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The meeting was organized by J. Alperin (Chicago), B. Huppert (Mainz) and G.
Michler (Essen).

It was devoted to a broad survey of the major achievements,and new developments
in the différent areas of representation theory. The main part of the program was

. a series of sixteen fifty minute lectures giving detailed overviews. The emphasis

in these lectures ranged from reports on recent progress to surveys of an entire
area. There were a number of exciting conjectures discussed. The great number
of connections between them was a strong feature of the expositions. The pro-
gram also gave indications of where the most promising areas were to be found.
Another feature of the program was the number of relations with other branches
of mathematics including number theory, computational algebra, combinatorics,
algebraic groups, topology and the representation theory of algebras.

G. Robinson reported on his work with J. G. Thompson on Brauer’s celebrated
k(B)-conjecture where k(B) denotes the number of characters in a block. They
have proved an important special case (except for finitely many primes) , one that
has been studied on its own for decades. This was a very surprising development!

E. Dade lectured on the famous conjectures counting characters in blocks which
bear his name and on his reduction program to reduce these questions to simple
groups. A number of other important conjectures are consequences of the Dade
conjectures including very old questions of Brauer. K. Uno gave a detailed survey
of work on these conjecturesin the case of simple groups, a very involved situa-
tion. Some computationsl “miracles” suggest strongly that there are some basic

* discoveries to be made in the structure of finite reductive groups to explain the

results.
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Broué lectured on his conjectured relation between blocks (with abelian defect
groups) and the theory of derived categories. The work suggests that constructions
first found by Deligne and Lusztig for finite reductive groups have generalizations
to all finite groups and these in turn would give structural results to explain the
Dade conjectures in the abelian case. Malle lectured on the startling new results
on finite complex reflection groups and Hecke algebras which where motivated by
these ideas. Rickard explained the progress with derived categories. Linckelmann
followed this up with his new results generalizing Rickard’s ideas and brought .‘,
the basic ideas of Puig on source algebras and the theory of G-algebras into this

area. Puig reported on recent basic work in the area of source algebras.

C. Bessenrodt reported on Kleshchev’s dramatic progress on the representation
theory of the symmetric groups leading up to the solution (in joint work with
B. Ford) of the Mullineux conjecture as well as her work with J. Olsson giving
a quite significant simplification. Kleshchev’s work includes some impressive new
combinatorial contructions. The symmetric groups also appeared in a short talk

by I Kiming who exposited the ideas in number theory, including the use

of

modular forms, which has led to a complete solution of the very basic question

of the existence of p-blocks of defect zero in symmetric groups.

A number of other reports covered a number of areas. A survey lecture by B. Kiils-
hammer was devoted to the theory of integral representations and its connections
with number theory. C. Casolo lectured on several remarkable questions about
degrees of complex characters (the most basic data in representation theory),
their connections with solvable groups, and unexpected connections with questi-
ons about conjugacy class sizes. T. Keller discussed the recent progress in the

representation theory of solvable groups. Geck and Hiss covered the represent

a-

tion theory modulo ! of the finite reductive groups which involves all of block
theory, the theory of algebraic groups as well as extensive machinery from alge-
braic groups. K. Erdmann discussed the interaction between the theory of group

representations and the representation theory of algebras. A new conjecture wou
have immediate applications to a very old conjecture about the number of ch

1d

a, \
racters. J. Carlson lectured on the cohomology of groups and his programs which‘
allow some remarkable computations of projective resolutions and the cohomolgy
algebras mod p. H. Gollan described a new existence proof of the sporadic simple
group of Lyons. It uses a new algorithm by Cooperman-Finkelstein- York-Tselman

for constructing large permutation modules by means of powerful computers.

The program was completed with shorter talks devoted to reports on recent work.
The participants universally felt that the meeting was both important and timely.
They look forward to future progress stimwlated by the lectures and public and

private discussions.
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Abstracts of the talks

C. Bessenrodt: Representations of the symmetric groups and related
groups

This was a survey on some recent progress in the modular representation theory
of the symmetric groups and related groups. The representation theory of the
B syminetric groups has seen significant new development in particular in an im-
' pressive series of papers of A. Kleshchev. He has made important progress towards.
» a modular branching theorem, i.e. a description of the restriction D*|S,_, for the
modular irreducible representations D* (A) p-regular) of S, in characteristic p > 0

by the following results:

Theorem 1. soc(D*|S,—;) = e DM\
Theorem 2. D*|S,_, is completely reducible if and only if all norma.l nodes of
A are good.

The combinatorial concept of good and normal nodes introduced by him have
already turned out to be of importance also in other contexts. Applying Theo-
rem 1, Kleshchev reduced the long-sta.ndlng Mullineux Conjecture describing the
pa.rtmon AP with D* ® sgn =~ ~ D toa purely combinatorial conjecture. This
was then proved in a long technical paper jointly with Ford, and recently another
short proof giving additional insights was found by Bessenrodt and Olsson. The
main combinatorial ingredients and the behaviour of the Mullineux map were also
described; this is currently exploited to obtain results on irreducible restrictions
of the modular representations of the alternating groups. In a paper of this ye-
ar, Kleshchev now determines the multiplicities of all composition factors of the
form D*0) in D*|S,_, by a combinatorial formula. In particular, this provides
an improved lower bound for the dimensions dim D?, for which so far only very
limited information is available.

‘ R. Boltje: Virtual extensions of representations in the case of coprime
action

Let G be a finite group which is acted upon by a finite group S of coprime
order and let GS be their semidirect product. It is well known that each S-stable
irreducible character of G can be extended to an irreducible character of GS.
We present a method, using canonical induction formulae, which allows to prove
virtual extendibility of S-stable G-representations of various kinds, as for example
projective modules, trivial source modules, linear source modules.
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M. Broué: Complex reflection groups
The following conjecture has been stated in 1988.

Let G be a finite group. Let £ be a prime number, and let O := Z,[(g] where
(g := exp(2in[|G]).

Let B be a block (i.e., an indecomposable two-sided ideal) of the group algebra
OG. Assume that B has an abelian defect group D, and let Bp be the correspon-
ding block of ONg(D). Then the derived bounded categories D*(B) and D*(Bp)
of, respectively, the algebras B and Bp are equivalent.

This conjecture has many arithmetic consequences about character values, which
have been (and still are) extensively studied. One of its consequences is that there
must be a perfect isometry between B and Bp. In the case of principal blocks,
this is now proved, among other cases,

e for all finite groups if £ = 2 or 3 (Fong-Harris),

o for all finite reductive groups over F, if £ does not divide ¢ (Broué-Malle-
Michel),

o for all sporadic simple groups (Rouquier).

‘The work reported here (a joint work with Gunter Malle and Rapha&l Rouquier)
is part of a general program to study the above conjecture in the case where G =
G(F,), a finite reductive group, and ¢ does not divide ¢. In this case, assuming
for simplicity that B is the principal block, it can be shown that Ng(D) is an
extension of a Levi subgroup L = L(F,) of G by a section W, of the Weyl group W
of G which has a natural complex faithful representation as a group generated by
pseudo-reflections. In the case where G is split over I, and where £ | (¢—1), then
W, = W. Moreover, some of the Deligne-Lusztig varieties X (G, L; U) associated
with the pair (G, L) should play a key role in the desired derived equivalence. We
conjecture that there is an action of the braid group associated to W, (see below)
on the £-adic cohomology of X (G, L; U) via a “Hecke algebra” of W, (a suitable
deformation of the group algebra of W,), and this action should provide a large
part of the derived equivalence. This leads naturally to studying the complex
reflection groups (groups generated by pseudo-reflections), specifically to extend
to this more general context known properties of Weyl or Coxeter groups — a
subprogram of the program mentioned above. This talk is the first part of a

series of two talks (the second one is delivered by G. Malle).

J. F. Carlson: Computing projective resolutions and cohomology rings
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We describe a computer program for the computation of minimal projective re-
solutions of modules over the modular group algebras of finite p-groups. Other
programs available compute chain maps from the cohomology elements. The com-
positions of the chain maps give the cohomology (cup) products. For a group of
reasonable size, the programs can compute generators and relations for the coho-
mology ring of the group with coefficients in the field with p elements. Presently
the mod-2 cohomology rings of the groups of order 64 are being computed. Some
sample calculations will be exhibited: As currently set up the programs run in
the MAGMA environment, though it should not be too difficult to convert them
to other systems. A

The system has also been used for part of the calculation of the mod-2 cohomology
of the Higman-Sims group, HS. The order of the Sylow 2-subgroup of HS is 512
and because of that it was only possible to compute seven steps in the projective
resolution. However certain of the relations among the generators in" the first
seven degrees could be derived from computer calculations of the restrictions to
the centralizer of the maximal elementary abelian 2-subgroups.

C. Casolo: Class lengths and character degrees

We give a brief survey of some aspects of the research on the arithmetical structure
of the lengths of conjugacy classes and of the degrees of irreducible characters in
finite groups. We restrict to two topics: The o-p conjectures and the associated
graphs. )

For a broader picture, interested people are referred to B. Huppert's survey “Rese-
arch in Representation Theory at Mainz (1984-1990)”, Progress in Mathematics
series 95, Birkhauser, Basel 1991. o

If G is a finite group, we write 7(G) for the set of all primes dividing |G|. If x
is an irreducible complex character of G, we denote by o(x) the set of all prime
divisors of x(1), the degree of x. Similarly, for g € G, we denote by og(g) the set
of all prime divisors of |G : Cg(g)|, the length of the conjugacy class g¢. Then

we define
o(G) = max {lo(0)I}, A(G) = xean-J(G) a(x) ,
o°(G) = max{log(g)l} , and p"(G) = LGL og(g) -

By the Ito-Michler Theorem, p(G) is precisely the set of all primes p in 7(G) such
that G does not have a normal abelian Sylow p-subgroup. On the other hand, it
is an elementary fact that p*(G) = n(G/Z(G)).
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The so called o-p conjectures were proposed some years ago by B. Huppert. The
original conjecture concerns characters and states that |p(G)| < 20(G) for every
soluble group G. If correct, this bound would be optimal.

Theorem 1. |p(G)| < 20(G) holds if (@) = 1 (0. Manz) or if o(G) = 2 and
G is soluble (D. Gluck).

Theorem 2. a) [p(G)| < 30(G) + 2 if G is soluble (Manz & Wolf; Gluck).

b) 10(G)| < 50(G) + ¢ for all finite groups G and a computable constant ¢ (Dolfi
and Casolo).

¢) |p(G)] < 30(G) if G is nonabelian and simple (Alvis & Barry; Manz, Staszew-
ski & Willems).

For conjugacy classes, it is proved that |p*(G)| < 20*(G) when 0*(G) = 1 (Chillag
& Herzog), 0*(G) = 2 (Casolo; Mann,; P. Ferguson), and G is soluble and ¢*(G) =
3 (Casolo). Also, the inequality |7(G’)| < 20°(G) holds for any finite group G,
whence in particular |p*(G)| < 20*(G) if G is a perfect group. However, the factor
2 is not correct in general:

Lemma 3. (Dolfi & Casolo) If G is metanilpotent then |p*(G)| < 30*(G). Mo-
reover, there ezists a family {G.} of supersolvable metabelian groups such that
lim ]’—'.((F)n =3.
n-—+00
Thus we conjecture that

Ip*(G)| < 30°(G)

for all finite groups G.

Theorem 4. a)|p*(G)| < 40*(G)+1 if G is a soluble group (P. Ferguson; Dolfi
& Casolo; Z. Yiping).

‘\
r

b) 1p*(G)| £ 50*(G) + 1 for all finite groups G (Dolfi & Casolo). .

E.C. Dade: On Dade’s conjectures

We’re going to explain the extended version of the conjectures studied in my
paper

[CCB2] Counting Characters in Blocks, II. Crelle 448 (1994), 97 — 190.

As in that paper, we fix a local principal ideal domain R with unique maximal
ideal P = J(R). We assume that the field of fractions F of R has characteristic
zero, and that the residue class field § = 9/ has prime characteristic p. The

6
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finite group G in that pa.pe-r is now embedded as a normal subgroup in another
finite group E. We fix an epimorphism ¢ of E onto a third finite group F such
that G is the kernel of €. Thus we fix an exact sequence

1—2GHE-SF 1 (1)

of finite groups. The totally split twisted group algebra 21 of G over F.in [CCB2,
7.1] now becomes a totally split twisted group algebra of E over §.

Let C be any p-chain of G. The normalizer Ng(C€) of C in E intersects G in the
normalizer Ng(C) of C in G. We call the image N£(C) = £(Ng(C)) of Ng(C) the
normalizer of C in F. Then the exact sequence (1) restricts to an exact sequence

1 — Ng(C) -2 Ng(C) =% Np(C) — 1 2)

of finite groups. We can use the homomorphism e: Ng(C) = F to turn the
restriction ANg(C)] of A to Ng(C) into an F-graded F-algebra with the p-
component

AN(C),= 3. 2,
ve(N)s(c)

for any p € F. Of course this p-component is non-zero if and only if p lies in
Np(C), a fact we express by saying that Np(C) is the support of the F-graded
§-algebra A[Ng(C)).

The identity component in the above F-grading is the subalgebra
AN5(C)li, = ANG(C)]

of ANg(C)]. The centralizer of A[NG(C)] in A[Ng(C)] is just the fixed subal-
gebra A[Ng(C)JNo(©) of Ng(C) under conjugation in the twisted group algebra
A[NE(C)] of Ng(C) over §. It is an F-graded F-subalgebra of A[Ng(C)), having
its identity component 4

@N(C)Ye )1, = Capvo(en(ANG(C)]) = Z(ANG(C)))

as a central subalgebra. Because A[Ng(C)] is a split, semi-simple algebra of finite
dimension over §, its center is the direct sum
Z@ANeCN = 3}  Fl,
$€lr(ANG(C)))
of copies of §. Here Irr(A[Ng(C)}) is the set of all irreducible 3-characters ¢ of
2A[NG(C)), and 1, is the primitive idempotent of Z(A[Ng(C)]) corresponding to

7
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any such ¢. It follows that A[Ng(C)|Ne(©) is the direct sum

AN(CPNeC = 3 %AC,¢) (3a)
SELr(ANG(C)])

of F-graded §-subalgebras
2A(C, ¢) = ANE(C)"1,

(3b)
for ¢ € Irr(A[Ng(C))). ‘

The group Ng(C) acts on the set Irr(A[Ng(C)]) by conjugation in the twisted =
gtoup algebra 2. Its normal subgroup Ng(C) fixes each ¢ € Irr(A[Ng(C)]). Hence

the stabilizer Ng(C, ¢) of ¢ in Ng(C) has Ng(C) as a normal subgroup. We denote

by Np(C, ¢) the image e(Ng(C’, ¢)) of Ng(C, ¢) in Ng(C). Then (2) restricts to

an exact sequence

1 — Ng(C) < Ng(C, ¢) = Np(C,¢) — 1 (4)

for each ¢ € Irr(A[Ng(C)]). We know from [CCB2, §11] that that the summand
A(C, ¢) in (3a) is a totally split twisted subgroup algebra of F over § with the
“stabilizer” Np(C, ¢) as its support. This means that the p-component 2(C, ¢),
is zero for p € F — Np(C, ¢), and that the restriction of (C, ¢) is a totally split
twisted group algebra of Np(C, ¢) over 3.

Now we fix a p-block B of the restriction 2A[G] of A to a twisted group algebra

of G over §. We also fix a non-negative integer d. We denote by Chlrr(B,d) the
family of all ordered pairs (C, ¢), where C is a p-chain of G and ¢ is an irreducible
F-character of A[Ng(C)] such that the defect d(¢) of ¢ is equal to d and the p-
block B(¢) of A[NG(C)] containing ¢ induces the p-block B of A[G]. The group

G then acts on the set Chlrr(B,d) by conjugation, with any 7 € G sending any

(C, ¢) € Chlrr(B,d) to the pair (C,¢)” = (C7,¢") € Chlrr(B, d). ™~
We define an equivalence relation = on the pairs in Chlrr(B,d) so that two suc}.
pairs (C, ¢) and (C’,¢") are equivalent if and’only if there is some isomorphism

of A(C, ) onto A(C’,¢') as F-graded F-algebras. This happens if and only if
Ng(C, ¢) and Ng(C’, ¢') are the same subgroup I of F' and the restrictions of
A(C, ¢) and A(C',¢') to I are isomorphic twisted group algebras of I over §. It

is easy to see that this equivalence relation is weaker than G-conjugation, in the
sense that

(C,¢) = (C,9) O]

for any (C,¢) € ChbIrr(B,d) and 7 € G. If T is any equivalence class for ~
and C is any p-chain of G, then k(C,Z) will denote the number of characters

8
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¢ € Irr(A[Ng(C))) such that (C, ) belongs to T C Chlrr(B, d). It follows from
(5) that k(C,Z) depends only on the G-conjugacy class of C. Furthermore, it is
easy to see that k(C,T) depends only on the normalizer Ng(C) of C in E. So
[CCB2, 2.10] implies that the alternating sum

> (-)°KC,1) (6)

CeF[G
is independent of the choice of ¥ among the families P(G|0,(G)), £(G|0,(G))
and R(G) of p-chains of G, as defined in [CCB2, §1]. Here F/G is any family of
representatives for the G-conjugacy classes in ¥, and [C| is the length n of the
p-chain C: Py = O,(G) < P, < --- < P,. The extended projective form of the

conjecture in (CCB2] can now be stated as "

Conjecture 7 If O,(G) = 1 and the block B has defect d(B) > 0, then the
alternating sum (6) vanishes for any equivalence class T in Chlrr(B, d). "

K. Erdmann: Methods from algebras in modular representation theory

(I) The stable Auslander-Reiten quiver I',(A) of a finite-dimensional algebra A
is an important homological invariant. We are interested in the case when A is a
block B of some group algebra.

Suppose the defect groups of B are cyclic or dihedral, semidihedral, quaternion
(that is, B is of finite or tame type). Then classification problems are solved by the
following strategy. First one determines the graph structure of I',(B). Then one
classifies all basic algebras A with I',(A) = T,(B), subject to suitable regularity
conditions. One obtains a list which contains the possible basic algebras for B.

A hard unsolved problem is the classification of indecomposable modules for the
quaternion group algebras over characteristic 2.

All other blocks are of wild type. It has been proved: :
Theorem B is of wild type if and only if T,(B) has only components of the
form ZA, or ZAs/{(7*), and ZA,,-components occur.

Suppose B is of wild type. It is not known how to recover properties of B from
['4(B) for B of wild type. For M indecomposable, define the quasi-length ql(M)
of M, to be the row number of M in its component. Answers to the following
questions would be interesting.

If S in B is simple, is then gl(S) = 1; equivalently, is the heart of the projective
P(S) indecomposable? There are partial results by S. Kawata (see this meeting).

Is the number of simple modules in B related to properties of I',(B)? Results

9
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on hereditary algebras suggest that the quasi-length ql/(M) of modules M with
End(M) = K} might be bounded by £(B).
The maximal rank of tubes, i.e. the maximal period of periodic modules of B, is

not known; although it is known that there is an upper bound in terms of the
cobomology ring.

(I1) Quasi-hereditary algebras were introduced to study highest weight modules,
as they occur in the theory of semi-simple Lie algebras and algebraic groups, in '
the context of finite-dimensional algebras. This enabled one to use methods based

on finite global dimension; an important result is the discovery of distinguished =
(generalized) tilting modules which have various applications. These methods and

results can be used for representations of symmetric groups, via Schur algebras.

In particular there is new insight into decomposition numbers and dimensions

of simple modules. Quasi-hereditary algebras also occur in the context of other

families of finite groups. For example, let M = @:>0kG/J* where J is the radical

of the group algebra kG; then the endomorphism ring of M is quasi-hereditary.

For the case when kG is local, some work has been done but not in general.

P. Fleischmann: Finite locally semiregular groups

Let p be a prime. A finite group will be called p’-semiregular if it has a linear
representation such that each p™-element acts without any fixed points. In joint
work with W. Lempken and P.H. Tiep we classified all finite p’-semiregular groups;

thus generalizing a classical result of Zassenhaus on semiregular groups. I will talk

on this result and its applications in the theory of finite permuation groups, where

it can be used to classify all primitive groups such that any two point stabilizer

G, is a p-group. In the meantime we also finished the classification of all these
primitive permutation groups G. The p/-semiregular groups, which occur if G

has abelian socle, also appear in investigations of the multiplicative structure of
Galois extensions of fields. This has been pointed out by R. Guralnick and R. !
Wiegand, who also obtained the classification of p’-semiregular groups (up to a .
certain case which is missing in their paper).

M. Geck: Character sheaves and I-modular Brauer characters
The aim of the talk is twofold:

1) To summarize some basic implications of Lusztig’s theory of character sheaves
and Shoji’s proof of Lusztig’s conjecture on character sheaves to the ordinary
character theory of finite groups of Lie type. (The point being to do this in a
way as elementary as possible, by avoiding the original geometric language and
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formulating the results in terms of almost characters and twisted induction).

2) To apply these results to the problem of finding basic sets of I-modular Brauer
characters, especially in the case where [ is a bad prime. (All of the above is joint
work with G. Hi, Heidelberg)

H. Gollan: Construction of Lyons’ simple group

In tkis lecture we describe a method by Cooperman, Finkelstein, Tselman, and
York for the construction of permutation representations from matrix represen-
tations. Their algorithm was first tested with the sporadic group of R. Lyons to
produce a permutation representation of degree 9606125 from a matrix repre-
sentation of dimension 111 over the field GF(5). These permutations have been
used in my Habilitationsschrift to give an independent existence proof for Lyons’
simple group, and to produce a new presentation for it. All the relations in the
2 generators are presented in the lecture together with an outline of the proof.
This new existence proof is independent of the previous, but unpublished work
of C. Sims.

D. J. Green: The spectrum of the Chern subring

(joint with I.J. Leary) The mod-p cohomology ring of a finite group G can be
studied using the methods of commutative algebra. Quillen described the prime
ideal spectrum of the cohomology ring as a colimit over a category of elementary
abelian p-subgroups of G. We study the Chern subring, a large subring of the
cohcmology ring which is constructed using the representation theory of G. After
giving examples where the cohomology ring and the Chern subring have different
spectra, we obtain a description of the spectrum of the Chern subring as a colimit
over a larger category of elementary abelians.

There is a common generalization of these colimit theorems which holds for many
large subrings of the cohomology ring. This in turn gives rise to a tower of natural
subrings of the cohomology ring, which seems to be related to the generalized
character theory of Hopkins, Kuhn and Ravenel.

J. A. Green: Quantum shuffle algebras

G. Lusztig, in his book “Introduction to quantum groups”, constructs the qian-
tum group Us(g) corresponding to a simple Lie algebra g (over a field k of cha-
racteristic zero), by first making a k(q)-algebra f (q is an indeterminate) which
can be regarded as a quantization of U(n~), where g = n~ @ @ n* is the usual
“triangular” decomposition of g.

11




By a trivial change of Lustzig’s construction, f is presented as a subalgebra of a
“quantized shuffle algebra” S; this latter specializes at ¢ = 1 to R. Ree’s shuffle

algebra (1958). Multiplication in S can be given qulte explicitely, and provides a
useful way of calculating in f.

M. Herzog: Products of conjugacy classes in the groups PSL(n, F)

Let G be a (non-abelian) simple group, finite or infinite. We define cn(G) = r if
r is the least integer satisfying C” = G for all nontrivial conjugacy classes C of
G. Such r exists for all finite simple groups. J. Thompson conjectured that each
simple group G contains at least one conjugacy class C satisfying: C? = G. This
conjecture implies Ore’s conjecture asserting that each element of a simple group
is a commutator.

We shall consider G = PSL(n, F), F any field. A matrix T € GL(n, F) is called

. cyclic if the Jordan form of T over the algebraic closure of F has a unique block
corresponding to each eigenvalue of T'. A conjugacy class of PSL(n, F) is cyclic if
it contains an image of a cyclic matrix in SL(n, F).

Theorem 1 Let G = PSL(n, F), n > 3, F any field and C,, C;,C3 cyclic conju-
gacy classes of G. Then: C,C,C5 > G — {1}.

Theorem 2 Let G = PSL(n, F), n > 2, F is algebraically closed, C;, C; are any
conjugacy classes of G. Then C,C; = G & C; = C{! and Cy, C; are cyclic.

Theorem 3 Let G = PSL(2, F), F is algebraically closed and C any nontrivial
conjugacy class of G. Then: C? = G. In particular cn(G) =

Theorem 4 All simple PSL(n, F), F any field, satisfy the Thompson conjecture.

Theorem 5 Let G = PSL(n, F), n > 4 and F any field, satisfy |F| > 4. Then:
cn(G) = n. These results were obtained by my Ph.D. student Arie Lev.

G. HiB: Decomposition numbers and blocks of finite groups of Lie type

In this talk I give a survey on some new results on decomposition numbers of .
classical groups. Furthermore, I shall report on the theory of blocks of finite
groups of Lie type in non-defining characteristics.

The talk centers around Harish-Chandra philosophy. First of all I shall present
a theorem of Geck, Malle, and myself on the classification of the irreducible

representations of a finite group of Lie type in non-defining characteristic. This
is a theorem of ¢-Harish-Chandra theory.

Next the d-Harish-Chandra theory of Broué, Malle, and Michel is sketched, and
their main theorem on the distribution of the ordinary characters into blocks is

12
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described.
Then I shall talk about the new results of Gruber and myself on the computation
of decomposition matrices of classical groups in the case of so-called linear primes.

Finally, I shall sketch the definition of the new g-Schur algebras of type B and D,
which played a crucial role in the determination of these decomposition matrices.

Finally, if time allows, I shall report on the algorithm of Lascoux, Leclerc, and
Thibon for the determination of decomposition numbers of ¢-Schur algebras at
roots of unity and the connection of this theory to groups of Lie type.

S. Kawata: On the Auslander-Reiten components and simple modules
for finite group algebras .

Let G be a finite group, k a field of characteristic p > 0 and B a block of the group
algebra kG. Erdmann showed that if B is a wild block, then all AR-components
of the stable Auslander-Reiten quiver of B have tree class A,,. Here we ask where
simple modules lie in the AR-component with tree class A,, and we consider what
happens when some simple module does not lie at the end. )

1. Let A be a symmetric algebra and © an AR-component containing a simple
module. Suppose that the tree class of © is A, and some simple module does
not lie at the end of ©. Then for some simple A-modules S,Ty,T3,- - , Ty, the
projective covers P; of T; are uniserial and their composition factors, from the top,
are given: T;, Ti_y, -+ , 11,5, Tay, Ta_1,- - - , T;. In particular the Cartan matrix for
A is as follows:

e,

2 1 1 10 0\
2 1 :

1 1 - 1

: . 2 1 0
1 1 - 1

0 0 --- 0

: : *
\0 .- -~ 0

2. For a wild block B of kG, under the following condition (2.1) or (2.2), all simple
modules in B lie at the end.

(2.1) G is p-solvable and k is algebraically closed.
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(2.2) G has a non-trivial normal p-subgroup and k is algebraically closed.

T. M. Keller: The derived length and the number of irreducible cha-
racter degrees in solvable groups

Let G be a finite solvable group, dI(G) the derived length of G and cd(G) the set
of all irreducible complex character degrees of G. We are interested in bounding
dI{G) in terms of |cd(G)|. The first result on this problem was obtained by K.
Taketa in 1930, who proved

dI(G) < |cd(G)]

for monomial groups. G. Seitz conjectured that this bound also holds for arbitrary
solvable groups. T.R. Berger established this conjecture for groups of odd order.
D. Gluck proved that dI(G) < 2|cd(G)] for all solvable groups. We discuss these
bounds for small values of dI(G) = |cd(G)|. Such groups G are only known for
dl(G) < 5. Furthermore we ask whether a linear bound is asymptotically best
possible. For p groups, a logarithmic bound seems more probable, as recent results
of B. Huppert, I.M. Isaacs and A. Previtali on Sylow subgroups of linear groups
indicate. However, one is far away from being able to improve Taketa’s result for
p-groups in general. So to attack the linear bound, it makes sense to regard classes
of groups where the p-group problems do not occur. If G is a solvable group such

- that all its Sylow subgroups are abelian, and its dI(G) > 16, then

logled(G)l_,

d(G) < 6log log |cd(G)| ’

1. Kiming: Arithmetic of some partition problems

Let p be an odd prime and let n be a natural number. Let S, be the symmetric
group of degree n and denote by S, a double cover of S,.

We give elementary proofs of the following two theorems.

Theorem 1: (Granville-Ono). If p > 5, then for all n € N, S, has a faithfull,
irreducible character of p-defect 0.

Theorem 2: (Erdmann-Michler for p = 7, Kiming for p > 11). If p > 7, then for
all n € N, S, has a faithfull, irreducible character of p-defect 0.

Denote by t,(n) and s,(n) respectively the number of “p-core partitions” of n and
the number of “j-core partitions” (in the sense of J. B. Olsson) of n respectively.
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Then theorem 1 is equivalent to the statement that t,(n) > 0 for p > 5, n € N.
Similarly theorem 2 is equivalent to the statement that s,(n) > 0 for p > 7,
n € N. By work of Garvan, Kim and Stanton, one knows that ¢,(n) equals the
number of integral solutions to:

p-1 P p—-1
n=§(§-z?+£z.-) and Ez;:ﬂ.

=0

By Olsson’s theory, one has that s;(n) equals the number of integral solutions to:

= 1
n=3 (P 5u(m—1) +iw) .
=1
Our proofs of the above theorems for p > 11 consist m proving .the existence
of solutions (for each n € N) to the above equations. At the heart of the proof
stands in both cases an application of Gauss’ theorem on the representation of
integers as sums of 3 squares.

We also consider for a fixed p the asymptotics of the numbers ¢,(n) and s,(n).
Using modular forms, it is only an exercise to find an asymptotic formula for ¢,(n).
The case of s,(n) is somewhat more complicated. Again using modular forms (and
in particular the Ramanujan-Petersson conjecture, proved by Deligne) we have
obtained asymptotic formulae for s,(n) in the cases: (p =1 (4) and p > 13).

Suppose for example that p = 5 (8), p > 13. Put &k := 2L and let x denote the
Dirichlet character belonging to @(v/=T), so that x(z) = (<1)*F" for odd z € Z.

Then if n € N and we write N := 4n + !2‘—155'—2-1 = p*m, where p { m, we have for
alle>0: }
2k 2

Sy(n) = (~— h2"1-—.——---. =1. 1-k n.—;-"z
) = () R N Tt 0.

Here By, is the k’th Bernoulli number belonging to the character x.

B. Kiilshammer: Some recent results in integral representation theory
This survey talk will be mainly concerned with the following topics:

L. Realizing finite group representations over rings of algebraic integers.
II. Galois-stability of lattices.

I concentrate on results by G. Cliff, G.-M. Cram, O. Neifle, J. Ritter and A. Weiss.
The following questions will be addressed, for a finite group G and an irreducible
character x of G.
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1. Suppose that x is afforded by a representation G — GL(n, K), for an algebraic
number field K. Is x also afforded by a matrix representation G — GL(n,Ok)
where Ok is the ring of integers in K.

2. Is x always afforded by a representation G — GL(n, Z[(;]) where t := exp(G)
and ¢, = e/,

3. Over which cyclotomic fields and rings can x be realized?

4. Let V be an absolutely irreducible FG-module affording x where F is a Galois .
extension of K := Q(x). Then T' := Gal(F|K) acts on the set of isomorphism
classes of OfG lattices on V. Is there a I'-stable isomorphism class?

In some cases answers are known for solvable groups only.

M. Linckelmann: Splendid equivalences for non principal blocks

Jeremy Rickard developped the notion of a splendid derived equivalence for which
he then proved that at least for principal p-blocks of finite groups with same p-
local structure such an equivalence induces derived equivalences at all local levels
of the considered blocks and shows in particular, that the blocks are isotypic. We
slightly modify Rickard’s definition of a splendid derived equivalence in order to
prove the analogous results for arbitrary blocks with a commion defect group and
same p-local structure.

G. Malle: Complex reflection groups and cyclotomic Hecke algebras

Let W < GL(V), V = C", be a finite complex reflection group. In this lecture |
we presented recent results on the structure of the associated generic cyclotomic

Hecke algebra H(W,g). Let M =V — HUA H be the complement of the set A of
€

reflecting hyperplanes of W and B(W) = R,(M/W, z,) be the fundamental group
of the space of regular orbits, the braid group associated to W. For H € AW
let Uk, ..., UHey be indeterminants, where ey = |Cy(H)|, and u = (Ug,|H e.ﬁ
A[W,3). Let fu(X) := T2y (X — Uny). ’
Then the cyclotomic Hecke algebra H(W,u) is the quotient of Z{u,u~'}B(W)

modulo the ideal generated by the fy,(s) for all generators of the monodromy
around the H € A.

By a result of Broué, Rouquier and the author, this gives the same object as
previous definitions starting from generalised Coxeter diagrams, up to finitely
many possible exceptions. It is known that H(W,u) is a free Z{u,u~'}-module
of rank (W), hence isomorphic to the group algebra of W over U(u) by Tits’
deformation theorem, in almost all cases.
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By a result of Brenche and the author (W, u) carries a canonical symmetrizing
form, up to finitely many possible exceptions. In the talk we stated a conjecture
as to what the relative degrees associated to this form should be. This is known to
be true for small cases. The relative degrees, as conjecturéd have the correct spe-
cialization to character degrees in blocks of finite groups of Lie type, as predicted
by the conjectures of Broué and the author.

Finally it was stated that a certain standard specialization of the relative degrees
leads to a set of polynomials which can be extended to a set £(W) of so-called
unipotent degrees for W (in the case that W is imprimitive and generated by
n = dim V reflections). These degrees share many combinatorial properties with
the sets of degrees of unipotent characters of finite groups of Lie type.

G. Pazderski: On groups all of whose characters are quasi-primitive

An irreducible character x of a finite group G is said to be quasi-primitive if its
restriction xn to any normal subgroup N of G decomposes homogeniously, i.e. if
X~ is a multiple of a certain irreducible character of N. In case that every irredu-
cible character of G is quasi-primitive we will call G quasi-primitive. Obviously
each abelian group is quasi-primitive, and it is known (see Isaacs, LM.: Character
theory of finite groups, p.96) that a quasi-primitive solvable group necessarily is
abelian. In this talk a complete characterization of all quasi-primitive groups is
presented. It says that quasi-primitive groups are exactly the direct products with
amalgamated centers of quasi-simple groups. This result uses the classification of
finite simple groups.

Furtheron two generalizations of quasi-primitivity are considered. The first one
relates to groups for which the restriction of irreducible characters: merely to
characteristic subgroups decomposes homogeniously, the second one relates to
groups which have on the conjugacy classes and on the irreducible characters of
any normal subgroup similar permutation representations. This is joint work with
René Bartsch.

L. Puig: Source algebras of blocks from the source algebras of their
splitting extensions

It is well-known that, when studying a block b of a finite group G over a perfect

field k of characteristic p, the inertial quotient I = Ng(P, e)/ PCg(P) of a maxi- -

mal Brauer pair (P, €) associated with b is not necessarily a p/-group. Precisely, if
we assume that b is absolutely primitive in Z(kG) (i.e. Z(kGb)/J(Z(kGb)) = k)
and set k = Z(kCg(P)e)/J(Z(kCg(P)e)), the Sylow p-subgroups of Gal(k/k)
and [ are isomorphic. In my talk 1 will show that a source algebra of b is a cros-
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sed product of a source algebra of a block b in kGb and a suitable k*-extension of
this inertial quotient /, over the corresponding central k*-extension of the inertial
quotient of a maximal Brauer pair (p,é) associated with b. 1 will apply it to the
case where b is a nilpotent block.

J. Rickard: Derived categories and applications to group representation
theory

Let O be a complete discrete valuation ring with field of fractions K of charac- .
teristic zero and residue field k of characteristic p > 0. For a block algebra O A ’
of a finite group, we denote by kA the corresponding block algebra over k. For

R = O or k, we denote by D*(RA) the derived category of bounded complexes

of finitely generated RA-modules.

Some time ago, we proved that for block algebras RA and RB finite groups G and
H, the derived categories D*(RA) and D*(RB) are eqmvalent (as triangulated
categories) if and only if there is a bounded complex X of finitely generated RA-
RB-bimodules, projective over RA and over RB, such that X ®zp X* =¥ RA and
X*®ra X = RB in the derived categories of RA-bimodules and RB-bimodules.
X is then called a “tilting complex”. Such equivalences are conjectured by Broué
to be very common. For example:

Conjecture (Broué): If G is a finite group with abelian Sylow p-subgroup P,
then the principal blocks of OG and ONg(P) have equivalent categories.

Many phenomena observed in the evidence for this conjecture remained unex-
plained by simply an equivalence of derived categories. This led us to make the

following definitions which applies in the case where G, H have a common Sylow
p-subgroup P:

Definition: A tilting complex X for block algebras RA (of RG) and RB (of RH)

is called splendid if X ®pp X* = RA and X* ®ra-X = RB is the appropriate
chain homotopy categories, of complexes of bimodules, and the terms of X are X
(when regarded as R[G x H]-modules) direct summands of permutation modules :
that are induced from subgroups of AP = {(m,7) € G x H : # € P}. We

call the equivalence of derived categories induced by such a complex a splendid
equivalence.

Evidence suggests that it is reasonable to hope that the equivalences predicted by
Broué’s conjecture should be splendid. The definition also has good consequences,
as described in the following theorems:

Theorem: In the context of Broué’s conjecture, if there is a splendid equivalence
between the principal blocks of kG and kNg(P), then for every Q < P there is
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a splendid equivalence between the principal blocks of kCs(Q) and k[C(Q) N
Ng{P)].

Theorem: If there is a splendid equivalence between blocks kA and kB, then
there is a splendid equivalence between OA and OB.

Together these theorems give a structural explanation of a phenomenon at the
level of characters, called an “isotopy” by Broué, that has been observed in nu-
mercus examples.

G. R. Robinson: On Brauer’s k( B)-problem for p-solvable groups

Brauer asked whether it is the case that when B is a block with defect group
D of a finite group, then k(B) < |D| ( k(B) denotes the number.of ordinary
irreducible characters in B). In the general case, Brauer and Feit (1958) proved
that k(B) < 4|DP? + 1, a bound which has resisted significant improvement.

In 1962, H. Nagao (using results of P. Fong) established that to prove the k(B)
conjecture for p-blocks of p-solvable groups, it suffices to prove the “k(GV)-
conjecture”: if G is a finite p'-group, and V is a faithful irreducible GF(p)G-
module, then k(G) < |V|. This problem has been extensively studied. Between
1980 and 1984, R. Knorr introduced powerful new ideas, which were sufficient, for
example, to establish the truth of the k(GV)-conjecture when (7 is supersolvable,
or |G| is odd (the latter case was done independently by D. Gluck, making use of
Knérr’s methods). In 1990, R. Knérr showed that the conjecture is correct if the-
re is some v € V such that Mgc(v)(V) is a permutation module (for any given
GV). In 1993, R. Gow showed that the conjectured inequality holds if V = V*
as GF(p)G-module.

In 1995, J.G. Thompson and I proved the following theorem, which establish the
k(GV)-conjecture for p sufficiently large:

Theorem 1: Let G,V be as above. Suppose that there is a vector v € V such
that ResG, 5(v)(V) has a faithful self-dual submodule. Then k(GV) < V.

Theorem 2: Let G,V be as above, and suppose that p > 5%°. Then there is
a vector v € V such that Rgsga(v)(V) has a faithful permutation module as a
summand. In particular, ¥(GV) < |V/|.

The proof of Theorem 2 relies on a result of M. Liebeck, which asserts that if G,V
are as above, and E(G) is quasi-simple with F(G) = Z(G), then if p > 5%°G
has a regular orbit on V, unless E(G) & A,, where dim(V)=m —1 and m < p.
This improves an earlier result of Hall, Liebeck and Seitz.

As to improving the bounds, a student of Liebeck (Dominic Goodwin) has made
significant progress in reducing the 5% bound to 5°. Another case which needs to
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be considered (after Clifford theoretic reductions) is when O,(G) is of symplectic
type for some prime q. It can then be shown that a vector with the necessary
properties exists if p > 6875. These techniques also yield:

Theorem 3: Suppose that G is a finite solvable group, p > 751 is a prime, and
B is a p-block of G. Then k(B) < |D|, where D is a defect group for B.

B. Srinivasan: Green polynomials of symplectic groups

This talk is based on joint work with T. Shoji. Let G be a connected reductive
group defined over F;, F : G =+ G a Frobenius morphism and G = G a finite
group of Lie type. Let Ty C B, be an F-stable maximal torus and Borel subgroup
respectively, and W = Ng(T,)/T, the Weyl group. Then

representations for the maximal tori of G can be written as {Tw| w a representa-
tive of an F-conjugacy class of W}. For each Ty we have a Green function QF,,
on the unipotent elements of G. The values Q% (u) form a part of the character
table of G (u € G).

Let 4 € G. By a theorem of Springer we have a representation of W on H:(B,, Q)
where B, is the variety of all Borel subgroups of G containing u. Then we can
write

Q5. (v) = Y (~1)'Tr(wF, Hi(B.)), at least for good p = charF,.

Also A(U) Ca(u)/C&(u) acts on B,, so we can talk of (H:{B,))¢ where
¢ € A(u) Now let G = Sp(2n,F,), G = Sp(2n,F,). Then W = W'D, where
DaW, W 25, Let 7 : W — W’ be the natural map. We define a map
f : {Unipotent classes of Sp(2n,F,} — {Unipotent classes of GL(n,F,)}. Then
fix Wy € W', and consider #~!(W;). We would like to compare

Y (@)

IWI wen—'(Wy)

where ~ means arranging over G-conjugacy classes contained in the G-conjugacy
class of u, and

LAY ONE)
This means that we compare
H(BS,) with H¥(BZP)P as W' = S,-modules.

(i.e. the part of H4/(BSP) which is fixed by D and where A(u) acts by 1, the trivial
character).
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We show the existence of the commutative diagram

H(BSY) = H(BS)P
$l ¢
H:-(B o _) H«(BSp)D

. and show o is injective.

An upshot is that (1) = (2) + etror term. The error term is 0 for certain classes
(u), e-g. where U is parametrized by a partition of 2n with-all parts even.

J. Thévenaz: The Dade group of a p group

Let k be an algebraically closed field of characteristic p and. let P "be a finite
p-group. The Dade group D(P) of P is an equivariant version of ‘the Brauer
group of a field. It is an abelian group made of equivalence classes of simple P-
algebras over k having a P-invariant basis. Many important invariants in modular
representation theory lie in D(P) (e.g. sources of simple modules, block invariants,
etc.). The structure of D(P) is only known if P is abelian (Dade, 1978).

It was proved 15 years ago by Puig that D(P) is finitely generated but, until
reczntly, no significant progress was made about its structure. There are now
some results about the torsion-free rank of D(P).

A suitable subgroup T(P) of D(P) plays a crucial role. In particular Q ® D(P)
embeds in the product of the groups Q ® T(N,(Q/Q), where Q runs over all
subgroups of P up to conjugation. o

Theorem 1 (Alperin, 1995): Let X be the poset of elementary abelian subgroups
of P of rank > 2. Then dim(Q ® T(P)) is the number of conjugacy classes of
connected components of X.

Note that the connected components of X can be described explicitly. Alperin’s
. proof uses relative syzygies and I have a proof using tensor induction.

Theorem 2: dim(Q ® D(P)) < ¥ dim(Q ® T(N,(Q)/Q)) where Q runs over all
Q
subgroups of P up to conjugation.

Equality is expected to hold, at least in most cases. Another open problem is
the description of the torsion subgroup of D(P). It is expected to be a 2-torsion
group.

A. Turull: Character quotients for coprime acting groups
Let A be a finite group acting on the finite group G with (JA|,|G|) = 1. Let P be
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the semidirect product of A and G. Let x be an irreducbile character of I' whose

restriction to G is irreducible. Let C(A) be the set of all restrictions of x to A where

X runs over all those that arise with G a direct product of extraspecial groups. In

a paper of the author and B. Hartley we proved that Resf(x) € C(A) as soon as

the simple sections of G satisfy some condition of the Green functions of groups

of Lie type. Here we prove that the function Q(x) : § = CQ(x)(s) = (;('; is
| also an element of C(A) under the same hypotheses.

K. Uno: List of the cases where some form of Dade’s conjecture has .
already been verified

1. SIMPLE GROUPS

M" final Dade [Dl]
M, ,(covering groups, outerauto.incl.) final Dade
My,(covering groups, outerauto. incl.) final Huang
Mza,Mu final Schwa.rtz, An, Conder
A final Dade [D1]
Ja(covering groups, outerauto.incl.) final Dade
Ja(covering groups, outerauto. incl.) final Kotlica
McL invariant ordinary p # 2 Murray
Ru ordinary Dade
He final An, preprint
Cos final An, in preparation
Ly(q) final Dade
Ls(q) final plq Dade
Sz(2%n+1) final Dade
G2(q) ordinary,p{ q An [Al]
2G,(3+1) final,p # 3 An (A2]
2F (2741 ordinary,p # 2 An [A3] i
?F4(2)'(Tits group, outerauto. incl.) final An [A4]

2. OTHER GROUPS

GL(n,q) ordinary,plg Olsson, Uno [OU1]
S, ordinary,p # 2 Olsson, Uno [0U2)
Sn ordinary,p =2 An, preprint
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3. GENERAL RESULTS

cyclic defect group case final Dade [D4] +a
tame block case invariant ordinary Uno [U]
abelian defect unipotent block ordinary Broué Malle, [BM] v
abelian defect principal block p = 2 ordinary Fong, Harris [FH]
‘ abelian defect small inertia index ordinary Usami, preprints
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W. Wheeler: Stratifying the rank variety of a module

Suppose that E is an elementary abelian p-group, k is an algebraically closed
field of characteristic p, and M is a finitely generated k E-module. By considering
the direct sum decomposition of M upon restriction to cyclic shifted subgroups
< u, >, it is possible to decompose the rank variety V" (M) into a disjoint union
of locally closed subspaces. Specifically, let X(M;n,,...,n,) denote the set of all
a € V7(k) such that the i-dimensional indecomposable module has multiplicity
n; as a summand of the restriction M, for 1 <i < p. Then X(M;n,,...,n,)
is locally closed in V" (k). Moreover, the closure of the subspace X(M;n;,...,n,)
can be deséribed in terms of deformations of modules over a group of order p.

A. E. Zalesskii: Eigenvalues of matrices in representations of quasi-
simple groups

The talk discusses the problem of determining the degrees of minimal polynomials
of p-elements in representations of quasi-simple finite groups. The main result
describes the pairs (G,n) where G is a quasi-simple group and n is the degree
of a non-trivial irreducible representation of G over an algebraically closed field
of characteristic 0 or p, provided G has a cylic Sylow p-subgroup. For n < p the
problem was solved earlier by Blau-Zhang. For n > p the result can be stated as
follows.

Theorem. Let G be a quasi-simple finite group, and p be an irreducible repre-
sentation of G of degree n > p. Suppose G has a cyclic Sylow p-subgroup and
there is a p-element g € G such that the degree of the minimal polynomial of
¢(g) is less than |g|. Then n = 2(p — 1), and one of the following holds:

i) p= '51 G/Z(G) € {AG, A9’ SPG(Q)}r
ii) p =7, G/Z(G) € {G2(4),Suz},
iit) p = 13, G/Z(G) = Co;.

This report was written by: Michael Weller
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