
measures für L 2 ( I / q), for suitable integers q i= 0, 1. In particular, L2 ( 1/6) f!.
Q. In 1993 Hata showed L2 (lfq) f/. Q for any integer q E (-00, -5] U [7, 00).

R.C. VAUGHAN: The Montgomery~Hooleyasymptotic formula and
some generalizations.
Let

q

V(x, Q) = L L 11/;(x, q, a) - A-(x ) 1
2

q<Q a=1 'P q
- (a,q)=l

where

'l/J(x,q,a) = L A(n)
n<x

n:anlOdq

, and A is von Mangoldt's function. In joint work with Goldston the following
theorem, improving earlier results of Barban, Davenport-Halberstam, Gal"':
lagher, Montgomery, Hooley and Friedlander-Goldston, is obtailled.

Theorem 1 Suppose that the generalised Riemann hypothesis hold8 and let

U(x, Q) = V(x, Q) - Qx log Q + cxQ

where
logp

c = , + log 21T + 1 +L -(--).
p p p - 1

Then (i) when 1 ::; Q ::; x one has

and (ii) there is an absolute constant C such that when xfQ -t 00 with

C X
5

/
7(log 2x) 10/7(log log 3x )8/7 < Q ~ x

one has

An unconditional theorem, for more general sequences than the primes, was
also descri bed.

P. VOJTA: Roth's theorem with moving targets

16
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Theorem 1 Let k be a number field, S a finite set of p/aces of k, CER, and

{ > O. Then any infinite set oftuples (x, (O'v)vES) in k#S+l with log Hk(O'k) =
o(log Hk(x)) for all v E S must have

for alt but finitely many tuples (x, (av ))'

When #S = 1 and O'v E K for some fixed K ::> k, this follows from a
result of van der Poorten and Bombieri (1988).

This statement was suggested by a conjecture of R. Nevanlinna proved by
C. Osgood. The proof follows Steinmetz's simplification of Osgood's proof.

J.F. VOLOCH: Linear forms in p-adic roots of unity
(joint work with J. Tate) Let C p be the completion of the algebraic closure
of the p-adics. If al '.' .. ,an E C p there exists a constant c > 0 such that for
any roats of unity (1, ... ,(n E Cp either L: ai(i == 0 or IL ai(i I 2:: c.

We also speculate when a., ... an are in a number field, how the canstant
evaries as we vary the place in the number field .

.J. WOLFART: Jacobians of CM type
Let .X be a nonsingular projective algebraic curve, defined over C, and of
genus> 1 (for sinlplicity). If Jac X is of CM type it is defined over a number
field, and X can also be defined over Q.

Theorem 1 If.\" is defined ouer Q it has a covering curve Y with "large

autolHol'phisln gr'oup" Aut Y, i.e. any proper deformation of Y decreases

#Aut Y. Jac X is 01 GM type if and only il Jac Y is of GM type.

(The proof involves the existence of a Belyi function on X and Fuchsian
groups). Y is also defined over Q.

Theorem 2 If X has a large automorphism group it has a Jacobian 01 GM
type if e.g.
. the genus of X is 2 or 3 or

Au t X is abelian.

ExaOlples: Klein 's quartic, Fermat curves
Counterexamples: Bring's curve (g=4), Macbeath 's curve (g=7).
Ideas of proof: Consider periods of first kind on X and their behaviour under
Aut .\', apply linear independence results for these periods (Shiga-Wolfart )
corning frorn the analytic subgroup theorem, or transcendence results for
Siegel modular functions (P.Cohen-Shiga-Wolfart).
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T.D. WOOLEY: Progress on exponential sums over smooth num­
bers
The exponential sums

f( a; P, R) = L e(aLxk
),

xEA(P,R)

~here e(a) = exp 21ria and

A( P, R) = {n E {1, P] n Z : pln --7 p :::; R}

have been fundamental in recent approaches to a number of additive prob­
lems, including Waring's problem. Hitherto, mean values of such SUIDS,

U.(P, R) =f If(aj P, R)I' da

have been estimated, for s which are not even integers, by Hölder's inequality.
Thus, if t is the integer with 2t :::; s < 2t + 2, then

Us(P, R) :::; U2t (P, R)l+t- ~SU2t+2(P, R)~s-t.

In new work, we provide a method, extending Vaughan's "new" iterative
method, which provides non-trivial estimates for all moments. Anlongst the
corollaries one has:
(I)

(I 6
10 I L e(ax3

)\ da« p>'3+(
xEA(P,R}

where R = pT], TI = 7]( f) > 0 and A3 = 3,24959.
(ll) The nu~berN of integers n :::; x which are the surn of three k-th powcrs
satisfies N » xt-e-

k
/

17
, eoming elose to the expected lower bound N » x3 / k .

(lI!) Also the new estimates proved important in the prüüf (with R.C. Haker
and J. Brüdern) of:
When >'1, ... , A7 , f.L are re~l numbers with Al / A2 irrational, Ai =J. 0, there are
infinitely many integral solutions of

Some problems posed at the problem session

D. BERTRAND: For any integer N ~ 1 denote by cIlN (X, Y) = 0 the n10d­
ular equation of level N, and by J(q) the usual modular invariant. The
following would extend the theorem of Barre, Diaz, Gramain and Philibert:

Conjecture: Let ql, q2 be non-zero algebraic numbers of absolute value < I
such that J(qt} and J(q2) are algebraically dependent over Q. Then ql and
q2 are multiplieatively dependent; in particular, there exists an integer N ~ I

18
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such that <t>N{J{ q.}, J{q2) = O.

In relation with the 4-exponential problem we mention the following conse­
quence of the conjecture:

"Corollary": Let 0'1,02 be positive real algebraic numbers distinct from 1.
'l'hen (log 01 )(Iog 02) and ((2) are linearly independent over Q. .

P. HORWEIN, D. BOYD: Does there exist a polynomial p(z) = 1 + atZ +
... + an z l1 with ai E {O, I, -l} which has a repe~t root of order 5 at some
.point a with lai f:. l? In general can such polynomials have non-cyclotomic
factors of arbitrary high order?

J. BRÜDERN: Let Sn be the strictly increasing sequence of those natural
numbers which are the surn of two cubes of natural nurnbers, and define the
gap set as 9 = {sn - Sn-I: n ~ 2}. I conjecture that 9 has positive ·d"ensity.
This would follow from the following paucity type estimate. Let T( P) denote
thc number of solutions of the diophantine inequality

with 1 ~ Xi, Yi ~ P. Here I expect T{P) « p 3 which would imply the
conjecturc.

A. SCHINZEL: Let F E C[zt, ... , zsl be a polynomial, let L(F) denote its
length. and M (F) the Mahler measure. Let Fn be polynomials over C. Does
limn -4c() = L(Fn - F) = 0 imply lim M(Fn ) = M(F)? (D.W. Boyd has shown
the answer is yes under the additional assumption that Fn E C[Zl, ... , zsl
alld deg F:l is bounded).

R. TLJDEMAN: A Beatty sequence is a sequence of the form {Lna+ßJlnEz
or {rno + /J1 }nEZ where 0' ~ 1 and ß are reals. The complement of a Beatty
sequence is a Beatty sequence.
Is it true that for m > 2 there are only finitely many ways to split Z into m
Beatty scquences with distinct a's?

Berichterstatter: Jörg Brüdern, Stuttgart
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