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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 21/1996

Geo~etricRigidity and Hyperbolic Dynamies

2.-8.6.1996

The meeting has been organized by Werner Ballmann (U Bann) and Anatol Katok (Penn
State U). Some of the subjects treated in the talks are the following:

a) Semihyperbolic and hyperbolic geodesic flows
b) Rigidity of symmetrie spaces and of .spaces of nonpositive curvature
c) Asymptotic geometry
cl) Billiards
e) Group actions
f) Singular spaces

The meeting was very lively. Special discussions in the evening were devoted to some of
the more spectacular developments.

VORTRAGSAUSZÜGE

Viviane Baladi:

Correlation spectrum of quenched and annealed equilibrium states for

random expanding maps

We show that the integrated transfer operators for positively weighted independently and
identically distributed smooth expanding systems give rise to annealed equilibrium states
for a new variational principle. Using work of RueHe and Fried on generalised Fredholm
determinants for transfer operators, we prove that the discrete spectrum of the trans­
fer operators coincide with the correlation spectrum of these invariant measures (yielding
exponential decay of correlations) anp with the poles of an annealed zeta function. A mod­
ified integrated transfer operator describes the (relativised) quenched states studied e.g.
by Kifer. Conditions (including SRB) ensuring coincidence of the quenched and annealed
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states are given. For small random perturbations, stability results on the quenched and
annealed measures and speetra are obtained by applying perturbative results of Young and
the author.

Yves Benoist:

Asymptotic properties oe linear. groups

Let M be a simply eonnected symmetrie Riemannian spaee of nonpositive curvature, S its
sphere at infinity, sreg its regular part. Let r be a subgroup of the group G of isometries
of M. Let Sr be the limit set of r in S and s~eg = Sr (1 sreg. The objeetive of this leetur..!

is to deseribe the strueture of the limit set Sr when r is Zariski dense in G. _
We denote by X the set of chambers in S and Ar the set of ehambers which meet s~eg. ­
Recall that any two chambers in S are canonieally isometrie. I prove that

1. s~eg is dense in Sr.
2. The interseetion Sr n C "does not depend on r" when C varies in Ap . eau this

intersection Cr the limit cone of r.
3. Cr is a subset of the chamber which is closed eonvex, of non empty interior and

invariant by the opposition involution.
4. Reeiprocally, any subset of the ehamber which satisfies these properties is the limit

cone of a Zariski dense subgroup r of. G.

Mare Bourdon:

Hyperbolic buildings, conformal dimension and rigidity

We adapt to a family of hyperbolic buildings some geometrie quasi-conformal arguments,
which are classical in the case of rank one symmetrie spaces of non-compact type. In par­
ticular we compute a quasi-isometry invariant of these buildings: the conformal dimension
(of Pansu) of their boundary. We also prove that their lattiees are Mostow-rigid in the
elassieal sense.

Ulrich Bunke:

The divisor of the Selberg zeta function associated to a Kleinian manifold

We eonsider a complete hyperbolie manifold such that its fundamental group is eonvex­
cocompact. The associated Selberg zeta funetion has a meromorphie eontinuation. A
natural question is to describe its singularities. We prove a (modified) conjeeture of Pat­
terson relating the singularities of the Selberg zeta funetion to t~e cohomology of the
fundamental group with coefficients in a natural subspace of principal series representa­
tions.
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As a first step towards a generalization of this result to bundles and other rank-one spaces
we prove the absence of singular continuous speetrum of tbe Laplacian on bundles over
tbe loeally symmetrie spaee. The same methods allow to construct a meromorphic contin­
uation of the resolvent kernel (up to same exceptional points).

Sergei Buyalo:

Catching geodesics in Hadamard spaces

For every quasi-isometrie map / : X --+ Y of Hadamard spaces we define its asymptotic
limit S f which sends .the boundary at infinity 800 X to the cone CooY aver 800Y and estab­
lish its analytic properties. In the case when X and Y are coeompact rank one spaces with
respect to the same discrete isometry group r and hence f-equivariantly quasi-isometrie we
give a sufficient eondition for sI to be an equivariant homeomorphism between o(X)X and
800 Y with respect to the standard topologies and biLipsehitz homeomorphism with respect
to Ti t5 metries. Apart of this condition there is a large number of equivariantly quasi­
isometrie cocompact Hadamard spaces whose boundaries at infinity are nqt. equivariantly
homeomorphic. This answers a question of M.Gromov. ;'~."u

Christopher B.Croke (joint work with V.Sharafutdinov):

Isospectral deformation rigidity of compact manifolds oe negative curvature

For a compact Riemannian manifold (M, g) let Spec(g) be the spectrum of the Laplace­
Beltrami operator. We show:

Theorem 1: Ir (M, g) is a compaet manifold of negative curvature and 9t is a smooth
1-parameter family of metrics such that Spec(Yt) =Spec(g) and 90 = g, then there are
diffeomorphisms 4>, of M such that 9 = <1>; (gt) for all t.

M is said to have simple length speetrum if for every pair of prime closed geodesies 1'1
and 1'2 we have that L(11)/ L(12) is not rational. This is a generie eondition for negatively
eurved manifolds. We show:

Theorem 2: Let (M,g) have negative curvature and simple length spectrum. If PI
and P2 are Coo functions such that .6 + PI and .6 + P2 have the same spectrum then

PI =P2'

These Theorems generalize results of Guillemin and Kazhdan (1980), later improved by
Min-Oo, which apply in 2 and in higher dimensions under stronger eurvature assumptions.

We consider the operator d : sm(T· M) ~ sm+l (T* M), where sm(T*M) represents the
symmetrie rn-tensor fields, defined by d(T) =u(VT), where V is covariant derivative and
Cf is the symmetrization operator. Theorems 1 and 2 as weH as other interesting results
are shown to ~ollow from:
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Theorem 3: Let T E sm(T*M), where M is a compact manifold of negative curvature.
If for every closed geodesic i we have

iT('Y(t), . .. ,1'(t))dt 0

then T = dS for some S E sm-l (T* M)

Renato Feres:

Infinitesimal &. Ioeal linearizations of higher rank actiQns

Let G be a semisimple Lie group of real rank at least 2 which aets ergodically an_"
smoothly on a compact manifold M,' such that some element of G defines a partially
hyperbolic diffeomorphism of M. We ask wetl~er one can find a (non-stationary) "Birkhoff
normal form" type theorem for such actions. The following oo-jet linearization provides
some poositive evidence:

Theorem: Suppose that G preserves a smooth foliation H transverse to the orbits and .
that T H decomposes continuously as a direct surn of subbundles, EI EB E2 , corre­
sponding to a uniform exponential splitting for same element f of G, where EI is
I-dimensional and is the fastest contracting subbundle for f. Assurne moreover that
the action is "effective to first order". The~ the action can be continuously linearized
up to infinite order and the linearization is associated to a linear representation of G.

Serge Ferieger:

Uniform estimate on the "umber of eollisions in a semidispersing billiard

Let M be a C 2-smooth Riemannian manifold with bounded sectional curvature and pos­
itive injectivity radius, {Bi}i=l C M convex bodies such that a~i are C1-submanifolds of
M; form the billiard B = MI U~=l IntBi, {Tt}t~oo the billiard flow.

Theorem 1: For any such billiard and x E B, there is x E U c B a neighborhood, whicla
the particle leaves, making only finitely many collisions. •

Theorem 2: For any such billiard and x E B, provided the billiard is non-degenerate
(see below), there is a neighborhood x E U C B which the particle leaves, making

( )

2(n+2)
no more than Cl(~) + 2 collisions, where C(x) is non degeneracy constant, n
number of walls.

Theorem 3: If the curvature of M is non-positive, then, provided that the billiard is non­
degenerate, htop(T1 ) < P log n + lim,-+oo log ~(l) where P is a constant, depending
onlyon C and H(l) is the homotopy growth.
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Theorem 4: In a non-degenerate billiard of negative curvature, the number P{k) of
periodic points of period k is not greater than n k, number of periodic trajectories of
billiard flow p{k) of length k is not greater than n(p+l)k, unless P{k) or p(k) are equal
to infinity.

Definition: Billiard is called non-degener~te at a neighborhood of a point x E B, if
VI c {I, ... ,n}:

waxkt ~st(y, B)) ~ C l Vg E (U n B)I nBi.
dist y, kEl Bk iEl

Patrick Foulon:

Rigidity of convex .sets and Finsler geometry

We prove a theorem for regular Finsler metrics of constarit negative curvature.

Theorem: Let (Mn, F) be an n-dimensional closed manifold. If the regular metric F has
curvature RF = -1 then F is a Riemannian metric of constant negative curvature.

This is a first attempt to understand the modul spaces in Finsler geometry.
A nice corollary is that we recover the result of Benzecri for a convex bounded set of JRn,
with strictly convex smooth boundary. Namely if such a convex has a compact quotient
then it is an ellipsoid.
The key point is that such a geodesic flow is an Anosov flow. By BLF-theorem we obtain a
conjugacy with a Riemannian symmetrie spaee. The rest of the proof eonsists in showing
that this eonjugaey comes from an isometry.

Boris Hasselblatt (joint work with Anne" Marie Wilkinson):

Open sets of Anosov diffeomorphisms with non-Lipschitz holonomies

{
symplectie } .

Theorem 1: There are open sets of eodimension 1 Anosov systems whose holonomles

{along I-dimen~ionalleaves}are non-Lipsehitz almost everywhere (with respect to
some fuHy supported ergodie invariant probability measure).

The proof shows this lack of regularity for the distributions, the result then follows from
the following observation, which may be of independent interest:

Theorem 2: If a CO-foliation by Coo-leaves has o-Hölder foliations {al evterywhere
h

}
mos everyw ere

then the tangent distribution is (0 - E)-Hölder {al evterywhere
h

} far any E> 0mos everyw ere
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(If the Ieaves are ooly C k , k < 00, then there appears to be the possibility of a genuine
1055 of regulari ty. )

The starting point is a l-spread (everywhere) Anosov system (e.g. a linear symplectic
diffeomorphism whose largest positive Lyapunov exponents differ by more than a factor of
2 - unfortunately 00 geodesic flows with this property appear to be known). The open set
then is a neighborhood of a suitable perturbation.
The basic ingredient of this perturbation is in my thesis (ET&DS 1994)

Sergej Ivanov:

Geometry of the limit norm of a periodic metric

Let (M, g) be a Riemannian manifold and r c Iso(M) be an abelian graup acting discretely
and cocompactly. We say that 9 is a r-periodic metric on M. Assume r ~ zn and
n ~ dimM.

Examples: .1) M ~ IRn, r = zn. Then (M,g) is the universal covering of a Riemannian
n-torus.

2) Universal abelian ~overingsof 2-surfaces of genus ~ 2. r is a group of deck-transforma­
tions.

There exists a norm 11 . 11 on rand C > 0 such that

VxEMVvEr: Id(x,x+v)-lIvlll ~ c

(D.Burago 1992). Here d is the Riemannian distance and x + v is the action of v on x.
The norm 11·11 is called limit norm, or asymptotic norm, or stable norm of (M,r,g) .. We
include r into r ® IR. ~ IR n and extend 11 . 11 onto lR n. Let B denote the unit ball of 11'· 11.

Theorem 1: (joint work with D.Burago and B.Kleiner). Let 9 E C 2 and v E aB be an
irrational vector, i.e. its coordinates are Q-:independent. Then B cannot have a sharp
tangent cone at v.

Theorem 2: (joint work with D.Burago). Vk E N 3n E N such that ror almost ever_
vector v E Rn there exists a Z"-periodic Ck-smooth 9 on IR" for which aB is not
smooth at v. L.

The smoothness/nonsmoothness properties of aB are closely related to the structure of
the set of minimal geodesics in (M, g) with a given direction v at infinity.

Open questions: 1) Are there Coo-examples in Theorem 2? .
2) Is Theorem 2 true for abelian coverings of surfaces in place of IRn?
3. Can one improve Theorem 1 by finding lower bounds for the dimension of the edge

of the tangent cone of B at v? For example, is n;-l such abound?
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Svetlana Katok:

Arithmetic and geometrie eoding of geodesies on the modular surface

Closed geodesics associated to conjugacy classes of hyperbolic matrices in SL(2, Z) can be
coded in two different ways. The geometrie code, wi th respect to the standard fundamental
region, is obtained by a construction universal for all Fuchsian groups, while the arithmetic
code, given by "-" continued fractions, comes from the Gauss reduction theory and is
specific for SL(2, Z). Both codes are finite sequences of non-zero integers up to a cyclic
permutation; the geometrie code may contain positive and negative integers while the
arithmetic code contains only positive integers ~ 2. We give a complete description of all
closed geodesics for which the two codes coineide.

Theorem: For a closed geodesie with the arithmetic code (nI,"" n m ) its geometrie eode
coincides with the arithmetic code if and onIy if for any i (mod m)

1 1 1
-+--<­
ni ni+I - 2

l.e. if the arithmetic code does not contain the following forbidden pairs:

{2,q} , {p,2} , {3,3} , {3,4} , {4,3} , {3,5} , {5,3}

Closed geodesics for whieh the two codes coincide are distinguished by the following
regular behavior: All segments comprising such a closed geodesic "'f in the standard
fundamental region for SL(2, Z), F, are oriented clockwise, and the entire closed
geodesic in F consists of m "bootstraps" "'fi, where m is the length of the code:
I = Tl U 12 U ... U Im' Therefore we call sueh closed geodesics regular. The following
propositions relate the arithmetie code with the length of a closed geodesie.

Proposition 1: The length of any closed geodesie I with the arithmetic ·code
(nt, n2, ... , n m ) can be explicitely computed in terms of the ni.

Proposition 2: If a closed geodesic with the arithmetic code (nI, ... , n m ) is regular, then
the length of each individual "bootstrap" li is given by an explicit formula in the nj.

The paper" Coding of closed geodesics after Gauss and Morse" will appear in Geometriae
Dedicata, 1996, and may be retrieved from
http://www.math.psu.edu/preprints/katok...s/paper.html
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D.Kleinbock (joint work with G.Margulis):

Logarithm laws for flows on homogeneous spaces

We prove the following

Theorem: Let G be a eonnected simple Lie group, r c G a la~tice, J.l a normalized
Haar measure on GIr, {gi c C} a nonquasiunipotent (i.e. partially hyperbolic)
one-parameter subgroup of G. Further, let {An} be a family of measurable subsets
g C GIr such that

'rIf > 03r > 0 such that {l(r - neighborhood of aAn ) ~ €J.l(A n )

Then for almost every x E GIr

00

<Xl

is bounded if L J.l(An ) < 00

n=l

The theorem is motivated by Khinehin's theorem on diophantine ap·proximation and by
Sullivan 's "Iogarithm law for geodesics" , and both of these results ean be deduced from it.
Moreover we have a eonsiderable strengthening of SuiIivan's result and its generalization
to arbitrary loeally symmetrie spaees. E.g. consider a function ~ : GIr ---+ IR+ such that

(i) ~ is uniformly eontinuous
(ii) its distribution funetion is uniformly continuous

(iii) p{x E G/r Iß(x) ~ z} I"'W e-dz , d.> 0
Then i t follows from the theorem that

I
. ~(gtx) 1
Imsup---
t-+<Xl log t d

In paxtieulax, with ~ eoming from a distanee function on a loeally symmetrie spaee, thie
gives a logarithm law for geodesies on loeally symmetrie spaees of finite volume and noo­
compact type. One can also state a multidimensional version of the above theorem, thus
obtaining logarithm laws for flats in locally symmetrie spaees. The proof uses ergodie prop­
erties of {gt}-aetion on G/r, i.e. exponential decay of correlation coefficients of smooth
funetions. The nature of the method is very general and applications to other dynamical
systems are quite possible.
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Bruce Kleiner:

A higher dimensional analog cf hyperbolicity for spaces of nonpositive

curvature

The main results af the lecture cancern nonpositively curved spaces which are not Gromov
hyperbolic.

Theorem 1: (Croke-K.) Fori = 1,2 let di be a negatively curved metric on a surface
N 2 of genus two, let d i be the corresponding produet metrie on M = N2 X 51 (the

51 factar may have any length), let di be the induced metric on NI, and let 8~M be
the geometrie boundary of M defined by di . If either

i) idM : M -4 1\4 earries every d1-geodesie to within finite Hausdorff distance of some
d2-geodesic or

ii) idM induces a homeomorphism 8id : a~M -+ 8~M
then dl is homothetic to d2 by a homothety homotopic to idN :2.

S.Buyalo and K.Ruane have related results. Theorem 1 shows that the basic property of
g-hyperbolic Hadamard spaces - that quasi-isometries induce boundary homeomorphisms
- fails badly for Hadamard manifold containing flats. In these examples, however, a~NI
and a~M are TrI (M)-equivariantly homeomorphic.

The next example answers a ques~ion of Gromov from "Asymptotic invariants of infinite
groups" .

Theorem 2: (Croke-K.) There is a graph manifold M3 carrying two nonpositively

curved metrics d I , d2 such that the corresponding geometrie boundaries a~M are
not TrI (M 3 )-equivariantly homeomorphic. .

The next results iodieates that hyperbolie phenomena appear above the dimension of top
dimensional flats.

9
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Theorem 3: Let X be a locally compact Hadamard space so that Isom(X) acts COCOffi­

paetly on X. Then the following are equivalent:

1. There is an n-flat in X.

2. There is an n-quasiflat in X.

3. There is an isometrie embedding of a standard

(n - 1)-sphere in Orits X.

4. Hk(8ritsX) # 0 for some k 2:: n - 1

5. There is a compaet set K ~ OritsX with topological dimension 2:: n - 1

6. Some asymptotic cone of X contains an n-flat.

7. For some asymptotic cone X", of X, we have a point e
x E X w so that the loeal homology group Hk (X"""X"", \ x)

is nontrivial for some k 2:: n

8. There is an asymptotic cone of X which contains a compact set with

topological dimension 2:: n .

G.Knieper:

Asymptotic geometry of manifolds with non-positive curvature

In this talk we gave the precise asymptotics of the volume growth of geodesie spheres on
Hadamard spaees admitting a compact quotient. More precisely, we obtained the following
result:

Theorem A: Let X be a non Hat Hadamard manifold admitting a eompact quotient.
Then if p E X and volSr(p) denotes the volume of the geodesie sphere of radius r
about P

rankX-l h
volSr(p) ~ r--2-e r

where h > 0 aod ~ means that the ratio of both functions is uniformly bounded awaa
from 0 and infinity. _

Furthermore we considered the growth rate of closed geodesics. Let

!,(t) = #{primitive closed geodesics of period ~ t, modulo free homotopy}

We obtain:

Theorem B: If M is a compact rank one manifold then

10
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where a > 1 and lbyp(t) counts only rank one (hyperbolic) closed geodesics.

The rank one part of Theorem A we obtain studying Busemann densities (conformal den­
sities) on the sphere at infinity. In particular we showed that they are uniquely determined
and realized by a Hausdorff measure.

F .Labourie:

An example of lamination: the space of convex surfaces

The purpose of the talk was to describe a lamination of a compact space by surfaces,
associated to every 3-dimensional compact manifold M with K ~ -1, having the following
properties:

(i) The reunion of compact leaves is dense.
(ii) A generic leave is dense.

(iii) Stability in the following sense: if Mg is the space assoeiated to M with metric g;
if g' is elose to g; then Mg and Mgt are homeomorphic by an homeomorprusm that
preserves the leaves. ' .....

The space eontains' natural subfoliations: for instance, let MI be the bundle over UM,
whose fiber at n consists of the eircle of normal vectors to n, then Mt C M and furthermore
(iv) Let Cg be the reunion of compact leaves of genus 9 then Cg ::) Mt.
(v) Let AgO = Ug~goCg then Aga = M.

Another interesting subfoliation is in the ease of M = JH[3 Ir:, M 2 the Grassmanian of
two-planes foliated by totally geodesic planes then
(vi) M2 C M.

To define the spaee, let 's define a k-surface to be a surface in M satisfying
(a) detB = ~,

(b) tr(B)(B·, -) is a complete metric where B is the shape operator. Let's now define

Mo = {(x, E), ~ is a k-surface, x E E}.

k~surfaces (as other Monge Ampere problems) have a nice compactness property. It
turns out that with the topology of convergence on every compact set, Mo can be
compactified by adding MI, i.e. k-surfaces degenerate into geodesics. Then

M = Mo U Mt

is the definition of our space. To prove the properties asserted, oue has to solve the
"Plateau problem" with different variants, according to k-surfaces.

11

                                   
                                                                                                       ©



Urs Lang (joint work with V.Schroeder):

Quasiflats in Hadamard spaces

Let X be a Hadamard space in the sense of A.D.Alexandrov. We consider k-flats F in X
for which the projection 1r : X -+ F satisfies the following uniform

Contraction property: There exist s > 0, A > 1, such that the following holds: If Q is
a k-dimensional cube of edge length 35 in F, Ql,.'" Q21c are the cubes of edge length
5 located in the corners of Q, and Xl, ... , X21c are points in X such that d( Xi, F) = 5

and 1r(Xi) E Qi, then d(Xi,Xj) 2:: Ad(1r(xd,1r(Xj») for some 1 ~ i < j::; 2k .

For instance, fiats of maximal dimension in a locally compact and cocompact Hadamar~
space X possess this property, with 5, A depending only on X. We prove:

Theorem: For all 1 2:: 1, c 2:: 0, k E N, 8 > 0, A> 1 there exists a (computable) constant
D such that the following holds: If X is a Hadamard space containing a k-flat F with
the (8, A)-contraction property, and if f : -IRk -+ X is an (L, C)-quasiisometric map
satisfying

1
. sup{d(f(x),F) : lxi ~ T} . 1
lIDSUP < -L'
r-+oo r

then the Hausdorff distance between f(IR k) and Fis not larger than D.

Avery similar result has recently been proved by different methods by B.Kleiner.

F.Ledrappier (joint work with M.Babillot):

Geodesie paths and horocyclic flow

Consider a regular za cover S -+ S, where S is a closed hyperbolic surface.

Theorem: The horocyclic flow is ergodie on S for the Liouville measure.

In fact, there is a whole family {J..'n, n E IRa} of invariant measures for the horocyclic flow,
with J1.o being the Liouville measure. e
Theorem: For any n E IRa J.ln is ergodie for the horocyclic flow.

The proof yields apreeise estimate of the number of geodesie paths with length between
T - ~ and T and with prescribed Frobenius element.

12
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Bernhard Leeb (joint work with M.Kapovich):

Large-scale geometry oe 3-manifold groups

We study quasiisometry invariants for fundamental groups of 3-manifolds. Denote by M
the elass of all elosed irredueible 3-manifolds with infinite fundamental group whieh are
geometrisable but not geometrie, i.e. have a nontrivial eanonieal deeomposition in the
sense of Jaco-Shalen and Johannson. There is a strang link between these manifolds and
the geometry of nonpositive curvature (npc):

1) A manifold ME· M generically admits a npc metrie. This is, for instance, the case if
an atoroidal piece occurs in the JSJ decomposition.

2) For all M E M, 'TrI M is large-scale nonpositively eurved in the sense that there is a
npe MI E M such that 'TrI M and 1rt MI are quasiisometrie.

This has various direet implieations for geometrie properties of 'TrtM, e.g.
a) geometrie components and Z2-subgroups are quasiisometrically embedded.
b) quadratic isoperimetrie inequali ty.

We use the presenee of npc to find more quasiisometry invariants:
1) We classify all 2-dimensional quasi-Hats in lt'I M. In the npe ease theequiva1ence

elasses of Hausdorff elose quasi-Hats eorrespond to simple closed curves in the Tits
boundary.

2) We show that the canonical decomposition is a quasiisometry invariant.
3) We conclude, using work ofTukia and R.Schwartz that finitely generatecl groups quasi­

isometrie to a lt' I M, M E M, are finite extensions of groups commensurable to 7rlN,
N E M. It is an open question which groups are quasi-isometrie to Sol.

Jochen Lohkamp:

Dispersive .metries

Ametrie is eonsidered "dispersive" if the assoeiated geodesie ßow on the sphere bundle
is (in some weak sense) hyperbolic. The classieal example of such metries is provided
by 'metric whose geodesie flow is Anosov. In turn the Anosov property has the (central)
implication of ergodicity of the How. Even more, the flow has the Bernoulli property and
positive entropy. The question we diseussed in this talk was whether there is a difference
of impaet of Anosov versus Bernoulli property. The results are that the Anosov type man­
ifolds have a topologieal rigidity property, while there is 00 implieation from the Bernoulli
property, which is a "loeal" property.

13
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Grigorii Margulis (Yale University):

Decay of matrix coefficients and exis~ence of compact quotients of

homogeneous spaees

We give same new examples of homogeneous spaces which do not admit compact quotients
by discrete subgroups. The idea is to use the asymptotic properties of matrix coefficients
of unitary representations.

Definition: Let G be a locally compact group, H a closed subgroup of G, and K a
compact subgroup of G. Let e denote (left invariant) Haar measure on H. We say
that H is (G, K)-tempered if there exists a function q E LI (H, 6) such that e

{p(h)Wl, W2} :5 q(h)llwlllllw211

for any h E H, any p(K)-invariant vectors Wl and W2 and any unitary representation ,~
p of G without non-trivial p(G)-invariant vectors. "

Theorem: Let G be a unimodular locally compact group, H a closed subgroup of G,
and r a discrete subgroup of G. Suppose that H is (G, K)-tempered and r is not a
lattice. Then r L :I GIH for any compact subset L of GIH. In particular if H is not
compact then, for any closed subgroup FeH, G/ F has 'no compact quotients by
discrete subgroups (we consider quotients with respect to left actions on GfF).

The proof of this theorem is rather simple. Using estimates for spherical functions we get
the following corollaries.

Corollary 1: Let trn denote tbe n-dimensional irreducible representation of SL(2, IR).
Suppose that n ~ 4. Then SL(n, lR)f1rn (SL(2, IR)) has no compact quotient by discrete
subgroups.

Corollary 2: Let H be a noncompact simple Lie group. Then there exist only a finite
number of finite dimensional irreducible representations 1r of H such that
SL(dimrr, lR)f1r(H) has compact quotients by discrete subgroups.

Shahar Mozes (joint work with Mare Burger and Bob Zimmer):

Lattices in the automorphism group oe a product oe trees

We study uniform lattices r < Aut{Tt ) x Aut(T2 ) where each Ti is a (bi)-regular tree
whose vertex degrees are ~ 3. Given such a lattice let Bi = proi(r) be the closure of the
projection inta Aut(Ti).

14
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Definition: A subgroup B < Aut(T) will be called primitive if H acts transitivelyon
the edges of T and for every vertex v of T, StabH(v) acts primitively (in the sense of
permutation groups) on the set of edges adjacent to v.

Theorem: Let r < Aut(T1 ) X Aut(T2 ) be a uniform lattice such that each H i = proi(r)
is primitive. Then one of the following holds:

1. r is reducible.
2. For every homomorphism p : r ~ GLn(C) the image p(r) is finite.
3. 3 primes PI,P2 and semisimple Pi-adic groupes Li, i = 1,2, and surjective continuous

homomorphisms rPi : Bi ~ Li, i = 1,2, such that kerrPi is discrete torsion free,
(<PI x rP2)(r) < LI x L 2 is an arithmetic lattice. The kerneis of <PI and 4>2 are triviale if and only if LI and L 2 are of rank one.

Theorem 2: Let r < Aut(TI ) x Aut(T2 ) and r' < Aut(T{) x Aut(T~) be uniform lattice~.

Assume that Hi = proi(f) are primitive, i = 1,2, and that there is an isomorphism
1f : r ~ r'. Then 1r is induced by an isometry T : TI x T2 ~ T{ x T~. ~~.,

Carlos Olmos (joint work with Bernardo Molina):

Manifolds all of w hose ftats are closed

Let Mn be a compact Riemannian manifold such that any geodesic is eontained in a
Hat (k ~ 2). It is not in general true that the manifold, if locally irredueible, must be
symmetrie. There is a large non symmetrie family with the above property, constructed
by Spatzier-Strake (the homogeneous examples were already known to Ernst Heintze). Of
course, if we want to obtain a loeaJly symmetrie space of compaet type, the k-flats roust
be (immersed) eompact. This condition turns out to be suffieient for the loeal symmetry

. as it is shown in the following .

Theorem: Let M be a compaet Riemannian manifold such that every geodesie with
initial eondition in an open dense subset of TM is .contained· in' a eompact flat of
dimension at least 2. Assume furthermore that M is loeally irreclueible at any point
of an open nonempty subset of M. Then M is a loeally symmetrie spaee of the
eompaet type.

Viktor Schroeder (joint work with Urs Lang):

Kirszbraun's theorem for Alexandrov spaces

The elassieal Kirszbraun theorem states:

Theorem: Let S c Rn be arbitrary and f : S ~ IR m be an L-Lipschitz map. Then there
exists a Lipsehitz extension 1:an -4.lRm with the same Lipsehitz eonstant L.
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We generalize this result in the context of Alexandrov spaces. Let M~ be the modulspace
of constant curvature k and let Dk := diam(M~). For triangles ß in a geodesie space X
with Perimeter(Ll) < 2Dk there exists a unique comparison triangle ßk in M~. ß is called
k-thick (k-thin) if the distance between to points on ß is ~ (~) the distance between the
corresponding points in ßk.

Theorem: Let X (resp.Y) be geodesie length spaces such that all triangles ß in X
(resp.Y) with perimeter< 2Dk are k-thick (k-thin). Assume in addition that Y
is complete. Let SeX be arbitrary and j : S -+ Y be a l-Lipschitz map with
diamj(S) ~ ~Dk. Then there exists a l-Lipschitz extension 1 :X --+ Y.

We remark that the condition on diamj(S) is sharp. The main technical tool in the proof
is the definition of a "scalar" product on the tangent cones of an Alexandrov space. This
scalar product has some semiadditivity properties in. the case that the space has an uPPCA
or lower bound. ..

V.Sharafutdinov:

Inverse problem of determining the source in the stationary transport

equation on a Riemannian manifold

In physical terms the problem is posed as folIows: One has to determine a source distri­
bution of particles (or radiation) in a bounded domain M from the known flow emitting
through the boundary. Particles are assumed to move along geodesics of a Riemannian
metric. The domain contains a medium that can absorb and scatter the particles. We
assurne that only direction of a particle vary in scattering while velocity is preserved. In
physical terms this means that collisions of the particles with medium atoms are elastic,
the medium atoms are unmoving and much more heavy than the particles.
Mathematical posing of the problem: Let (M,g) be a compact Riemannian manifold with
boundary,

TM = {(x,e)lx E M,e E TxM}

be its tangent space, and

nM = ((x,~) E TMII~12 = <~,~) = gij(x)~i~j = I} e
be the unit sphere bundle. By H: COO(nM) -+ COO(nM) we denote the geodesie flow
vector field. The (stationary, isotropie, unit velocity) transport equation is the following
equation on the manifold nM:

Here the coefficient a E COO(M) is called absorption (or attenuation), the coefficient s E
COO(M x [-1, 1J) is called the scattering diagram, and the term f is called the source.
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Integrating in (1) is performed over" the unit sphere nrM = TxM nnM at the point x, and
dwx is the natural measure on nxM. Equation (1) is supplemented by the homogeneous
boundary condition (absence of incoming ßow): Ula_oM = 0 where

8_nM = {(x,~)EnMlxEaM, (~,l/(x))~O}

is the manifold of inner boundary vectors (v(x) being the outer normal to the boundary).
We discuss a tzheorem solving the inverse problem of determining the source f( x) from
the known outgoing flow Ula+oM = Uout·

Referenees:
1. Siberian Math.J., 1995, V.36, No.3, 664-700.
2. Siberian Math.J., 1996, V.37, No.l, 211-235.

J acek Swil)tkowski:

Homogeneous polygonal complexes of nonpositive curvature and th.eir

automorphism groups

Polygonal complex is a polyhedral eell 2-eomplex. We say that it is homogeneous, if

(1) 3k 2:: 3: eaeh eell is a k-gon; "
(2) 3 univalent graph L: eaeh link is isomorphie to L.

Simply eonnected polygonal eomplex satisfying (1) and (2) is called a (k, L )-complex.

The following inequality expresses combinatorically the nonpositive curvatu~e condition:

2k
g(L) 2:: k-2' (NPC)

where g( L) is the number of edges in the shortest nontrivial circuit in L. It is known
(see (BB]) that for (k, L) satisfying (Npe) (k, L )-eomplexes exist. The following result
answers the question of uniqueness:

Theorem 1: Let (k,L) satisfy (NPC).
(a) If all embeddings of a star of edge in L ioto L extend to automorphisms of L and

k 2:: 4, then (k, L)-complex is unique.
(b) If k = 3 and all embeddings of star of star of vertex in L into L extend to automor­

phisms of L, then (k, L)-complex is unique.
(e)" In both cases (a) and (b) the automorphism group of resulting complex is uncount­

able and acts transitivelyon Hags of the complex.
(d) For all other cases, there are uncountably many non-isomorphie (k, L)-complexes.

Next theorems deal with existence and classification of symmetrie polygonal complexes in
some of the nonuniqueness cases.
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Theorem 2: Assume L is regular (i.e. AutL acts transitivelyon oriented edges of L)
and 3-valent, (k, L) satisfy (Npe).

(a) There exist exaetly two (k, L )-eomplexes admitting flag-transitive groups of automor­
phisms, exeept in the eases (a) and (b) of Theorem 1.

(b) If the pointwise stabilizer of a star of vertex in graph L is nontrivial, then the groups
of automorphisms of complexes from (a) are uneountable.

(c) If AutL contains a subgroup aeting simply transitivelyon oriented edges of L then
the group of automorphisms of a (k,L)-eomplex from (a) contains a subgroup acting
simply transitivelyon Hags.

Theorem 3: Let L be isomorphie to a Cayley graph C(H, 8) of a finite group H with
presentation H = (8 IR). Assume that S n 5-1 = 0, and for each sES ehoose
k. ~ 3 satisfying (Npe) condition g(L) ~ k~~2' Let r be given by the presentatio_

r = (SU{r}IRU{T 2 }U{(TS)k·}:8 ES).

Then r acts simply transitivelyon oriented edges of a (NPC) polygonal complex X,
aH links of whieh are isomorphie to L.

Proves of theorem 1-3 go by performing the induetive eonstruction of [BB] earefully.

[BB] W.Ballmann, M.Brin, " Polygonal Complexes and Combinatorial Group Theory", Ge­
ometriae Dedieata 50, 1994.

Berichterstatter: Harald Rotter, Bonn
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