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The conference was chaired by D. Grayson (Urbana) and U. Rehmann (Biele­
feld). The program consisted of 27 talks. The most important result was a
proof of Milnor's Conjecture given in two talks of .Voevodsky.

Vortragsauszüge

A. J. Berrick:

Row versus column operations

This joint work! with K. L. Boey and K. H. Leung in Singapore. addresses thc
question: which n xn-matrices A (calIed bireducible) have thc prope/ty that
each sequence of row operations on A is equivalent to a sequence of column
operat.ions, and vice versa? Most complete answers are obtained when the
entries of A lie in a ring R assumed to be a commutative domain, and either
n ~ :J or 11. = 2 and a further cODdition holds (e.g. SL2 R is characteristic in
E2 R), as assumed for the results below.

Thc key result is:

Theorem. A is bireducible if and only if either A = 0 or A has a nonzero
determinant that divides every product 0/ an entry 0/ A with a co/actor 0/ A.

Corollary 1. Thc property that any sequence of row operations is replaceable
by a sequence of column operations is equivalent to the property that any
sequence of column operations is replaceable by a sequence of row operations.

Corollary 2. A is bireducible if and only if after each localization at a maxi­
mal ideal it becomes the preduct of a scalar and an invertible maL~ix.

Corollary 3. When A is bireducible, its entries generate an ideal whose class
in Pic{ R) has order dividing n. If this class is trivial, then A is the product of
a scalar and an invertible matrix.

Thus, while over R = Z[A][x], when n is odd A is bireducible if and only
if it is the product of a scalar and an invertible matrix, for n = 2 we exhibit

1to appear in J. of Algebra
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an invertible matrix which is not bireducible, and for even n ~ 4 we exhibit
a bireducible matrix which is not the product of a scalar and an invertible
matrix.

H. Esnault:

Survey on recent results on characteristic Hat bundles
and open questions

We review Reznikov's theorem showing that higher Deligne classes of Bat bun­
dIes on projective smooth complex varieties vanish (Bloch's conjecture).

We list some open questions related to this result and show how this is
related - via an algebraic theory (joint with S. Bloch) - to other conjectures
(e.g. of Ogus).

E. M. Friedlander:

A double cube relating K-theory, cycles and homology

We \consider the following commutative diagram of spectra associated to a
quasi-projective variety X je

!{alg( ..X") -----. Ksemi(x) -----. l(lOP(~X")

1'" QaIg(X) +"'Qsemi(X) -t>QIOP(X)

~alg(}[) + ~semi(x) + KtoP(X) 1
'\. lalg(x) --+"\, lsemi(x) ----> I.lOP(X)

The 12 terms are defined in terms of cycles: Kalg(X) arises as the algebraic
singular complex of linear cycles equidimensional over X. ( )alg --+ ( )semi---+
( )top involves relaxing the candition of algebraicity: (- )semi denotes the topo­
logical singular complex of linear cycles (topology given in ternlS of Chow
varieties). whereas (- )top denotes topological singular complex of analytic lin­
ear cycles. The vertical (respectively, diagonal) maps of this diagram reflect
the relaxation of the linearity (resp., equidimensionaIity) condition.

One might speculate that the horizontal maps are mod-n equivalences (above
some degree upon X), the vertical maps are rational equivalences, and the
diagonal maps '\. are weak equivalences for X smooth. For certain maps,
these speculations are confirmed in terms of Lawson homology/ cohomology,
motivic homology/cohomology, singular homologyjcohomology, and various
K-theories.

,.J
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T. Geisser:

Tate's conjecture, algebraic cycles and
rational K-theory in characteristic p

In this talk we connect conjectures on algebraic cycles in finite characteristic
and give a description on what to expect from rational K-theory in character­
istic p, assuming Tate's conjecture:

Theorem. Assume Tate 's conjecture holds for the field 1Fq • Then the follow­
ing statements are equivalent:

1. CHi(X)Q = A~um(X) for all smooth projective X/fFq and all i, i.e. ra-
tional and numerical equivalence agree. :.~'"

2. CHi(X)Q is finite dimensional for all smooth projective X /JFq and all i.
3. Q[1rx] ~ CHdimX(X x X)Q, the subalgebra generated by the Frobenius

endomorphism, is finite dimensional for all smooth projective X/1Fq •

4. Therc is aseparated filtration on the Chow groups such that the graded
pieces factor through numerical equivalence.

Furthernlore, if these conditions are satisfied, we have

Ka(X)Q = 0

for all smooth projective varieties ove1' IFq and a > 0 (Pa rsh ins 's conjecture).

The proof uses Jannsen's semi-simplicity result, the characterization of mo­
ti ves via their Frobenius endomorphism and some argument on eigenvalues of
Frobenius, which was first used by Soule.

The second main theorem shows that Parshin 's conjecture gives~ strong
baunds on K-theory of fields:

Theorem. Let k be a field 0/ characteristic p and assume Parshins 's conjec­
ture.

i) Iftrdegk/IFp = r, then Ka(k) = 0 for a > r.
ii) Let K~ (k) be Afilnor 's K-theory, then

Ka(k)Q = Ka(k)~). = K~(k)Q'

The praof uses the Gersten-Quillen spectral sequence and de Jong's theorem
on alterations.

The theorenl has some corollaries, the first one states that

.min(a+d,r+d)

K:(X)Q = EB K~(X)g)
i=a

for any variety X of dimension d over a field k of transcendence degree r. It
is proved using the Gersten-Quillen spectral sequence.

The theorem also i~plies that the Gersten-Quillen spectral sequence degen-
erates at E2 , Ka(X)g) = Hi-a(X, Ki)Q. ..
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M. Hanamura:

Motivic sheaves and thc intersection Chow groups

We study the analogue of the motivic t-structure in the framework of the
theory of motivic sheaves over a variety. This leads, in particular, to the
motivic analogues of intersection complexes in topology, hence the theory of
intersection Chow groups.

L. Hesselholt:

On the K -:theory of finite algebras over perfeet fields

Classically, one has for every commutative ring A the associated ring of p­
typical Witt vectors W(A). We extend this "construction to a functor which
assigns to every associative (hut not necessarily commutative or unital) ring A
an ahelian group W(A). This extended functor comes equipped with additive
Frobenius and Verschiebung operators. Let K ... (A; Zp) denote the p-adic K­
groups of A, that is, the homotopy groups of the p-completion of the spectrum
K(A). We prove that if A is a finite dimensional associative algebra over a
perfeet field" k of positive characteristic p, then

Ki(A; Zp) = Li+1W(A)F, i ~ 0,

the left derived functors in the sense of Quillen of the Frobcnius coin~ariants of
W(A). We note that the l-adic groups K.(A; Z,), where I is a prime different
from p, are equal to products of l-adic K -groups of division algebras over the
ground field k. For k finite, these are given by Quillen's original calculation.

The proof is by comparison with the topological cyclic homology TC ... (A)
introduced by Bökstedt-Hsiang-Madsen. We show that the topological cyc1ic
homology of a free associative lFp-aIgebra without unit is concentrated in degree
-1, and hence if Fp-algebra, TC.(A) = L.+1W(A)F. We then prove that for _
any associative ring •

TC_ 1(A) = W(A)F'
Since it is known that Ki(A; Zp) = TCi(A), for i ;::: 0, when A is f.d. over a
perfeet field k of characteristic p, the stated result folIows.

R. Jardine:

Localization theories for simplicial presheaves

There is a general theory of localization for s"implicial presheaves and presheaves
of ..spectra that specializes to Bousfield homology localization theories in the
stahle and unstable case, to the usual closed model structure for simplicial
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presheaves, and to a notion of loealization along a geometrie nlorphism. There
is also a loealization theory arising in this way for spaees, and eorresponding
to an arbitrary presheaf of speetra. This theory answers a question of Soule
eoncerning integral homology loealization of simplicial presheaves.

Roh de Jeu:

Towards regulator formulas for eurves over number fields

Let C be a proper, smooth, geometrically irreducible eurve over a number field
k, with funetion field F = k(C). Assuming the Beilinson-Soule conjecture on
weights, we eonstruct cohomologieal eomplexes for weights n + 1 (n' ~ 1) in
degrees 1, ... ,n + 1, as in the conjectures of Goncharov, together with a map
from 112 to K~:+l)(F). For n = 2 and 3, we also compute an approximation
of the boundary map

K~:+l)(F) ~ IJ K~:~l(k(x))
xEC(l)

on the image of H 2
• (For n = 1 this is c1assieal, given by the tarne symbol.)

Together with work of Goncharov, this yields a eomplete description of the
image of the regulator map of K~~+l)(C) for n = 2 or 3. This description is in
fart valid without assuming the Heilinson-Soule conjecture.

Bruno Kahn:

Thc Bass conjecture, the Milnor conjecture
and the Heilinson-Soule conjeeture

The (nlotivic) Heilinson-Soule conjecture prediets that motivic cohomology of
regular sehemes vanishes in non-positive degrees. The (motivic) Bass conjec­
ture predicts that motivic eohomology groups of a regular scheme of finite type
over Z are finitely generated. Using the recent results of Suslin and Voevodsky
on the positive solution of the Beilinson-Lichtenbaum eonjecture for 2-primary
coefficients, we show that the second conjecture implies the first up to odd tor­
sion. We get stronger consequences for fields of positive eharacteristic.

The proofs are cODditional to resolution of singularities in nonzero char­
acteristic and purity for motivic cohomology in the case of a general closed
immersion of regular schemes. One can expect, however, that getting rid of
these two conditions wiJl be of a much lower degree of difficulty than proving
either the Bass conjeeture or the Beilinson-Soule eonjecture.
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F. Keune:

Multirelative K-theory

l\1ultirelative K-groups Kn(R, Ob' .. ,Om) are introduced using sinlplicial free
resolutions of rings for m-tuples of ideals satisfying the condition

(na;) +L Oj =n(°i +L Oj )

iEl JEJ iEI JEJ

for an I, J ~ {I, ... , m}. Long exact sequences are derived including Ko.
Multirelative K-theory for such m-tuples can be defined as

Together with the property that K-groups vanish for nonunital free associative
rings, this characterizes K-theory of rings. So the properties could have been
taken as a set ofaxioms for the theory.

K. Knudson:

The homology of special linear groups over polynomial rings

We study thc homology of SLn(F[t, t-l]) by examining the action of the
group on a suitable simplicial complex. The EI-term of the resulting spcc­
tral sequence is computed and the differential, d l

, is calculated in sorne spe­
cial cases to yield information about the low-dimensional homology groups
of SLn(.F[t, t-I]). In particular, we show that if F is an infinite field, then
H 2 (SLn(F[t, t-I]), Z) = K 2(F[t, t- 1

]) for n ~ 3. We also prove an unstable
analogue of hOlllotopy invariance in algebraic K -theory; namely, if F is an infi­
nite field, then the natural map SLn(F) -+ SLn(F[t]) induces an isomorphism
on integral homology for all n ~ 2.

B. Köck:

Adams operations on the K-theory oe group rings

We present a new construction of Adams operations (on the Grothendieck
group and on the higher K-theory of schemes) which even works for the K­
theory of projective modules over group rings where, in general, no exterior
power operations exist. This construction uses generalization of Atiyah's cyclic
power operations and shufHe products in higher K-theory.

-I
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Furthermore, we ratlier explicitly describe Adams operations on K1(Cf) (C
an algebraically dosed field of characteristic 0 and f a finite group). Using
these results we K-theoretically explain the "Adams operations" on Ko(Zr)
defincd by Cassou-Nogues and Taylor using Frölich's Hom-description and Tay­
10r's group logarithln techniques.

M. Levine:

Chow groups of varieties of low degree

(joint work with H. Esnault and E. Vieweg)

We consider the Chow groups (with rational coefficients) CH,,(X)Q of a Bubset
X of 1P'j; defined by equations 11,". ,Ir of degrees d1 ~ d2 ~ ••• ~ dr ~ 2,
where k is an algebraically closed field. The main result is

Theorem. Let I ~ 0 be an integer. Suppose that either

a) d1 ~ 3 or r ~ 1+ 1, and

or
b) d t = ... = dr = 2, r ~ land 1'(1 + 1) ~ n - r + 1- 1.

Thcll .\' contain.s a linear subspace L of dimension I, and CHs(X)Q = Q, with
generator a dimension s linear subspace of L, JOT 0 ~ S ~ I.

Thc proof uses classicaJ aJgebraic geometry, Fulton'8 intersection th~ory and
the results of KoHaf, Mori and l\1iyaoka on the rational connectivity of Fano
varieties. The result gives a partial confirmation of some consequences of
conjcctures of Bloch and Beilinson which relate the Chow groups to singular
(or eta.le) cohomology.

J.-L. Loday:

Dialgebras

Periodicity in algcbraic K-theory is a phenomenon which is not weIl understood
yet. However it is weH understood in its additive analogue: cyclic homology.
In this setting the obstruction to periodicity is Hochschild homology. What is
the analogue of Hochschild homology in algebraic K-theory? Tbe aim of the
talk is to construct new algebraic objects in order to solve this question. These
objects are: Leibniz algebras and dialgebras.

A Leibniz algebra is a vector space Y with a bracket operation satisfying

[x, [y, z]] = [[x, y], z] - [[x, z], y] .
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A dialgebra is a veetor space D equipped with two operations ~ and ~

satisfying .5 axioms (looking like associativity conditions) such that

[x, y] := x ., y - y f- x

is a Leibniz bracket.
The homology of these algehras are diseussed and shown to be strongly

related to planar binary trees.

References:
J.-L. Loday, Une version non commutative des aIgebres de Lie: les algebres de
Leibniz, Ens. Math. 39 (1993), 269-293.
J.-L. Loday, Algebres ayant deux operations associatives (dialgebres), C.R.A.S.
Paris 321 (1995), 141-146.

A. S. Merkurjev:

K-theory of homogeneous varieties

Let G be a reductive group acting on a variety X over a field F. We considcr
equivariant K-groups l(~(G; X) and the restrietion homomorphism

l{~(G; X) ~ K~(X).

Theorem. a) The restrietion homomorphism Kb( G; X) --+ KbC~) 'tS sur­
jective for any -"Y iff Pie GE = 0 fOT any field extension EI {4';

b) 11)( is smooth projective und Pie GE = 0 !Qr any field extension E / f',
then 1(~(G; X) -+ K~(X) is a spUL 5urjeclion.

Theorem. lf G is a split group and 11"1 (G) is torsion free, t!zen there is a

speetralsequence e
E~·q =Tor:IG) (Z, K~(G; X)) ~ K;+q(X) ,

where R(G) is the rep.resentation ring 0/ G. In the case 0/ srnooth projective
X this spectra/ sequence degenerates, i. e. E~,q = 0 if p > 0, so that

Corollaries . 1) Let G be an arbitrary reductive group. Then /(0((;)(1) is
a finite group.

2) If H C G is a connected subgroup, then /(o(G/ H) is finitely generated.
3) For any G-variety ..\', the group G(F) acts triviallyon Kb()()·
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S. Mueller-Stach:

Higher Chow groups via transcendental methods

By a theorem of Spencer Bloch, Quillen's K-groups for quasiprojective varieties
can be computed at least rationally by higher Chow groups. In this talk we
show how representation theory on cohomology groups may be used to study
the image of certain regulators from graded pieces of K-groups to cohomology.
First we recall 5 different proof of the Noether-Lefschetz theorem on surfaces
in projective 3-space. Then - quasi as a generalization of that theorem ­
we study the group CH2(X, 1) = H1(X, 1:,2) on a smooth cornplex variety X.
It consists of divisors carrying rational functions such that their divisors surn
up to zero on X. This group has a natural subgroup generated by the image
of Pic( X) ® c'" . We call the quotient group the indecomposable pint. Its
image in Deligne cohomology modulo NS(X) ® C· is countable by Beilinson's
rigidityargument. Many interesting algebraic surfaces have been studied which
have non-trivial indecomposable part even modulo torsion: Nori and Collino
(abelian varieties), Voisin/Oliva and myself (K3 surfaces) and Shioda sextics
of general type (by myself). Examples over number fields were given much
earlier by Heilinson, Ramakrishnan, Flach and Mildenhall. Over the complex
nunlbers the groups of indeconlposables is even not finitely generated modulo
torsion (Collino).

At the end we explain sonle existing conjectures and further problems. De­
tails can be fOllnd in my paper in the duke eprint server (Nov 1995). See also
Pedrini 's abstract for a sheaf theoretic approach to this problem.

A. Nenashev:

Algebraic description for K1 oe an exact category

Definition . A double shorl exact sequence in an exact category A is a pair
of sh<?rt exact sequences

of the salne objects. We write such data in the form

~ B~ C).
h 92
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Given a double short exaet sequence t, we assign to it a loop It(t) in (rA
(the G-construction of Gillet and Grayson):

(A,A)

e(A) "

e(l)
----+

(0,0)

(8,8)

/ e(B)

and let m{l) be the dass of p,{I) in 1rt(G.A) = K 1(A).

Theorem. (i) Vx E K 1(A) 31 such thai x == m(l).
(ii) The elements m(l) are subjects io the relations

(a) /1 = /2, g1 = 92 => m(l) = 0;
(b) ij we are given a diagram of the form

A' -.. A ----Jo A"----Jo -+

11 11 11
B' -.. B -.. B"-+ -..
11 11 11
C' -.. C -.. C"-.. -..

in which the l-si arrows COlumute wilh ihe 1-si alTOWS and the. 2-nd
arrows comlnute with the 2-nd arrows, then

(iii) Any other relation is a consequence 01 (a) and (b).

Ivan Panin:

On the Gersten type conjecture for Azulllaya algebras

A variant of Gersten's Conjecture was proved for the !(-theory of Azunlaya
aigebras over a smooth Ioeal ring of geometrie type. A corollary of this is the
positive solution of the conjecture of Grothedieck on principal homogeneous
spaces for the special linear group SL1,D.

Reference:
I. A. Panin, A. A. Suslin, On a Grothendieck Conjecture for Azumaya Aigebras.
Preprint POMI, 1996, submitted to St.-Petersburg Math..Jour.
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c. Pedrini:

Bloch 's conjccture alld decomposability 01 higher Chow groups

Let X be a smooth projective variety over the complex field <C and let

CHP(X,n)

be the higher Chow groups as defined by S. Bloch.

Definition. We say that CHP(X, n) is decomposable if there exist positive
integers rand s with 0 < r < p and 0 < s < p such that the map induced hy
the product structure for higher Chow groups :

(CHr(X,I) ® CH·(X,m») ® Q ~ CHP(X,n) 0 Q .:-.,-.

(whcre I +m = n) is surjective.

Because of the isomorphisms

CH2 (X, 1) ~ H 1(X,K 2 ) and CH 2(X,2) ~ HOeX,K2 )

decomposability of CH2(X, I) and CH2(X,2) are equivalent respectively to
the cokernels of the maps

Pie 4ll" ® C -+ H 1(X, K 2 ) and K 2(C) -+ HO(X, K 2 ) \

being torsion. \
Let Ao(X) be the group of zero cycles of degree 0 and T(X) the kernel of the~

Albanese map Ao(X) -+ AlbX; then Bloch's Conjecture asserts that, when '-~

}[ is a surfacc, then pg = dirn H 2(X, Ox) = 0 implies T(X) = O. \
This conjecture has been proven for all surfaces but those of general type (in

which case also q = dimH 1(X,Ox) = 0). Bloch alld Srinivas showed that if
pg = 0 and Bloch's conjecture holds then.the group CH2(X, 1) is decomposable
and that the same result holds for CH 2 (4"<' 2) if also q = O.

Several authors have given examples of surfaces with Pg 1= 0 such that
Cl/2(X, 1) is not decomposable.

\Ve prove the following :

Theorem . Let X be a smooth projective sur/ace over C; assume ­

J/J(X,Ox) = 1/2(X,Ox) = O.

Then t.he gl'OUpS C H2(X, 11) are decomposable JOT n ~ 2 iJJ Bloch 's Conjecture
holds for X.

The proof is based upon a description of the cokernels of the maps

Pic X ® C* .-. H 1(X, K 2 ) and K 2(C) --t HO(X, K2 )

in terms oe the sheaf maps
K,1 ® C* -+ K,2

and of the Chern dass map K,2 -+ 1-lb (Z(2»), where 1-l1 (Z(2») is the Zariski
sheaf associated to the Deligne-Beilinson cohomoly groups.
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D. Quillen:

Morita invariance of K-theory for h-unital rings

We extend the category mod( R) of unitary modules over a unital ring R to
nonunital rings A, which are idempotent: A = A2 , as folIows. We call an

A-module M firm when A ®A M ~ M, a ® m t-+ am, and we say that A is

a firm ring when A ®A A ~ A. Let 9Jt(A) denotes the full subcategory of

firm modules in all A-modules. Then !Dt(A) is abelian, because it is eq~tvalent

to the quotient abelian category of all A-modules by the Serre subcategory of
modules killed by A.

Two idempotent rings A and Bare said to be Morita equivalent when !D1( A)
and rot(B) are equivalent. A natural question is to what extent results about
Morita invariance for unital rings extend with this more general setting.

Theorem. K I is Morita invariant for firm rings. In other words, a Morita
equivalenee rot( A) ~ 9Jt( B) with A, B firm gives rise to a eanonieal isomor­
phism K.(A) ~ KI(B).

Theorem. Cyclie type homology: H H., HG., eie. is Morita invariant for
h-unital algebras flat over a commutative unital ground ring.

Conjecture . K. is Morita invariant for h~unjtal rings. (These are defined by

-- -, T<?~~(Z, A) = 0 Vn.)

w. Raskind:

On the Chow group of O-cycles of the self-product
of a CM elliptic curve over Q
(joint with A. Langer)

Let E bc an elliptic curve over Q with CM by the ring of integers of an
imaginary quadratic field K. Let X = E x E, and denote by CHo(X) the
group of O-cycles modulo rational equivalence. Let N be the conductor of E,
and assume for simplicity that (N, 6) = 1. We show that for pa prime where E
has good reduction, the p-primary component of CHo(X) is finite (p 1= 2,3).

·~··l' ~.'~ ~

~

;1

~
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J. Rognes:

Topological cyclic homology of tbe integers
and the stahle pseudoisotopy space of a point

The topological cyclic homology TC( A) of a ring A is assembled from the fixed
points T H H(A)C of its topological cyclic homology, for the various finite sub­
groups CeS!, by means of structure maps R, F : T H H(A)C -+ TH H(A)B
for B C C C 8 1 , called tbe restrietion and Frobenius maps. We compute the
mod 2 homotopy of tbe fixed points T H H (Z )C2 n for all n, where Z denotes the
integers, together with the homomorphisms induced by the R- and F-maps.
As a result we can compute tbe mod 2 homotopy of TC(Z).

By theorems of McCarthy and Hesselholt-Madsen, this amounts to a~talcu­

lation of the mod 2 algebraic K-groups of the 2-adic integers, K.(Z2; Zj2). By
a further topological analysis, we obtain the 2-adic homotopy type of K,(Z2),
which may be described by the following two fiber sequences of implicitly 2­
completed infinite loop spaces and maps:

The connecting luaps for these fiber sequences mayaiso be described.
As a corollary, we see that the natural map K(Z) -+ K(Z2) induces an

isomorphism of 2-completed groups modulo torsion, in a1l degrees 4k + 1 for
k~1.

As a different application, we use a theorem of Dundas identifyi'ng the homo­
topy fiber of the linearization map A(*) -+ K(Z) with that of the linearization
nlap TC(*) -+ TC(Z). Here A(*) is Waldhausen's algebraic K-theory of the
Olle-point space *, though of as the K -theory of the sphere spectrum. Likewise
TC( *) is the topological cyclic homology of a point, as defined and computed
by Bökstedt, Hsiang and Madsen, thought of as the TC-theory of the sphere
spectrum.

Ay the calculations above, TC( *) and TC(Z) are .known 2-adically in a
range, allowing us to express A(*) in terms of K(Z) in"a similar range. Using
Waldhausen's theorem A(*) = Q(SO) X ß2P{*) where P( *) is the stahle pseu­
doisotopy space of a point, and the calculation of tbe 2-torsion in K ... (Z) done
during the conference, we find

1r.P(*) = (O,Zj2,O,Z,O,Zj2,O, ... )

modulo odd groups in degrees 3 and above. This has an interpretation in terms
of the space of diffeomorphisms of high-dimensional dises.
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M. Rost:

On splitting varieties for 3-symbols mod 3

Consider a symbol {at, a2, a3} E KrF /3. Let A = (al, a2) be the degree 3
algebra givcn by at, a2. Then a generic splitting variety for {at, a2, a3} is given
by

z = {x E A INrd(x) = a3}'

Let Z be a smooth compactification of Z. Using the theory of exceptional
Jordan algebras one can show that the direct image maps (d = dirn Z = 8)

are injective for i = 0, 1.

S. Saito:

Filtration on Chow groups
and generalized normal functions

Let X L S be a projective smooth morphism of non-singular algebraic
varieties. We define a map

Here CHT(X) js the Chow group of cycles of codimension r in X, FsCHr(X)
(v ~ 0) .is a filtration which is a relative version of Bloch-Beilinson filtration, _
DJ~/s is a sheaf on S~ and f(S, DJ~/s) is the space of the sections which are ..
called generalized normal functions. For 11 = 1, FJ CHT(X) is the suhgroup of
cyc1es homologically equivalent to zero fiberwise and p~~s is the classical map
associating normal functions due to Griffits. We investigate P~/S in the case
that F is the universal family of complete intersections and show a modest
generalization of Abel's theorem.

V.Voevodsky:

Milnor's conjecture

Abstract not provided by the speaker.
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c. Weibel:

Tlte 2-torsioll in K.7l

For i even, define Wi == Wi(Q) to be the largest power of 2 dividing 4i; this
equals the order of HO(Q, pr:) for v » 0, and also equals the ~ven part of the
denominator of ( 1 - 2i). It also equals the order of the 2-Sylow subgroup of
!m(J)2i-l' Then:

Ko(Z) == z
!(l(Z) == 7../2

K 2 (Z) = 71.,/2

K 3 (Z) == 7../48

/(4(Z) == 0

/\5(71.,) = Z ffi (3-torsion group)

K 6 (Z) == (odd)

K7 (71) == Z/240 EB (odd)

Ksn(Z) = (odd) far n ~ 1

KSn+1 (Z) == Z Ef7 Z/2 ffi (odd)

K Sn+2 (Z) == Z/2 ffi (odd)

K Sn+3 (Z) == Z/16 E9 (odd)

K Sn+4 (Z) = (odd)

Ksn+s(Z) == Z EB (add)

K Sn+6 (Z) == (odd)

KSn+7 (Z) == (71/Wi) EB (odd), i = 4(n + 1).

Hefe the symbol "(odd)" denotes a finite group of odd order. In particular, note
that up to odd torsion we have t times Lichtenbaum's conjectured formula:

IK4i-2(Z)1 == !(l - 2i).
IK4i-t(Z)1 2

The Incthod is to use Voevoclsky's version

f;~q == H:t-q(Q; Z/2) => J<p_q(Q; Z/2), (p ~ 0, p ~ q)

of the 'Bloch-Lichtenbaum spcctral sequence.

Berichterstatter: N. A. Karpenko, Münster (z. Zt. Besanc;on)
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