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The meeting has been organized by Mark Ronan (Univ~rsityof lliinois at Chicago)
and Peter Slodowy (Hamburg). Same of the subjects treated in the talks inc1uded:

a) Generalizations of Buildings, including Twin Buildings,
b) applications to

i) the theory of symetrie spaces
ii) harmonie analysis
iii) graphs and geometries

                                   
                                                                                                       ©



M.RONAN:
Twin Buildings

The purpose of this talk was to give an introduction to hvin buHdings in prepara­
tion for the talks of several other participants. A twin building is a pair of build­
ings along with a eodistanee funetion (taking values in the Coxeter group) from
the chambers of one building to those of the other. The automorphism group is
more restricted than that of a single building. For example GL

n
(k[t,t1]) is almost

the whole automorphism group of a twin building, whereas each of the two build-
ings concerned admit the much larger group GLn(k«t))) and GLn (k«t1

))). Twoe
main theorems were discussed. A rigidity theorem showing that a certain mild
restrietion on fixed point set~ gives on!y the identi ty as an automorphism; this
leads to a natural eoneept of ·foot groups. The other theorem was a loeal to global
theorem showing that the loeal structure detennines the global strueture in almost
all eases where tree residues are exeluded.

] JOST:
Hannonie Maps iota Buildings and Applieations of Algebraie Geometry

Harmonie maps into Euclidian buildings or more general spaees of generalized
nonpositive eurvature in the sense of Alexandrov are defined by same kind of
infinitesimal mean value property. A general existence theorem is presented that
exploits suitable convexity properties of such spaces, but does not require them to
be loeally compact.

Applications of trus theory include results in the direction of Margulis s~perrigidi­

ty, as weIl as factorization theorems for p-adic representations of Kähle groups (the
latter represents joint \vork with Kang Zuo).

ELANDVOGT:
Functorial Properties of the Bruhat-Tits Building

Since the Bruhat-Tits building is defined not very naturally, there are simple ques­
tions which carmot be answered directly, e.g=- whether the Bruhat-Tits building
depends functorially on the °group. So the purpose of the talk was to prove the fol­
lowing theorem:
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Theorem: Let K/k be a Galois extension of Ioeal fields and GQ-I a k-inclusion of
connected reductive k-groups. Then there exists a map BT(G,K) ~ BT(H,K) which
is G(K)- and Gal(K/k)-equivarient and, after renormalization of the metric on
BT(G,K), an isometrical indusion.

(Here: BT(-,K) denotes the extended Bruhat-TIts building).

Consider the following map:

{

L: BT(G,K)~BT(H,K) }

_ G(K)- and Gal(K/ k)-equivar - BT(H,K)

isometrical inclusion L..... L(X)

where xEBT(G,K) is a fixed special point. Denote by Jl the image of this map. and
by Z the centralizer of G(K) in H(K). Then: .".'1':j -

Theorem:

(i) There is a bounded subset Jlo~Jl such that Z·Jlo=Jl.

(ii) If G splits over an unramified extension of K, then there is a point xE!-! such
that Il=convex hull oE Z·x.

G. LEHRER:
Split Buildings oE Reductive Groups

Let G be a connected reductive group over a fixed arbitrary field k. For any k-split
torus 5, \ve have the sphere (8(5) consisting of ~ -lines in Y(5)®R (Y being the
cocharacter group). The spherical building of G is defined as a quotient oE
Bt(G)=I;IC'B(5) (disjoint union over all max k-split tori of G) by the equivalence rela­
tion b t.....b2 if b2= jb1 for same gEP(bt)(k) where P(b) is the parabolie subgroup corre­
sponding to bEcBt(G). If L(b) is the Levi subgroup defined by bE(Bt(G), define a

eweaker equivalence on c.B.(G) by b.=b2 if b2= sb! for some gEL(b)(k). The split
building is defined as S(G):= (BI(G) / =::. Clearly one has a surjective map
S(G)~<'B(G);morever an easy lemma shows that S(G)5!({(b,b')E(ß(G) x <BeG) Ibis
opposite b'l. The split building has the following properties: (i) it has apartments
B(5) (H) S is a funetor (group homomorphism required to be injective) (iii) If
xEG(k) is semisimple, S(G)x=S(Cc(x)O) (iv) S(C) is the d-fold suspension of the
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simplicial complex S(C), defined belo\v, where d=k-rank Z(G)o.

Conjeeture: For any field k, and any connected reductive k-group G, the split
building S(C) is homotopy equivalent to a bouquet of spheres.

Theorem: For G classical, the eonjeeture is true.

Trus follows from a diserete version of the result, proved by myself with Leanne
Rylands. The simplicial version of S(C) is defined as the poset of pairs (~L), P a k­
parabolie subgroup of G and L a k-Levi subgroup of P (HENCE: the name split
building: P=LU is a splitting of P). The ordering is reverse on inelusion. The case A
of type A may be identified with the poset of direct deeompositions of a k-vector _
space; this was treated by R. Chamey. The other classical cases may be similarly
identified: if V is a k-veetor spaee with a sesquilinear form ( , ), define
S(V) := {(A,B) IA,B are subspaces of V; A, Bol totally isotropie; V=AE>B}. The order-
ing is inclusion of the 1st term, reverse inclusion of the seeond.

The spaee S(V) may be identified with S(C), G the isometry group of (v:< ,» when
(, ) is non-degenerate [there is a complieation in type D, ' but it may be overeorne].

Theorem: (Leher-Rylands) ~(V) is Cohen-Maeauley (CM) over any field if ( , ) is 0
or non-degenerate.

The proof uses the Quillen spectral sequenee' of the map f:S(V)-.T(V)
(f= 1st proJ"eetion), \vith E2 =Hp(Y,H (f ». The fibres f also need to be studiedPet q ::!:y ~y

and the proof depends on an induction. The following posets are proved to be CM
in the process: if ACB are subspaces of V: {U<V I UnA=O, U+B=VJ;
t(U,W)ES(V) IlQM, W2NJ and corresponding sets in the classical case (not type
A).

Applications include (i) Identities fcr rational functions of q arising from different
expressions for the number of spheres (or dirn Htop(S(G»). (ii) Representation theo­
ry of G(k) (k is finite) (iii) Quillen eomplex Q(C(k» for k-finite and f;echar k.

J. TEITELBAUM:
P-adic Symmetrie Spaees

In this leeture I presented joint work with Peter Schneider (!vlünster) regarding
analytic properties of Drinfeld's p-adic symmetrie spaee. Let *denote the eompli-
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ment in P~ of the set of hyperplanes defined over K, where K is a loeal field of
eharaeteristic zero having a non-archimedean valuation. The space *can be used
to construct algebraic varieties by dividing by the action of a discrete group.
Schneider and Stuhler proved that H~R(*,K) is isomorphic to Hom(St,K), where St
denotes the Steinberg representation of the group GLd+t(K). I described the con­
struction of two maps:

Res: H~R(*,~)--.Hom(St,K)

I: Hom(St,UK)-+ H~R(*,K)e'which are inverses to one another (ResoI=Id). The Residue map "Res" is construct­
ed by realizing Horn (St,K) as aspace of harmonic functions on the Bruhat-Tits
building BT(GLd +1,K). The integration map I is bäsed on viewing Hom(St,0K) as a
space of bounded p-adic measures on G/P and integrating. these measures ag~nst
a kernel function.

B. MüHLHERR:
2-Spherical Twin Buildings

Twin buildings are structures which generalize spherical buildings in a natural
way. This motivates the question about a classification of all irreductible twin
buildings of rank at least 3. It turns out that one has to require that all entries of the
diagram are finite; i.e. that the buildings are 2-spherical.

Under this assumption the most important theorem used in the classification of
spherical buildings was proved in joint work wi th M.Ronan for almost all twin
buildings.

The classification reduces now to the following questions: Which Moufang foun­
dations are foundations of twin buildings?

eiwe have the following results:

(i) Given a desarguesian foundation F, whose diagram has avertex of valency at
• least 3, then if F is the foundation of a twin building the coordinatizing division

algebra is a quaternion algebra or a field.

(ii) If k is a field and Aut(k)<oo then each split Moufang foundation is the
foundation of a hvin building.
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(iii) Each finite Moufang foundation is the foundation of a twin building.

The first result is proved by analyzing Moufang ~-buildings; using a fixed-point
lemma one gets (ii) and (iii).

P. SCHNEIDER:
Verdier duality on buildings

In this talk we considered the semisimple building X of a connected reductive _
group G over a nonarchimedean locally compact field K. We want to use the build- .,
ing in order to investigate the category of all smooth G-representations denoted by
Alg(G). In joint work with U.Stuhler we constructed "localization" functions from
Alg(G) to the category of G-equivariant sheaves on X as weIl as to the category of a
G-equivariant coefficient systems (ar cosheaves) on X. Exploration of the BoreI-
Serre compactificatian of X allows us to compute the (co)homology of these local-
ized objects. As an application one can construct a natural duality theory on the
category AIg(G). In the second part of the talk the obvious question was discussed
how that duality is related to uclassical" Verdier duality fonnaIism for sheaves on
X. It was shown that indeed these two duality theories correspond to each other
under the functor "cohomology with compact support". In order to see this one
first has to redevelop the classical Verdier duality in the G-equivariant setting
\vhich can be done without much difficulty. The key observation then is that the
coefficient systems on X naturally embed into the derived category of sheaves on X
as same kind of perverse sheaves. Moreover Verdier duality maps the abelian cate-
gory of constructible coefficient systems on X into the abelian category of con-
structible sheaves on X by the very simple procedure of passing to the linear dual
on staIks.

D.E. TAYLOR:
On Outer ,A.utomorphism Groups oi Coxeter Groups

Given a Coxeter system (W,R) of finite rank such that rs has finite order for all
r,sER, we show that I Aut(W)/lnn(W) I is finite. This is proved in two steps.

Jf V isa reflection module for Wand if Aut(W) denotes the group of automor­
phisms of \ V arising from orthogonal transformations of V then, using the fact that
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every finite subgroup of W is contained in a finite parabolic subgroup, we show
that I Aut(W): Aut(W) I is finite.

Ta complete the proof we show that if W is an irreducible Coxeter group of finite
rank with reflection module V, root system <1>, root basis ~ and if $:V.....V is an
orthogonal transformation permuting <1>, then epn=±wll for same wEW. The idea is
to show that N($) or N(-<P) is finite where N(ep)={aE<I>+ I ep(a)E ct>-}. The finiteness of
N($) is equivalent to ep preserving the TIts cone and also equivalent to cl> preserving
the dominance order on <1>.

When W is spherical, affine or hyperbolic it can be shown direct1y that ep or -$ pre­
serves the lits cone. In particular, this proves the result in the ease that W has rank
at most 3. Finally, if <I> preserves dominanee on all irreductible rank 3 subsystems,
then <I> preserves dominanee on the entire root system.

J. TITS:
Twin Trees

In this lecture, trees are always truck, i.e. a1l vertices have valency ~3. Let T..:, T_ be
hvo such trees and let V(T), V(TJ be their sets of vertices. A codistance, or a twin­
ning between T+ and T_ is an integer-valued funetion d*: V(TJ x V(TJ--+N such
that, for xET+ and yET_,

(CDl) if d*(x , y)=O, then d*(xI ' Y}= d*(x , Yt)=l for all neighbours Xl of X in T+ and
all neighbours YI of y in T_, and

(CD2) if d*(x,y}= n~l, then, "vith the same notation as in C\=_Dl),
d*(x1 ,y)= d*(X'YI)= n -1 for a1l Xl ' Yt , except for a single Xl and a single y;", far
which d*(x) , y)= d*(x,y)= n +1. An easy eonsequence of these eonditions is that if
hvo vertices of T+UT_ at even distance or eodistance have equal valencies; thus T+
and T_ are isomorphie semi-homogenous trees.

e'Twin trees (i.e. pairs of twinned trees) are the "simplest" examples of twin build­
ings, though some techniques used in higher ranks are not applicable here.
Motivation for their shtdy can be faund in the references given below.

There is a standard example af twin trees attached to the graups SL2(k[ t, t l
])

(k any field), where T+ and T_ are the trees attaehed in the well-known fashion to
SL

2
(k«t)) and SL/k((t·l )). One can show, using the Moufang property, that
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the full automorphism group of the twin tree in question is generated by
SL

2
(k[t,t-1])/ {±1}, Aut k and two groups isomorphie with k x: the group of

(Co) .
conjugations by 0 1 (cEkx), and the group of parameter changes, t H ct (cEkx).

.The problem of constructing twin trees is discussed from various angles in (Tl],
[Fl, [RTII]. All twin trees which "naturally" tumed up so far satisfy the already
mentioned Moufang condition whieh is a strong homogeneity condition irnplying,
for instanee, that the autornorphism group of a Moufang twin tree is transitive on
the set of pairs of opposite edges (an edge of T. and and edge of T_ are said to be e
opposite if each vertex of the first is at codistance 0 of avertex of the second).
Fonnulas given in [Tl] describe "in principle" all Moufang twin trees; they yield in
particular the existence of uncountably many nonisomorphic twinnings of homo-
geneous trees of valency 3. The content of [F] was the subjeet of the D.G. Fon-Der-
Flaass talk at this meeting. The present lecture was rnainly focused on [RTII].

The method developed in the latter (as yet unpublished) paper consists in associat­
ing to any serni-homgeneous tree T a certain graph TO, the universal twin of T, in
which any tree twinned with T is canonically embedded. All twinnings involving
T ean be obtained by constructing the hvin T_ inside TO. The group Aut T operates
naturallyon TO and two twinnings (T,TJ and (T,T) are isomorphie if and only if
T_ ,T~ are eonjugate (in TO) by an element of Aut T. An analysis of the structure of
TO leads to the following resu} t, among others:

Theorem: Jf ais the cardinality of T, there exist 2° non isomorphie hvinnings (T,T).
(A twinning is said to be rigid if its automorphism group is redueed to the identity).

Referenees

[F] D.G.Fon-Der-Flaass, A combinatorial construetion for twin trees, European
Journal of Combinatorics, 17 (1966), 177-189.

[RT I] M. Ronan and Jlits, Twin Trees I, Invent. rvIath 116 (1994), 463-479

[RT 11], [RT III], ..., Twin Trees II, III, in preparation.

[Tl] J. TIts, Resurne de Cours, Annuaire de College, 8ge annee (1988-89), 81-95

(T2] J. Tits, Twin Buildings and groups of Kac-Moody type, in Groups,
Combinatorics and Geometry, Land. Math. Soc. Lecture Notes 165, Cambridge
U.P., (1992), 249-286.
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v. USTIMENKO:
BN-pairs and Extremal Graph Theory

Buildings oI rank. 2 turn out to be extremely useful in extremal graph theory and
its applications.

An example: By ex(v,n) we denote the greatest number of edges (size) in a graph
on v vertices 'with girth > n.

From Erdös' Even eyde Theorem folIows, that

_ ex(v,2k)5:CV1+1/k

It is known that the bound above is sharp for k=2,3,S. We can just consider the in~­

dence graph I
k

for the geometry of groups J\(q), B2(q), G2(q) (generalized rn-gons,

m=3,4,6). 5ize of Ik is an upper bound. . ~;'-:'.'

Other problein: Let {Gilw' be a family of graphs such that {Gi) is anti-reguJar of
increasing order Vi and girth gj . Following Biggs we say that {Gi} is a famlIy of
graphs with large girth if gi~ylogr'l(vi). Known explicit results belong to Margulis and
Lubotzky, Phillips and Sarnak. Actually y<2, bigger y corresponds to a bigg~r size.
The best known case is y= j . .

Construction: Let G be locally finite Tits group of Moufang type. Pt and P
2

are stan­
dard parabolies containing B-. The orbit (])S Pt (cD5 P

2
) of U+ on the set (G:P

t
) «G:

P2) respectively) which has the largest order (i.e. largest dimension), we shaIl refer
to as a dual Schubert cell. The restrietion of the incidence relation for the geometry
of Gon «(/)5 P1) U (CVS P) we shalI refer to as dual Schubert structure <VS(G).

Theorem: There is an" infinite family of quotients of cDS(G) which is a family of
graphs with large girth.

Certain defonnations of cDS(G) gives us a family with y= j (Lazebni~ Ustimenko,
Woldar,1985).

_ The quotients of cDS(G) turn up as solutions of the foIIowing problems.

,j Problem 1 (Lubotzky): Prove that for every b3, there are infinitely many k-regular
Ramanujan graphs.

Problem 2: Prove that for every b3, there are infinitely many k-regular Cayley
expanders.

The solutions of both problems are explicit.
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H. VAN Ml\LDEGHEM:
Some Results on Automorphism Groups of Affine Buildings of Rank 3

The Moufang condition for spherical buildings contains essentia11y two ingredi­
ents: one requirement is a transitivity condition (implying a regular action); a sec­
ond requirement is that the automorphisms under consideration fix all chambers
which have a panel in a certain mot (but not on the boundary); or, equivalently,
some commutation relation holds. There are several ways to generalize this to the
general case. Actuall~ lits already introduced this and it is our aim to find, in the
special case of rank 3 affine buildings, alternative, but weaker conditions. This is
obtained by considering (i) a transitivity condition on chambers "at the boundary"
of a root, and, a commutation relation on "root groups", (ü) a transitivity candition
on apartments through a root, and, requiring that all automorphisms under con­
sideration fix chambers as above. For all rank 3 affine buildings, (i) implies
Moufang at infinity. For all ~-buildings, (H) irnplies Moufang at infinity. We have
also: a lacally finite A2-building with a group transitive on ,.pairs of chambers at
fixed Weyl distance, is classical (e.g. all strongly transitive ~-buildings). Finally,
we introduce a p-adic Moufang candition. Most hyperbolic rank 3 buildings can­
not satisfy such a condition. Everything is joint work with Kriste] Van Steen.

M. RAPOPORT: _
Problems on Bruhat-Tits Buildings A~sing in the Theory of Shimura Varieties

The problems referred to in the ti tle arise in describing the Dieudonne modules of
abelian varieties over Fp• T\vo types of general results were discussed:

1). Let (V,$) be an isocrystal of he~ght n over Fpi with Newton vector v(tP)EQnnC.
For a lattice Me\!, let ~(rvl,<p)EznnCbe the relative position of M and $(M). Then

v(<t»~ Jl(M,<P)

in the usual partial order on the positive Weyl chamber. e
2) Let (V,ep) be an isocrystal Qver Fp' For a11 c>O there is C>O with the following
property: For any lattice ~ICV with

pC:'<p(M) CMCp< q,(M)
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there exists a lattice Mo with

pe .MoCMCp-c.Mo

such that Mo is deeomposable w.r.t. the slope deeomposition of ~$) and rational
\v.r.t the rational structure over Qp on V defined by it.

\tVe explained how these results may be viewed as state.ments on the Bruhat-TIts

building of GL
n

and how to extend them to an arbitrary reductive algebraic group
over Q . We also related these results to the following result of G.Rousseau.p . .

Theorem (Rousseau): Let B be a building of Euclidian type and let oEAut(B) with
BO~0. For xEB-Bo let X

o
be the unique point in Ba dosest to x. There exists 8>0 such

that

4 xo ([x,xo]'[ a(x),xoD~8

and hertce d(x, o(x»~2d(x,xo) sin i

H.BEHR:
Finiteness Properties of S-arithmetic Groups

Survey of Results: On finiteness properties (generation, presentation, type FPn) of
S-arithmetic subgroups of simple algebraic groups over funetion fields.

tvlethods: (a) Action on (euclidean Of twin) buildings, (b) Filtration of buildings
(gallery distance, distance to infinity), (c) Reduction to Ioeal topological properties
of subcomplexes of finite spherical buildings, (cl) In the ease of finite presentation:
Reduchon to amalgamations of finite stabilizers. . "_

New Approach: (Program details not checked!) (a) Action of f==SLn(Fq[t]) on
suhcomplex Y of the affine building X of codimension 1 e'boundary of the
non-stahle region"), (b) Description of Y as a subcomplex Y~ of the "split building"
y 21 ={(~pt) IPEX

co
(Fq(t», pt opposite P}.

If (i) Y~ is homeomorphic to Y

(ii) Y~ is (n-l)-spherical

(iii) Y~ is a retract of Y

Then r is of type F0-2 .
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P. ABRNvfENKO:
Twin Buildings and Groups Acting on Them

This is abrief survey on topological properties of certain subcomplexes of twin
.buildings and some of their group theoretic applications.

Let 8=(6.+ ,6.. ,d*) be a twin building and c+ E 0+ a fixed chamber. Consider the sub­
complex 6.°(c+) of 8_ consisting of all chambers opposite c+ and alt of their faces.
Then one obtains:

Theorem 1: If 6. is a spherical building of type An ' Cn or Dn such that every panel
of ß is contained on at least 22n+1+1 chambers (respectively 2n

- l +1 chambers for type e
An)' then I6.°(C) I_VSn-1•

Remark: There exist counter-examples to the conclusion of Theorem 1 for usmall"
spherical buildings.

Theorem 2: Let 6. be an n-dimensional Moufang twin building of irreducible affine
or compact hyperbolic type satisfying

(5) I A(x) I-VS( for all e-dimensional (e <n) links Aa

and all charnbers x of A

Then I L\,°(C) I is (n-2) - but not (n-1) - connected.

Using a criterion of Ken Brown, Theorems 1 and 2 can be combined to get the fol­
lowing applications:

Corollary 1: Let q be a classical Fq-group, q;e22n-t, with n:= rk
Fq

q > O. Then
q (Fq[t,t1]) and q (Fq[t)) are of type Fo_t ' and q (Fq[t)) is not of type Fn.

Corollary 2: Let q be a (minimal, split) Kac-Moody group of rank n+1 and of irre­
ducible affine or compact hyperbolic type. Set G:=q (Fq) and assume that the asso­
ciated twin building ß satisfies (5). Then G and all its parabolic subgroups are of
type Fn_1 , whereas no proper parabolic subgroup is of type F

n
•

Assumption (5) in Corollary 2 cannot be dropped:

Example: Is q is of type ~ (n+1=3, all Coxeter numbers =4) and r a proper par­
abolic subgroup of q (F

2
), then r is not of type F

1
, i.e. not finitely generated. There

is work in progress concerning generalizations of Theorem 2 (Corollary 2) to other
types of twin buildings (Kac-Moody groups).
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D. FON-DER-FLAASS:
A Combinatorial Construction for Twin Trees

The definition of a twin tree J=(T+ ,T. ,eod} can be faund in J.TIts' abstract.

I begin my constroetion with defining a~ 1t:T+....T. as a graph isomorphism
such that cod(x,T(x»=O for all vertices x. Every twin tree admits such pairings; if J
is of valenc)' 3 then every pair of opposite edges v+w+ ,v_w_ uniquely detennines a

pairing for which 1t(v)=v_, 1t(w)=w_.

Thus given ahNin tree J with a pairing 1t, we can define a halved twin tree
(T, c:TxT--+Z~) where the codistance function c is defined by c(x,y)=cod(x+, y).

All halved twin trees can be constructed inductively. Let Co be a partial codistance;
cn(x,y} is detennined for those x,yET for which d(x,y)~ (cl is the graph d.ist~ce in
T). It can be shown (ref[F] in J TIts' abstract) that any Co can be extended to c~~~ and
that any partial codistance c

n
has uncountably rnany different codistance functions

extending i t.

Für valency 3, the function c
2

is unique up to isomorphism, and we .have
Go~ Aut

o
(T,c

2
)!::!Z3,:,,:Z2 acting sirnply transitivelyon the edges of T [Auto is the

group of type-preserving automorphisms] and Aut(T,c2)=Z3*Z2 is sirnply transi­
tive on flags {directed edges}.

Theorem 1° .A. twin tree J of valency 3 is Moufang if and only if for some pairing 1[,

AutoO, 1t)=G
o

and Stab(v, n(v»=S3'

2° There are uncountably many halved twio trees (T,c) such that Auto(T,c)=Go'

3° Für any Moufang twin tree Jof valency 3, AutoT=(x,y,z), Ix I= IY1=3, !z 1=2,

(X,y)=Z3 *Z3' (y,Z)=S3"

The bad news is that there is apparently 00 easy combinatürial way to ensure that
a halved twin tree (T,c) admitting Go admits also the extra automorphism z.

L.KRAMER:
Aigebraic Polygons

A generalized n-gon (~L,F) is called K-algebraic if the point set P and the line set L
are K- varieties, and if the map (x,Y) ..... projyx is a K-morphism on the set
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{(x,y)E(PUL)21 d(x,y)=n-l} of almost opposite vertices. Here, K is an algebraically
closed field of characteristic O. We prove

Theorem: There are precisely 3 K-algebraic polygons, namely the projective plane,
the symple~cquadrangle, and the split Cayley hexagon over K.

The proof uses Knarr's Theorem on conlpact n-gons, some complex algebraic
geome~ arecent result of Schroth-Van Maldeghem, and same model theory. As
an application we abtain:

Corollax:y: Let (G,B,N,S) be an irreducible effective, spherical lits systems of rank _
:U. If G'is a K-algebraic group and if BkG is Zariski-closed, then G is simple and B _
is a Borel subgroup.

This is joint work with Katrin Tent.

D. CARTWRIGHT:
A Farnily of Groups Acting Sirnply-Transitivelyon the Vertices of a Building of
Type Ä

ll

Let q be any prime power, and let n22 be any integer. Let ß be the thick building of
type Än associated with the Ioeal field Fq«x». In joint work with T.Steger it is
shown that there is a subgroup r of PGL(n+1,Fq«x») which acts sirnply transitive­
lyon the vertices of ß. This group is realized as a finite index subgroup of A(Fq[~])'

where A is the automorphism group of a suitable cyclic simple algebra defined
over Fq(x).

G. ROBERTSON:
A Haagerup Inequality for A2 Buildings

In 1979 U. Haagerup proved an inequality relating the operator nonn and. the [2

norm for funetions on a free group. This inequality and its generalizations \vere
used in proving Banach space approximation properties for function spaces and
for proving the Novikov conjecture for ward hypebolic groups.

Attempts to obtain higher rank analogues of H~agerup's inequality were unsuc­
cessfu~ until no\v. Ramagge, Robertson, and Steger have proved such an inequali­
ty for ~ groups.
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c. BENNETr:
Affine A-Buildings

In this lecture I discussed the question of generalizing the work on A-trees of
Morgan, Shalen, R.Alperin, H.Bass, and others to general affine buildings of higher
rank. In this case we consider A to be a general totally ordered abelian group, the
hvo main examples being A=Z~Z and A=R.We compared and contrasted the def­
initions given by myself in 1994/1990 and the definition of Parshin (1994/1996).

My definition of an affine building uses the language of J.1its' 1984 Corno confer­
ence paper working on embeddings of apartments. Difficulties encountered in this
definition include the definition of an apartment structure that a group can act
upon, and of defining a W-invariant A-metric structure. These ebstades are over­
come first by using the spherical root system to define the aparhnent structure and
then using a modified J\·1inkowski metric for a W-invariant metric. Tros technique
works for arbitrary A, but loses the simplicial structure useful in ether cases. _

Parshin's work on the other hand provides a simplicial structure, but as a ~esult

on!y works for the case L= Z x Z x ... x Z. This is more useful in providing a
G-equivariant space.

In both cases, ~ fundamental example is given in the case K:=k(x,y). v:K-+ Z x Z a
2-dimensional valuation and we w~rk through this example thoroughly.

G. 'ROUSSEAU:

T\vin Buildings Associated to Forms of Kac-Moody Aigebras

To a Kae~Moody algebra is assoeiated a group acting transitivelyon pairs of oppo­
site chambers of some nvinned buildings B+ and B-. A fonn of a Kac-Moody alge­
bra over a fieid K of characteristic 0 is a Lie algebra BK such that BK®K (if Kis the
algebraic elosure of K) is isomorphie to a Kac-Moody algebra 8. Fixing such an iso­
morphism one gets an action of the Galois group f=Gal(K/k) of B, G and B+UB-.
The form is called almost split if G stabilizes B+ and B-. Then I prove that B+r and
B-r are twinn~d buildings and that G

K
acts transitivelyon the' pairs of opposite

eharnbers. This gives interesting examples of twin buildings and allows one to
develop a BorelTits theory for almost split forms of Kac-Moody algebras (see J of
Algebra 171(1995), 43-96)
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~-H. ZIESCHANG:
An Algebraic Treahnent of Buildings via Association Schemes

In a first step, the class of buildings will be e~bedded into the class of aSE'ociation
schemes. Here, in the class of association schemes, the buildings play "exactly" the
role which is played by the Coxeter groups in group theory.

The above-mentioned embedding provides us \vith two possibilities to character­
ize buildings:

1: Let A be an association scheme generated by two "fundamental involutions".
Suppose these two involutions generate the Hecke algebra of A.

Then A "is" a finite building of rank 2 or a Moore geometry.

.2: The concept of aparbnents will be generalized to association schemes. Then we
can prove:

Buildings and certain quotients of buildings, viewed as association schemes, are
characterized by their apartments.

References:

1. P.-H. Z.: Homogeneous ..., J. Algebra 178,677-709 (1995)

2. P.-H. Z.: A Algebraic Approach to Association Schemes, Springer Lect. Notes
Math (ta appear 1996).
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