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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 15/1996

Darstellungstheorie endlicher Gruppen·
14.04. bis 20.04.1996 .

The meeting was organized by J. Alperin (Chicag9), B. Huppert (Mainz) and G.
Michler (Essen).

It was devoted to a broad survey of the major achievements.and new developments
in thc different areas of representation theory. The main part of the program was

. aseries of sixteen fifty minute lectures giving detailed overviews. The e~phasis

in these lectures ranged from reports on recent progress to surveys ~f an entire
area. There were a number of. exciting conjectures discussed. The great number
of connections between them was a strong feature of the expositions. The pro­
gram also gave indications ~f where the most promising areas were to be found.
Another feature of tbe program was the number of relations with other branches
of mathematics including number theory, computational algebra, combinatorics,
algebraic groups, topology and the representation theory of algebras.

G. Robinson reported on his work with J. G. Thompson on Brauer's celebrated
k(B)-conjecture where k(B) denotes the number of characters in a block. They
have proved an important special case (except for finitely many primes) , one that
has been studied on its own for decades. This was a very surprising development!

E. Dade lectured on the famous conjectures counting characters in blocks which
bear his name and on his reduction program to redure these questions to simple
groups. A n~mber of other important conjectures are consequences of tbe Dade
conjectures including very old questions of Brauer. K. Uno gave a detailed survey
of work on these conjecture(in tbe case of simple groups, ci. very involved situa­
tion. Some computation)il "miracles" suggest strongly that there are some basic
discoveries to be made in the structure of finite reductive groups to explain the
results. .
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Broue lectured on his conjectured relation between blocks (with abelian defect
groups) and the tbeory of derived categories. Tbe work suggests that constructions
first found by Deligne and Lusztig for finite reductive groups have generalizations
to all finite groups and these in turn would give structural results to explain the
Dade conjectures in tbe abelian case. Malle lectured on tbe startling new results
on finite complex reflection groups and Hecke algebras which where motivated by
these ideas. Rickard explained the progress with derived categories. Linckehnann
followed this up with bis new results generalizing Rickard'8 ideas and brougbta)
the basic ideas of Puig on 80urce algebras and the theory of G-algebras into this"
area. Puig reported on recent ~asic work in the area of source algebras.

C. Bessenrodt reported on Kleshchev's dramatic progress on tbe representation
theory of tbe symmetrie groups leading up to the solution (in joint work with
B. Ford) of the Mullineux conjecture as well as her work with J. 01580n giving
a quite significant si~plification. Kleshchev's work includes sorne impressive new
combinatorial contruetions. Tbe symmetrie grOUp8 also appeared in a sho~t talk
by I. Kiming who exposited tbe ideas in number theory, including the use of
modular forms, which bas led to a complete solution of the very basic question
of the existence of p-blocks of defect zero in symmetricgroups.

A number of otber reports covered a number of areas. A survey lecture by B. Küls­
hammer was devoted to the tbeory of integral representations and its connections
with number theory. C. Casolo lectured on several remarkable questions about
degrees of cornplex characters (the most basic data in representation theory),
their connections with solvable groups, and unexpected connections with questi-
ons about conjugacy class sizes. T. Keller discussed the recent progress in the
representation theory of solvable groups. Geck and Hiss covered the representa-
tion theory rnodulo I of the finite reductiv'e groups which involves a11 of block
theory, the theory of algebraic groups as weIl as extensive machinery from alge­
braic groups. K. Erdmann discussed tbe interaction between the tbeory of group
representations and the representation theory of algebras. A new conjecture would
have immediate applications to a very old conjecture about the number of cba~\
racters. J. Carlson leetured on the eobomology of groups and his programs which"
allow some remarkable computations of projective resolutions and the eohomolgy
algebras mod p. H. Gollan described a new existence proof of tbe sporadie simple
group of Lyons. It uses a new algorithm by Cooperman-Finkelstein-York-Tselman
for constructing large permutation modules by means of powerful computers.

Tbe program was completed with shorter talks devoted to reports on recent work.
The participants universally feIt that tbe meetipg was both important and timely.
They look forward to future progress stimulated by the lectures and public and
private discussions.
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Abstraets of the talks

c. Dessenrodt: Representations of the symmetrie groups and related
groups

This was a survey on some recent progress in the modular representation theory
of the symmetrie group8 and related groups. The representation theory of the
symmetrie groups has seen significant new deve10pment in partieular in an im­
pressive series of papers of A. Kleshchev. He has made important progress towards.
a modular branching theorem, Le. a description 01' the restrietion DllSn _ t for the
modular irreducible representations Dl (~) p--regular) of Sn in maracteristic p > 0
by the following results:

Theorem 1. soe(DlISn _ t ) ~ ED Dl\A ;;.:~
Agood -~."

Theorem 2. DllSn _ t is completely reducible if and ooly if all normal ~hodes of
;\ are good.

The combinatorial eoncept of good and normal Bodes introduced by hirn have
alrea.dy turned out to be of importance also in other contexts. Applying Theo­
rem 1, Kleshchev reduced the long-standing Mullineux Conjecture describing th~

partition ;\P with D>' ® sgn ~ Dl
P

to a purely combinatorial conjecture. This
was then proved in a long technieal paper jointly with Ford, and recently another
short proof giving additional insights was found by Bessenrodt and 01880n. The
main combinatorial ingredients and the behaviour of the Mullineux map were also
described; this is currently exploited to obtain results on irreducible restrietions
of the modular representations of the alternating groups. In a paper of this ye­
ar, Kleshchev now determines the multiplicities of all composition factors of the
form D).(j) in D).ISn-l by a combinatorial formula. In particular, this provides
an ilnproved lower bound for the dimensions dirn D>', for which so far only very
limited information is available.

R. Boltje: Virtual extensions of representations in the ease of coprime
action

Let G be a finite group which is acted upon by a finite group S of coprime
order and let GS be their semidirect product. It is weIl known that each S-stable
irreducible character of G can be extended to an irreducible character of GS.
We present a method, using canonical induction formulae, which allows to prove
virtual extendibility of S-stable G-representations of various kinds, as for example
projective modules, trivial source modules, linear source modules.
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M. Broue: Complex reflection groups

The following conjecture has been stated in 1988.

Let G be a finite group. Let l be a prime number, and let 0 := Zd(G] where
(a := exp(2i1rIICf).
Let B be a block (i.e., an indecomp08able two-sided ideal) of the group algebra
OG. Assume that B has an abelian defect group D, and let BD be the correspon- ..'
ding block of ONa(D). Then the derived bounded categories 1)6(B) and z>b(Bv ) a~
of, respectively, tbe algebras B and BD are equivalent. •

This conjecture has many aritbmetic coDsequences about character values, which
have~n (and still are) extensively studied. One of its co~sequencesis that there
must bei ä. perfect isometry between Band Bn. In the case of principal blocks,
this is now proved, among other case8,

• for all finite groups if l = 2 or 3 (Fong~Harris),

• for all finite reductive groups over Fq if l does not divide q (Broue-Malle­
Michel),

.. for all sporadic simple groups (Rouquier).

~The work reported here (a joint work witb Gunter Malle and Raphael Rouquier)
is part of a general program to study the above conjecture in the case where G =
G(lFq ), a finite reductive group, and l does not divide q. In this case, assuming

for simplicity that B is the principal block, it can be shown that NG(D) is an
extension of a Levi subgroup L = L(IFq ) of G by a section Wt of tbe Weyl group W
of Gwhich has a natural complex faitbful representation as a group generated by
pseudo-reßections. In the case where Gis split over IFq and where II (q-l), then
Wt = W. Moreover, some of the Deligne-Lusztig varieties X(G, L; U) associated

with tbe pair (G, L) should playa key role in tbe desired derived equivalence. We
conjecture tbat tbere is'~ action of tbe braid group associated to Wt (see below) A\
on tbe l-aclic cohomology of X(G, L; U) via a "Hecke algebra" of Wt (a suitable,.
deformation of the group algebra of Wt ), and this action should provide a large
part of the derived equivalence. This leads naturally to studying the complex

reßection groups (groups generated by pseudo-reßections), specifically to extend
to thiR more general context known properties of WeyI or Coxeter groups - a
subprogram of the program mentioned above. This talk is the first part of a

series of two talks (the second one is delivered by G. Malle).

J. F. Carlson: Computing projective resolutions and cohomology rings
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We describe a computer program for the computation of minimal projective re­
solutions of modules over the modular group algebras of finite zrgroups. Other
programs available compute chain maps from the cohomology elements. The com­
positions of the cbain map8 give the cohomology (cup) products. For a group of
reasonable size, tbe programs can compute generators and relations for the coho­
mology ring of tbe group with coefficients in the field with p elements. Presently
the mod-2 cohomology rings of the groups of order 64 are heing computed. Some
sampie calculations will be exhibited.. As currently set up tbe programs run in
the MAGMA environment, thougb it should not be too difficult to convert tbem
to other systems. -

Tbe system has also been used for part oe the calculation of the mod-2 oohomology
of the Higman-Sims group, HS. Tbe order of the Sylow 2-subgroup of ij~ is 512
and because of that it was only possible to compute seven steps in the pi'ojective
resolution. However certain of the relations among the generators in" the first
seven degrees could be derived frorn cpmputer calculations of the restrictions to
tbe centralizer of the maximal elementary abelian 2-subgroups.

c. Casolo: Clase lengths and character degrees

We give abrief survey of some aspects of the research on the arithmetical structure
of the lengtbs of conjugacy classes and of the degrees of irreducible characters in
finite groups. We restrict to two topics~ The u-p conjectures and the associated
graphs. .

For a broader picture, interested people are referred to B. Huppert '8 survey uRese·
arch in Representation Theory at Mainz (1984-1990)", Progress in Mathematics
series 95, Birkhäuser, Basel 1991. ·;-t.

H G is a finite group, we write lr(G) for the set of all primes dividing IGI. If X
is an irreducible complex character of C, we denote by O'(X) the set of all prime
divisors of X(I), tbe degree of x. Similarly, for 9 E C, we denote by (7G(g) the set
of alt prime divisors of IG : CG(g)l, the length of the conjugacy class 9G • Then
we define

q(G) = max {lu(x)1} , p(G) = U u(x) ,
xEIrr{G) xEIrr(G)

u*(G) = max{IO'G(g)1} , and p*(G) = LI O'G(g) .
gEG gEG

By the Ito-Michler Theorem,. p(G) is precisely tbe set of a.ll primes p in 11'(G) such
that G does not have anormal abelian Sylow p-subgroup. On the other hand, it
is an elementary fact that p·(G) = 1r(C/Z(G».
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The so called lT-p conjectures were proposed some years ago by B. Huppert. The
original conjecture concerns characters and states that Ip(G) I :5 2u(G) for every
soluble group G. If correct, this bound would be optimal.

Theorem 1. Ip(G)I:S; 2u(G) holds i/ u(G) = 1 (0. Manz) or i/ u(G) = 2 and
Gissoluble (D. Gluck).

Theorem 2. a) Ip(G) I :5 3u(G) + 2 if Gissoluble (Manz & Wolf; Gluck). _

b) Ip(G)1 ~ 5u(G) + c for all finite groUp8 G and a computable constant c (Dolfi .~
and Casolo).

c) Ip(G)1 ~ 3u(G) ifG is nonabelian and simple,(Alvis & Barry; Manz, Staszew­
ski & Willems).

For conjugacy classes, it ia proved that Ip*(G)1 :s; 2u*(G) when u*(G) = 1 (Chillag
& Herzog), u*(G) = 2 (Casolo; Mann; P. Ferguson), and G is soluble and u*(G) ==
3 (Casolo). Also, the inequality 11I"(G')I < 20'*(G) holds for any finite group G,
whence in particular Ip*(G)1 < 2u*{G) if G is aperfect group. However, tbe factor
2 is not correct in g~neral:

Lemma 3. (Dolfi & Casolo) I/G is metanilpotent then Ip*(G)1 ~ 3u*(G). Mo­
reover, there exists a family {Gn } 0/ supersolvable metabelian groups such thai
li Ipe(Gnll 3
n~ O'e(G) = .

Thus we conjecture that
Ip*(G)1 ~ 3u·(G)

for all. fini te graups G.

Theorem 4. a) Ip*(G)1 :5 4u*(G)+ 1 i/G is a soluble group (P. Ferguson; Dolfi
& Casolo; Z. Yiping).

b) Ip·(G)1 ~ 5u·(G) + 1 fOT all finite groups G (Dolfi & Casolo). e,
E.C. Dade: On Dade's conjectures

We're going to explain tbe extended version of the conjectures studied in my
paper

[CCB2] Counting Characters in Blocks, II. ereIle 448 (1994), 97 - 190.

As in that paper, we fix a loeal prineipal ideal domain 9t with unique maximal
ideal '+l = J(9t). We assume that the field of fractions ;J of ~ has eharacteristic
zero, and that the residue class field ~ = 9t/'lJ has prime characteristic p. The
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finite group G in that paper is now embedded. a.s anormal subgroup in another
finite group E. We fix an epimorphism e o{ E onto a third finite group F such
that G is the kernel of e. Thus we fix an exact sequence

1-+G4E~F---+l (1)

of finite graups. The totally split twisted. group algebra 21 of G over a-.in [CCB2,
7.1) now becomes a totally split twisted group algebra of E over j.

Let C be any p-chain of G. The normalizer NB(C) of C in E inter8ects G in tbe
normalizer Na(C) of C in G. We call the image NF(C) =e(NE(C») ofNE(C) the
normalizer of C in F. Then the exact sequence (1) restricts to an exact sequence

(2)

of finite groups. We ca.n use the homomorphism e: NE(C) -+ F to t~ the
restrietion 2l[NE(C») of 21 to NE(C) ioto an F-graded ~-algebra with the p­
component

21[NE (C»)p = E 21(1

(1ENs(C)
e(O')=p

for any p E F. Of course this p-component is non-zero if and ooly if p lies in
NF(C), a fact we express by saying that NF(C) is the support of the F-graded
~-algebra2l[NE(C»).

The identity component in the above F-gl'ading is the subalgebra

2l[NE(C)hF = 21[Na(C)]

of 2l[NE(C»). The centralizer of 2t{Na(C)J in 2![NE (C)] is just the fixed subal­
gebra 2l[NE (C)]No(C) of Na(C) nnder oonjugation in the twisted group algebra
21[NE (C)] of NE{C) over ij. It is an F-graded ii-subalgebra of 21[NE(C»), having
its idcntity component .

a.s a ccntral subalgebra. Because 2l[Na (C») is a split, semi-si~plealgebra ·of finite
dimension over ~, its center is the direct SUffi

Z(21[Na (C»)) = E a-l~
tl»ElrT(g(No(C»))

of copies of ij. Here Irr(21[Na(C»)) is the set of all irreducible ~-characters 4> of
2l[Na(C)], and Itl» is the primitive idempotent of Z(21[Na (C)]) corresponding to
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any such 4>. It follows that 21[NE (C)]Na(C) is the direct sum

2t[NE(C)]NG(C) = E 21(C,4»
ePeIrr(~a(C»))

(3a)

,-
(3b)e

of F-graded ~-subalgebras

21(C,4» = 21[NE(C)]NG(C)l~

for t/J E Irr(21[Na (Cl))·

Tbe group NE(C) acts on the set Irr(!X[Na(C») by conjugation in the twisted
gtoup algebra 21. Its normalsubgroup Na(C) fixes each t/J E Irr(21fNa(C»)). Hence
the stabilizer NE(C, <p) of 4> in NE(C) has Na(C) as a nonnal subgroup. We denote
by NF(C,4» the image e(NE(C,t/J») of NE(C,t!» in NF(C), Then (2) restricta to
an exact sequence

(4)

for each 4> E Irr(21[Na (C)]). We know from [CCB2, §11] that that the summand
21(C,4» in "(3a) ia a totally split twisted subgroup algebra of F over a- with the
"stabilizer" NF(C,4» as its support. This means that the p-component 21(C,4»p
is zero for p E F - NF(C, 4», and that the restriction of (e,4» is a totally split
twisted group algebra of NF(C, 4» over a-.
Now we fix a p-block B of the restrietion 21[G] of 21 to a twisted group algebra
of G over ~. We also fix a non-negative integer d. We denote by ChIrr(B, d) the
family of aB ordered pairs (C, 4», where C is a Jrchain of G and 4> is an irreducible
~-character of 21[NG (C)] such that the defect d(4)) of cl> is equal to d and the p­
block B(<jJ) of 21[NG (C)] containing 4> induces the p-block B of 2l[G). The group
C" then acts on the set Chlrr(B, d) by conjugation, with any T E G sending any
(C, 4»" E Chlrr(B, d) to the pair (C, <I»T = (CT, <f>T) E ChIrr(B, d). •

We define an equivalence relation l:::j on th~ pairs in ChIrr(B I d) so that two sude
pairs (C, cf» and (C', 4l) are equivalent if and"only if there is some isomorphism
of 2l(C, </» onto 21(C' , 4/) a.s F -graded 3-algebras. This happens if and only if
NF(C,c/» and NF(C',fjl) are the same subgroup I of Fand the restrictions of
21(C, <jJ) and 2t(C' , <11) to I are isomorphie twisted group algebras of lover J. It
is easy to see that this equivalence relation is weaker than G-conjugation, in the
sense that

(5)

for any (C, </» E ChIrr( B, d) and T E G. If I is any equivalence class for ~
and C is any p-chain of G, then k(C,I) will denote the number of characters
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4J E Irr(21[NG(C)]) such that (C,t/» belongs to I ~ Chlrr(B,d). It follows from
(5) that k(C,I) depends only on tbe G-conjugacy class of C. Furthermore, it is
easy to see that k(C,I) depends only on the normalizer NE(C) af"e in E. So
[CCB2, 2.10] implies that the altemating SUID

E (-1)IC1k(C,Z)
CEF/G

(6)

is independent of tbe moice of F among the families 1'(GIOp(G», E(GIOp(G»
and X(G) of p-chains of G, aB defined in [CCB2', §1]. Here F/G ia any fainily of
representatives for the G-ronjugacy classes in F, and ICI ia tbe length n of the
p-chain C: Po = Op(G) < PI < ... < Pn. The extended projective form of the
conjecture in (CCB2] can now be stated as -.-r'~";.

Conjecture 7 IIOp(G) = 1 and the block B has delut d(B) > 0," then the
altemating sum (6) tJanishes for any equitJalence class Z in Chhr(B, cl) ..

K. Erdmann: Methods fro~ algebras in modular representation theory

(I) The stable Auslander-Reiten quiver r .(A) of a finite-dimensional algebra A
ia an important bomological invariant. We are interested in the case when A ia a
block B of some group algebra.

Suppose tbe defect groups of Bare cyclic or dihedral, semidihedral, quaternion
(that is, B is of finite or tarne type) ..Then classification problems are solved by the
following strategy. First one determines the graph structure of r. (B). Then one
classjfies all basic algebras A with r.(A) ~ r.(B), subject to suitable regularity
conditions. One obt~ns a list which contains the possible basic algebras': for B.

A hard unsolved problem is the classification of indecomposable modules for the
quaternion group algebras over characteristic 2.

All other blocks are of wild type. It has been proved:
Theorem B is 0/ wild type ij and only if r.(B) has only components of the
form ZAoo or ZAoo/(Tk

}, and ZAoo-components occur.

Suppose B ia of wild type. It is not known how to recover properties of B from
r.(B) for B of wild type. For M indecomposable, define the quasi-Iength ql(M)
of M, to be the row number of M in its component. Answers to the following
questions would be interesting=

If S ;n B is simple, is theIi 91(S) = 1; equivalently, ia the heart of the projective
P(S) indecomposable? Tbere are partial results by S. Kawata (see this meeting).

Is. the number of simple modules in B related to properties of r.(B)? Results
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on hereditary algebras suggest that the quasi-length qI(M) of modules M with
End(M) = K} migbt be bounded by l(B).

The maximal rank of tubes, i.e. tbe maximal period of periodic modules of B, is
not known; although it is known that there is an upper bound in terms of the
cohomolQgy ring.

(11) Quasi-hereditary algebras were introduced to study highest weight modules, _
as they occur in tbe theory of semi-simple Lie algebras and algebraic groups, in '.
tbe context of finite-dimensional algebras. This enabled one to use methods hased
on finite global dimension; an important result is the discov~ry of distinguished
(generalized) tilting modules which have various applications. These methods and
resu1ts can be used for representations of symmetrie groups, via Schur algebras.
In partieular there is new insight into decomposition numbers and dimensions
of simple modules. Quasi-hereditary algebras also occur in the rontext of other
families of finite groups. For example, let M = ffii>okG/ Ji where J is tbe radical
of the group algebra kG; then the endomorphism-ring of M is quasi-hereditary.
For the case when kG is.local, some work has been done hut not in general.

P. Fleischmann: Finite locally semiregular groups

Let p be a prime. A finite group will be called p'-semiregular if it has a linear
representation such that each ]/-element acts without any fixed points. In joint
work with W. Lempken and P.H. Tiep we classified all finite p'-semiregular groups;
thus generalizing a classical result of Zassenhaus on semiregular groups. I will talk
on tbis result and its applications in the theory of finite permuation groups, where
it can be used to classify all primitive groups such that any two point stabilizer
Ga.b is a p-group. In the meantime we also finished the classification of all these
primitive permutation groups G. The p'-semiregular groups, which oecur if G
bas abelian socle, also appear in investigations of the multiplicative structure of
Galois extensions of fields. This has been pointed out by R. Guralnick and R. ~.
Wiegand, who also obtained the classification of p'-semiregular groups (up to a~
certain case whieh is missing in their paper).

M. Geck: Character sheaves and I-modular Brauer characters

Tbe aim of the talk is twofold:

1) To summarize some basic implications of Lusztig's theory of character sheaves
and Shoji's proof of Lusztig's eonjeeture on eharacter sheaves to the ordinary
character theory of finite groups of Lie type. (The point being to do this in a
way as elementary as possible, by avoiding .the original geometrie language and
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....

formulating tbe results in terms of almost characters and twisted induction).

2) To apply these results to the problem of finding basic sets of I-modular Brauer
characters, especially in tbe case where I is a bad prime. (All of the above is joint
work with G. Hiß, Heidelberg)

H .. GoUan: CODstruction of Lyons' simple group

In this lecture we describe a method by Cooperman, Finkelst~, Tselman, and
Vork for the construction of permutation representations from matrix represen­
tations. Their algorithm was first tested with the sporadie group of R.. Lyons to
produce a permutation representation of degree 9606125 from a matrix repre­
sentation of dimension 111 over the field GF(5)", These permutations ·h~ve been
used in my Habilitationsschrift to give an independent existence proof for Lyons'
simpl~ group, and to produce a new presentation for it. All the relatioris in the
2 generators are. presen.ted in the lecture together with an outline of the proof.
This new existence proof is independent of the previous, but unpublished work
of C. Sims.

D .. J .. Green: The spectrum of the ehern subring

Uoint with I.J. Leary) The mod-p cohomology ring of a finite group G can be
studied using tbe methods of commutative algebra. Quillen described the prime
ideal spectrum of the cohomology ring as a colimit over a category of elementary
abelian p-subgroups of G. We study the ehern subring, a large subring of the
coho.mology ring whieh is constructed using the representation theory of G. After
giving examples where the cohomology ring and the Chern subring have:aifferent
spectra, we obtain a description of the spectrum of the ehern snbring as a colimit
over a larger category of elementary abelians.

There is a common generalization of these colimit theorems which holds for many
large subrings of tbe cohomology ring. Tbis in turn gives rise to a tower of natural
subrings of the cohomology ring, which seems to be related to the generalized
char::,.cter theory of Hopkins, Kuhn and Ravenel.

J .. A. Green: Quantum shuffle algebras

G. Lusztig, in his book "Introduction to quantum 6IOUPS", constructs the quan­
tUITt group U2(g) corresponding to a simple Lie algebra 9 (over a field k of cha­
racteristic zero), by first making a k(q)-algebra f (q is an indeterminate) which
can be regarded as a quantization of U(n-), wh~e 9 = n- m1] ffi n+ is the usual
"triangular" decompos~tionof g.
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By a trivial change of Lustzig's construction, f is presented as a subalgebra of a
"quantized shuffle algebra" S; this latter specializes at q ~ 1 to R. Ree's shuffie
algebra (1958). Multiplication in S can be given quite explicitely, and provides a
useful way of calculating in [.

MO' Herzog: Products of conjugacy classe8 in the group8 PSL(n, F)

Let G be a (non-abelian) simple group, finite or infinite. We define cn(G) = r if _
r is tbe l~t integer satisfying e" = G for all nontrivial conjugacy classe8 C of .;
G. Such r exists for all finite simple groUp8. J. Thompson conjectured that ea.ch
simple group G contains at least one conjugacy class C satisfying: C 2 = G. This
conjecture implies Ore's conjecture asserting that eachelement of a simple group
ja acommutator.

We shall coDsider G = PSL(n, F), F any field. A matrix T E GL(n, F) ia called
cyclic ii the Jordan form of T over the aJgebraic closure of F has a unique block
corre8ponding to each eigenvalue of T. A conjugacy class of PSL(n, F) ia cyclic if
it contains an image of a cyclic matrix in SL(n, F).

Theorem 1 Let G = PSL(n, F), n ~ 3, F any field and Cb C2 , C3 cyclic conju­
gacy classes of G. Then: 01C20 3 ;::: G - {I}.

Theorem 2 Let G = PSL(n, F), n ~ 2, F is algebraically closed, CI, C2 are any
conjugacy classes of G. Then CIC2 = G<=> C2 = Cl 1 and Cl, C2 are cyclic.

Theorem 3 Let G = PSL(2, F), F is algebraically closed and C any nontrivial
conjugacy class of G. Then: C2 = G. In particular cn(G) = 2.

Theore.m 4 All simple PSL(n, F), F any field, satisfy the Thompson conjecture.

Theorem 5 Let G = PSL(n, F), n ~ 4 and F any field, satisfy 1Ft ~ 4. Then:
cn(G) = n. These results were obtained by my' Ph.D. student Arie Lev.

G. Hiß: Decomposition numbers and blocks of finite groups of Lie type

In this talk I give a survey on sorne new results on decomposition numbers oC_
classical groups. Furthermore, I shall report on the theory of blocks of finite
groups of Lie type in non-defining characteristics.

The talk centers around Harish-Chandra philosophy. First of all I shall present
a theorem of Geck, Malle, and myself on the classification of the irreducible
representations of a finite group of Lie type in non-defining characteristic. This
is a theorem of l-Harish-Chandra theory.

Next the d-Harish-Chandra theory of B~oue, Malle, and Michel is sketched, 'and
their main theorem on the distribution of the ordinary characters ioto blocks is
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described.

Then I shall talk about the new results of Gru"ber and myself on the computation
of decomposition matrices of classical groups in the case of so-called lin~ar primes.
Finally, I shall sketch tbe definition of the new q-Schur algebras of type Band D,
which played a crucial role in the determination of these decomposition matrices.

Finally, if time. allows, I shall report on the algorithm of Lascoux, Leclerc, and
Thibon for tbe determination of decomposition numbers of q-Schur algebras at
foots of unity and the connection of this theory to groUp8 of,Lie type.

s. Kawata: On the Auslander-Reiten components and simple moetules
for finite group a1gebras

Let G be a finite group, k a field of characteristic p > 0 and Ba block ofthe group
algebra leG. Erdmann sbowed that if B is a wild block, then a1l AR-components
of the stable Auslander-Reiten quiver of B have tree class Ace,. Here we ask where
simple modules lie in the AR-component with tree dass Ace, and we consider what
happens when same simple module does not lie at the end.

1. Let A be a symmetrie algebra and e an AR-component containing a simple
module. Suppose that the tree class of e is Aoo and some simple module does
not lie at the end of 8. Then for some simple A-modules 5, Tl, T2 , ••• ,Tn , the
projective covers Pi of n are uniserial and their composition factors, from the top,
are given: ~,Ti-17· .. ,Tl' 5, Tn , Tn - h · .. ,Ti. In particular the Cartan matrix for
A is as folIows:

2 1 1 0 0

1 2

1 1 0e 2 0 0
1 1 1
0 0 0

*
0 0

2. For a wild block B of kG, under the following condition (2.1) or (2.2), all simple
modules in B lie at the end.

(2.1) G is p-solvable and k is algebraically closed.
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(2.2) G has a non-trivial normal ~subgroup and k is algebraieally elosed.

T. M. Keller: The derived length and the number of irr~ducible cha­
racter degrees in solvable groups

Let G be a finite solvable group, dl(G) the derived length of G and cd(G) the set
of all irreducible complex character degrees of G. We are interested in bounding
dl(G) in terms of Icd(G)I. The first result 00 this problem was obtained by K.
Taketa in 1930, who proved

dl(G) ~ Icd(G)I
for mooomial groups. G. Seitz conjectured that this bound also holds for arbitrary
sOlvable groups. T.R. Berger estahlished this conjecture for groUp8 of odd order.
D. Gluck proved that dl(G) $ 2Icd(G)1 for all80lvable groups. We discuss these
bounds for small values of dl(G) = Icd(G)I. Such groups G are ooly known for
dl(G) ~ 5. Furthermore we ask whether a linear bound is asymptotically best
possible. For p groups, a logarithmic bound seems more probable, as recent results
of B. Huppert, I.M. Isaacs and A. Previtali on Sylow subgroups of linear groups
indicate. However, one is far away from being ahle to improve Taketa's result for
p-groups in general. So to attack the linear bouod, it makes sense to regard elasses
of groups where tbe p-group problems do not oecur. If G is a solvable group such
that all its Sylow subgroups are abelian, and its d}(G) ~ 16, then

log led(G)1
dl(G) :5 Blog log Icd(G)1 + 5.

I. Kiming: Arithmetic of some partition problems

Let p be an odd prime and let n be a natural number. Let Sn be tbe symmetrie
group of degree n and denote by Sn a double cover of Sn.

We give elementary proofs of the following two theorems.

Theorem 1: (Granville-Ono). If p ~ 5, then for all n E N, Sn has a faithfull,
irreducible character of p-defect o.

Theorem 2: (Erdmann-Michler for p = 7, Kiming for p ~ 11). If p ~ 7, then for
all n E N, Sn bas a faithfull, irreducible character of p-defeet O.

Denote by tp(n) and sp(n) respectively tbe number of "p-core partitions" of n and
tbe number of "jj-core partitions" (in the sense of J. B. Olsson) of n respectively~
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"Then theörem 1 ja equivalent to the statement that t p ( n) > 0 for p ~ 5, n E N~

Similarly theorem 2 is equivalent to the statement that sp(n) > 0 for p ;:: 7,
n E N. By work of Garvan, Kim and Stanton, one knows that tp(n) equals the
number of integral 801utions to:

and
p-l

LXi=O.
i=O

By 0188On's theory, one has that sp(n) equals the number of integral 8Olutions to:

Our proofs of the above theorems for p ~ 11 consist In proving .the existence
of 8Olutions (for each n e N) to the above equations. At the heart of the proo!
stands in hoth cases an application of Gauss'· theorem on the representation of
integers as sums of 3 squares.

We also consider for a fixed p the asymptotics of the numbers tp(n) and sp(n).
Usin@" modular forms, it is only an exercise to find an asymptotic fonnula for tp(n).
The case of sp(n) is somewhat more complicated. Again using modular forms (and
in particular the Ramanujan-Petersson conjecture, proved by Deligne) we have
obtained asymptotic formula.e for sp(n)-in the cases: (p == 1 (4) and p ~ 13).

Suppose for example that p == 5 (8), p ~ 13. Put k := ~, and let X denote the
Dirichlet character belonging to Q(R), so that X(x) = (~1)S;l for odd x E Z.
Then if n E N and we write N := 4n + (p- 1

nP-2) = "'m, where p tm, we have for
all t: > 0 :

sp(n) = (-I)tyl. '2k . _2_. N lc - 1 • LX(d)d1- lc + O(n~+~) .
B lc ,x pk - 1 dlme Here B.,)( is the k'th Bernoulli number belonging to the character x.

B. Külshammer: Some recent results in integral representation theory

This survey talk will be mainly concerned with the following topics:

I. Realizing finite group representations over rings of algebraic integers.
11. Galois-stability of lattices.

I concentrate on results by G. Cliff, G.-M. Cram, O. Neiße, J. Ritter and A. Weiss.
The following questions will be addressed, for a finite group G and an irreducible
character X of G.
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1. Suppose that X is afforded by a representation G ~ GL(n, K), for an algebraic
number field K. Js X also afforded by a matrix representation G -+ GL(n, ()K )

where OK is the ring of integers in K.

2. Is X always afforded by a representation G -., GL(n, ZrC,]) where t := exp(G)
and Cf = e2'Jri/t.

3. Over which cyclotomic fields and rings can X be realized?

4. Let V be an ab80lutely irreducible FG-module affording X where F is a Ga.lois tI'
extension of K := Q(X). Then r := Gal(FIK) acts on the set of isomorphism -
classeB of O.FG lattices on V. Is there a. r-stable isomorphism class?

In sorne cases answers are known for solvable groups only.

M. Linckelmann: Splendid equivalences for non principal blocks

Jeremy Rickard developped the notion of a splendid derived equivalence for which
he then proved that at least for principal p-blocks of finite groups with same Ir
local structure such an equivalence induces derived equivalences at alliocalleveis
of the considered blocks and shows in particular, that the blocks are isotypic. We
slightly modify Rickard's definition of a splendid derived equivalence in order to
prove the analogous results for arbitrary blocks with a comnion defect group and
same Jr local structure.

G. Malle: Complex reflection groups aod cyclotomic Hecke algebras

Let W ~ GL(V), V = Cn
, be a finite complex reßection group. In this lecture

we presented recent results on the structure of the associated generic cyclotoIDic
Hecke algebra ll(W,g). Let M = V - U H be the complement of the set A of

HeA
reflecting hyperplanes of Wand B(W) = R1(M/W, xo) be tbe fundamental group
of the space of regular orbits, the braid group associated to W. For H E A/W
let U#:1> ... ,UH'.H b~~nd::.terminant8, where eH = ICw(H)I, and u = (UH..IH Ee'
AIW,t). Let fH(X) .- nä=l(X - UH.ä).

Then the cyclotomic Hecke algebra 1l(W, u) is the quotient of Z{u, u-1 } B(W)
modulo the ideal generated by the IH,(8) for all generators of the monodromy
around the H E A.

By a result of Broue, Rouquier and the author, this gives tbe same object as
previous definitions starting from generalised Coxeter diagrams, up to finitely
many possible exceptions. It is known that 1l(W, u) is a free Z{u,u-1}-module
of rank (W), hence isomorphie to the group algebra of W over U(u) by Tits'
deformation theorem, in almost all cases.
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ie

By a result of Brenche and the author 11.(W, u) carries a canonical symmetrizing
foml, up to finitely ma.ny possible exceptions. In the talk we stated a conjecture
as to what the relative degrees associated to this form should be. This is kn~wn to
be true for small cases. Tbe relative degrees, as conjectured have tbe correct spe­
cialization to character degrees in blocks of finite groups of Lie type, as predicted
by the conjectures of Broue a.nd the author.

Finally it was stated that a certain standard speclalization of tbe relative degrees
leads to a set of polynomials which can be extended to a set e(W) of s<rcalled
unipotent degrees for W (in tbe case tbat W is imprimitive· and generated by
n = dim V reflections). These degr~ share many combinatorial properties with
the sets of degrees of unipotent charaders of finite groups of Lie type.

G. Pazdenki: On groups all of whose charaden are quasi-primitive

An ~rreducible character X of a finite group G is sa.id to be quasi-primitive if its
restrietion XN to any normal subgroup N of G deoomposes bomogeniously, i.e. if
XN is a multiple of a certain irreducible character of N. In case tbat every irredu­
cible character of G is quasi-primitive we will call G quasi-primitive. Obviously
each abelian group is quasi-primitive, and it is known (see Isaacs, I.M.: Character
theory of finite groups, p.96) that a quasi-primitive solvable group necessarily is
abelian. In this talk a complete characterization of all quasi-primitive groups is
presented. It says that quasi-primitive groups are exactly the direct products with
amalgamated centers of quasi-simple groups. This result uses the classification of
finite simple groups.

Furtheron two generalizations of quasi-primitivity are considered. The first one
relates to groups for wbich the restrietion of irreducible characters: merely to
characteristic subgroups decornposes homogeniously, the second one relates to
groups which have on tbe conjugacy classes and on the irreducible characters of
any normal subgroup similar permutation representations. Tbis is joint work with
Rene Bartseh.

L. Puig: Source algebras of blocks from the source a1gebras of their
splitting extensions

It is well-known that, when studying a block b of a finite group G over aperfeet
field k of characteristie p, the inertial quotient I = NG(P, e)/ PCa(P) of a maxi­
mal Brauer pair (P, e) associated with b ia not necessarily a p-group. Precisely, if
we assume that b is absolutely primitive in Z(kG) (i.e. Z(kGb)/J(Z(kGb» = k)
and set k = Z(kCG(P)e)/J(Z(kCa(P)e», the Sylow p-subgroups of Gal(k/k)
and I are isomorphie. In my talk I will show that a source algebra of bis a cros-
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sed product of a source algebra. of a block bin kGb and a suitable k·-extension of
this inertial quotient I, over the corresponding central k·-extension of the inertial
quotient of a maximal Brauer pair (p, e) associated with b. I will apply it to the
case where b is a nilpotent block.

J. Rickard: Derived categories and applications to group representation
theory

Let 0 be a complete discrete valuation ring with field of fractions K of charac- 411
teristic ze~ and residue field k of characteristic p > o. For a block algebra OA
oe a finite group, we denote by kA the corresponding block algebra over k. For
R = 0 or k, we denote by D6(RA) the derived category of bounded complexes
of finitely generated RA-modules.

Some time ago, we proved thai for block algebras RA an~ RB finite groups G and
H, tbe derived categories D6(RA) and D6(R"B) are equivalent (as triangulated
categories) if and only if there is a bounded complex X of finitely generated RA­
RB-bimodules, projective over RA and over RB, such that X fg}RB X· ~ RA and
X· ®RA X ~ RB in the derived categories of RA-bimodules and RB-bimodules.
X is then called a "tilting complex". Such equivalences are conjectured by Broue
to be very COuunOD. For example:

Conjecture (Broue): H G is a finite group with abelian Sylow p-subgroup P,
then the principal blocks of OG and ONG(P) have equivalent categories.

Many phenomena observed in the evidence for this conjecture remained unex­
plained by simply an equivalence of derived categories. This led us to make the
following definitions which applies in the case where G, H have a common Sylow
p-subgroup P:

Definition: A tilting complex X for block algebras RA (of RG) and RB (of RH)
is called splendid if X ®RB X· ~ RA and X· ®RA'X ~ RB is the appropriate
chain homotopy categorie8, of complexes of bimodules, and the terms of X are •
(when regarded as R[G x H]-modules) direct summands of permutation modules _~
that are induced from subgroups of 6.P = {(1r,1T) E G x H : 1T E P}. We
call the equivalence of derived categories induced by such a complex a splendid
equivalence.

Evidence suggests that it is reasonable to hope that tbe equivalences predicted by
Broue's conjecture should be splendid. The definition also has good consequences,
as described in the following theorems:

Theorem: In tbe context of Broue's conjecture, if there is a splendid equivalence
between tbe principal blocks of kG and kNa(P), then for every Q ~ P there is
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•

a splendid equivalence between the principal blocks of keG (Q) and k[eG (Q) n
NG{P»).

Theorem: If there is a splendid equivalence between blocks kA and leB, then
there is a splendid equivalence between OA and OB.

Together these theorems give a stroctural explanation of a phenomenon at the
level of characters, called an "isotopy" by Broue, that bas been observed in nu­
mer(;UB examples.

G. R. Robinson: On Braue~8 k( B)-problem for p-8olvable groups

Brauer asked whether it ia tbe case that when B is a block with defect group
D of a finite group, then Ie(ß) ~ IDI ( k(B) denotes the number'i9f ordinary
irreducible characters in B). In the general case, Br~uer and Feit (1958) proved
that k(B) :S ~IDI2 + 1, abound which has resisted significant impro~ment.

In 1962, H. Nagao (using results of P. Fong) established that to prove the k(B)
conjecture for p-blocks of p-solvable groups, it suffices to prove tbe "k(GV)­
conj~ture": if G is a finite p'-group, and V js a faithful irreducible GF(p)G­
mod-Jle, then k(G) ~ lVI. This problem has been extensively studied. Between
1980 and 1984, R. Knörr introduced powerful new ideas, which were sufficient, for
example, to establish the truth of the k(GV)-conjecture when G is supersolvable,
or IG' is odd (the latter case was done independently by D. Gluck, making use of
Knörr's methods). In 1990, R. Knörr showed that the conjecture ia correct if the­
re is some v E V such that Resgo(v)(V) is a permutation module (for any given
GV). In 1993, R. Gow showed that the conjectured inequality holds if V ~ V·
as GF(p)G-module. ,c.

In 1995, J.G. Thompson and I proved the following theorem, which establish tbe
k(GV)-conjecture for p sufficiently large:

Theorem 1: Let G, V be as above. Suppose that there is a vector v E V such
that Resgo(V)(V) has a faithful self-dual submodule. Then k(GV) ~ (VI.

Theorem 2: Let G, V be as above, and suppose that p > 530• Then there is
a vector v E V such that Resgo(v)(V) has a faithful permutation module as a
summand. In particular, k(GV) $ lVI.
The proof of Theorem 2 relies on a result of M. Liebeck, which as3erts that if G, V
are as above, and E(G) is quasi-simple with F(G) = Z(G), tbe~ if p > 530i G
has a regular orbit on V, unless E(G) ~ Am where dim(V) = m - 1 and m < p.
This improves an earlier result of Hall, Liebeck and Seitz.

As to improving the bounds, a student of Liebeck (Dorninic Goodwin) has made
significant progress in reducing the 530 bound to 56. Another case which needs to

19

                                   
                                                                                                       ©



be considered (after Clifford theoretic reductions) is when Oq(G) is of symplectic
type for some prime q. It can then be shown that a vector with the necessary
properties exists if p > 6875. These techniques also yield:

Theorem 3: Suppose that G ia a finite solvable group, p > 751 is a prime, and
B is a ~block of G. Then k(B) :$ IDI, where D ia a defect group for B.

B. Srinivasan: Green polynomials of symplectic group8

This taJk is based on joint work with T. Shoji. Let G be a connected reductive •
group de6ned over 1'" F : G -+ G a Frobenius morphism and G = G a finite
group of Lie type. Let Tl C BI be an F -stahle maximal torus and Borel subgroup
respectively, and W = NG(TI)/TI the Weyl group. Then

representations for the maximal tori of G can be written as {Twl w a representa­
tive of.an F-conjugacy clus of W}. For each Tw we have a Green function Q~w

on the unipotent elements of G. The values Q~w (u) form apart oI the character
table of G (u E G).

Let u E G. Hy a theorem of Springer we have a representation of W on H;(Bu,QI)
where Bu is the variety of alt Borel subgroups of G containing u. Then we can
write

Q~w(u) = E(-l)iTr(wF, H;(Bu », at least for goodp = char lFq •

i

Also A(U) = CG(u)/c&(u) acts on Bu , so we can talk of (H;(Bu))cP where
<P E A(;). Now let G = Sp(2n,'lFq ), G = Sp(2n, Fq ). Then W = W' D, where
D <;] W, W' ~ Sn. Let 1f' : W ~ W' be the natural map. We define a map
f : {Unipotent classes ofSp(2n, F2 } -. {Unipotent classes ofGL(n, lFq )}. Then
fix W1 E W', and consider 1l"-l(W1). We would like to compare

I ~I E (~»(q)
WE",-l(Wa)

where - means arranging over G-conjugacy classes contained in the G-coujugacy
class of u, and

This means that we compare

H2i(B7(~» with H4i(B~P)PaB w' = Sn-modules.

(i.e. the part of H4i(B~P) which is fixed by D and where A(u) acts by 1, the trivial
character).
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We show the existence of tbe commutative diagram

and show q is injective.

An upshot ia that (1) = (2) + eiTor term. The error term ia 0 for certain classes
(u), e.g. where U ia p~ametrized. by a partition of 2n with·al1 parts even.•

Hi(BGL) ~

4>J.
H2i(B(lc~) ~

Hi(BSP)D

.l.<P
H4i(B~P)f

J. Thevenaz: The Dade group of a p group
..... ~."...-

Let k be an algebraically closed field of roaracteristic p and.let ~:be a finite
p-group. The Da.de group D(P) of P is an equivariant version of "the Brauer
group of a field. It is an abelian group made of equivalence classes of simple P­
algebras over k having a P-invariant basis. Many important invarian.ts in modular
repr~ntationtheory lie in D(P) (e.g. sources of simple modules, block invariants.
etc.). The structure of D(P) is only known if P is ahelian (Dade, 1978).

It was proved 15 years aga by Puig that D(P} is finit~y generated hut, until
recently, DO significant progress was made about its structure. There are now
some results about the torsion-free rank of D(P).

A suitable suhgroup T(P) of D(P) plays a crucial role. In particular Q0 D{P)
embeds in the product of the groups Q ® T(Np(Q/Q), where Q ~ns over· all
5ubgroups of P up to conjugation. r-r.::

Th~()rem 1 (Alperin, 1995): Let X be the poset of elementary abelian subgroups
of P of rank 2:: 2. Then dim{Q ® r(p)} is the number of conjugacy classes of
connected components of X.

Note that the connected components of X can be described explicitly. Alperin'5
proof uses relative syzygies and I have a. proof using tensor indudion.

Theorem 2: dim(Q® D{P» $ Edim(Q®T(Np(Q)/Q» where Q runs over all
Q

subgroups of P up to conjugation.

Equality is e~pected to hold, at least in most cases. Another open problem is
the description of the torsion subgroup of D(P). It is expected to be a 2-torsion
group.

A. Turull: Character quotients for coprime acting groups

Let A be a finite group acting on the finite group G with (lAI, IGI) = 1. Let P be
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tbe semidirect product of A and G. Let X be an irreducbile character of r whose
restrietion to G is irreducible. Let C(A) be the set of all restrietions of X to A where
X runs over all those that arise with G a direct product of extraspeci:\l groups. In
a paper of the author and B. Hartley we proved tbat Res~(X)EC(;\) as soon as
the simple sections of G satisfy some condition of the Green functiolls of groups
of Lie type. Here we prove that the function Q(X) : S ~ C Q(X)(s) = 1~1!»)1 is

also an element of C(A) under the same hypotheses.

K. Uno: List of the cases where some form of Dade's conjecture has
already been verißed

1. SIMPLE GROUPS
•

Mn
M12( covering groups, outerauto.incl.)
M 22( covering groups, outerauto. incl.)

M23,M24

J1

J2 ( covering groups, outerauto.incl.)
J3 ( covering groups, outerauto. ind.)

McL
Ru
He
C03

L 2(q)
L3(q)

Sz(22n+1 )

G2 (q)
2G2(32n+1 )

2 F4(22n+1)
2F.. (2)'(Tits group, outerauto. inel.)

2. OTHER CROUPS

final
final
final
final
final
final
final

invariant ordinary p =1= 2
ordinary

final
final
final

final plq
final

ordinary, p t q
final,p #- 3

ordinary, p =1= 2
final

Dade [Dl]
Dade
Huang

Schwartz, An, Condcr
Dade [Dl]

Dade
Kotlica
Murray
Dade

An, preprint
An, in preparation

Dade
Dade
Dade

An [Al]
An [A2]
An [A3] Al
An [A4] ..

GL(n,q)
Sn
Sn

ordinary,plq 01sson, Uno [OUl)
ordinary,p =1= 2 Olsson, Uno [OU2)
ordinary, p = 2 An, preprint
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3. GENERAL RESULTS

cyclic defect group case
tarne block case

abelian defect unipotent block
abelian defect principal block p = 2
abelian defect small inertia index

final
invariant ordinary

ordinary
ordinary
ordinary

Dade [D4) +0
Uno [U]

Broue Malle, [BM]
Fong, Harris (FR] .
Usami, preprints
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w. Wheeler: Stratifying the rank variety of a module

Suppose that E is an elementary abelian p-group, k is an algebraically closed
field of characteristic p, and M is a finitely generated kE-module. By considering
the direct SUffi decomposition of M upon restrietion to cyclic shifted' subgroups
< U a >, it is possible to decompose the rank variety Vr(M) into a. disjoint union
oIlocally closed subspaces. Specifically, let X(M;"h ... ,np) denote the set oI all
Q E V"(k) such tbat the i-dimensional indecomposable module has multiplicity
"i as a summand oftbe restriction M<Uo> for 1 :5 i:5 p. Then X(M;nl' ,np) •
is locally closed in V"(k). Moreover, the closure of the subspa.ce X(M; "1, ,n p )

can be,destribed in terms of deformations of modules over a group of order p.

A. E. Zalesskii: Eigenvalues of matrices in representations of quasi­
simple groups

The talk disCU8Se8 the problem of determining the degrees of minimal polynomials
of p-elements in representations oE quasi-simple finite groups. The main result
describes the pairs (G, n) where G is a quasi-simple group and n is the degree
of a non-trivial irreducible representation of G over an algebraically closed field
of characteristic 0 or p, provided G has a cylic Sylow p-subgroup. For n < p the
problem was solved earlier by Blau-Zhang. For n ~ p tbe result can be stated as
folIows.

Theorem. Let G be a quasi-simple finite group, and p be an irreducible repre­
sentation of G of degree n ? p. Suppose G has a cyclic Sylow p-subgroup and
there is a p-element 9 E G such that the degree of tbe minimal polynomial of
cp(g) is less than Igl. Then n = 2(p - I), and one of the following holds:

i) p = 5, G/Z(G) E {Aa, Ag, Sp6(2)},
ii) p = 7, G/Z(G) E {G2(4),Suz},
iii) p = 13, G/Z(G) = Cot .

This report was written by: Michael Weller
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