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The conference was organized by R.E. Bank (San Diego), G. Wittum (Stuttgart)
and H. Yserentant (Tübingen).

Of the 39 participants, 27 came from Germany and the rest from Austria, Bul­
garia, Great Britain, the Netherlands and the United States of America.

In contrast to the situation some years ago, adaptive methods have become an
indispensable tool in the numerical solution of partial differential equation and
have found a broad acceptance both in the mathematical and in the engineering
community. The twenty-eight talks given at the conference (ranging from one­
houT surveys to short contributions of fifteen minutes) reflected this fact and have
shown that in the meantime the interest shifted from simple mathematical model
problems to real applications like fluid mechanics.

E. Bänsch, Freiburg, Germany
Adaptive finite elements for exterior domain problems

We present an adaptive finite element method for solving elliptic problems in
exterior domains, that is for problems in Si = IRd\w, where w C IRd is bounded
(d = 2,3). A residual based error estimator is derived, giving a reliable bound
for the error eh in the energy norm:

Ilehl12
= Ilu - uhll~h + Ilull~\nh

::; CTJ2 + dat~approximation terms.

The procedure generates a sequence/0rJiner and larger grids until the desired
accuracy of the solution js reached. (Joint work with W. Dörfler)
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P. Bastian, Stuttgart, Germany
Fully coupled multigrid solution of two-phase flow in porous media

The flow of two inviscid fluids in a porous medium is described by two coupled
nonlinear time-dependent partial equations. In the incompressible case one of
these equations is of elliptic type and the other one is of parabolic or (nearly)
hyperbolie type depending on the solution.

For the numerieal solution these equations are discretized in space with a finite­
volume scheme and in time with BDF(l) (implicit Euler) or BDF(2). The re­
sulting system of nonlinear algebraic equations is solved by a Newton-rnultigrid
methode A closer look at the Jacobian matrices shows highly variable coefficients
that are not aligned with grid lines and depend on the solution. A modified •.
restrietion is proposed to handle these difficulties. •

Numerieal simulations in two and three dimensions for various applications are
presented. The experiments show that multigrid performance ean be achieved
for these eases.

J. Bey, Tübingen, Germany
Finite volume methods far elliptic boundary value prolems in N space
dimensions

We consider finite volume schemes for N-dimensional elliptic boundary value
problems of the form

\7·(-AVu+bu)+cu =/ inf2}
u=O onf

The nlethod is derived from a generalized weak formulation of the problem, which
is related to a given box partition Rh of the domain and cau be shown to be equiv­
alent to the usual weak formulation. Assuming that Rh is in fact a dual boxmesh
for a standard simplicial finite element triangulation, and using a canonical iso­
morphism from the Finite Element Ansatz space to the Finite Volume testfunc­
tion space, we are able to interprete the method as a conforming generalized
Galerkin approach. Applying a technique presented in a paper of W. Hackbusch

~fior'ttheltwoditmensiOnatl.case ~C~lmpufitintg 19
d
89), wedthedn prove that .under uhsuldal _

fil e e emen assump Ions sImI ar rs an secon or er errar estlmates 0 ,

provided the dual boxmesh Bh satisfies certain balance and regularity conditions.
After abrief discussion of certain variants of the method (mass lumping, use of
quadrature formulas) we then show, how boxmeshes satisfying these conditions
can be constructed in the N -dimensional case. This construction generalizes the
well-known center-of-mass method to N dimensions. Finally, we present a simple
first order upwind scheme, which can be interpreted as symmetrie perturbation
of the diffusion matrix A.

\
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W. Dahmen, Aachen, Germany
. Adaptive techniques far integral equations

This talk is concerned with adapted wavelet based discretizations of operator
equations with special emphasis on operators with global Schwarz kernel. The
basic assumptions are: (i) The operator is aJ? isomorphism from a Sobolev space
iuta its dual. (ii) The kernel is smooth except on the diagonal and has certain
asymptotic decay properties. (iii) The underlying domain is a union of essentially
disjoint smooth parametrie images of a cube. The eore ingredient of the approach
is an isomorphism between the relevant Sobolev spaees on the global domain and
a product space whose components are Sobolev spaces on the individual patches
subject to certain boundary conditions. This gives rise to a domain decomposition
where the coupling conditions are reflected by modifications of the kerne!. The
solution of the original operator equation reduces to a convergent Schwarz type
iteration requiring the solution of elliptic problems on the individual patches. The
Ioeal problems, in turn, ean be solved by fast wavelet methods on the unit cube.
A corresponding adaptive scheme can be shown to eonverge without assuming
the saturation property.

w. Dörfler, Freiburg, Germany
Adaptive methods: Robustness, saturation assumption and conver­
gence

We consider the Poisson equation as a model problem and show how to set up
an initial discretization (from data information only) such that the error will be
monotone decreasing on in a certain way refined grids. So in the first stage the
main task is robust integration of the data error. Sinee this is not an efficient
algorithm one has to switeh to more efficient methods (now not robust) if'satu­
ration' of the problem is deteeted. This concept is then applied to the case :Hf the
nonlinear Poisson problem and the case of the linear problem with nonpolygonal
boundary. (Joint work with M. Rumpf)

R. Ewing, College Station, USA
Application of adaptive refinement methods

Highly loca.lized phenomena can often dominate important physical processes.
In large-scale simulation processes, attempts to implement loeal grid refinement
can often destroy the efficiency of existing codes through eomplex data struc­
tures and associated solution algorithms. Patch refinement methods arising from
domain decomposition techniques are described which are aceurate and can be
incorporated relatively easily in existing simulation codes. Preconditioned it­
erative techniques are presented to allow a wide variety of applieations of these
adaptive refinement eoncepts. Computational results are described and compared
with theoretical convergence rates and superconvergence error estimates for Ioeal
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refinement of mixed finite element methods, incomplete factorization precondi­
tioners, and loeal time-stepping techniques. Applications to fluid flow in parOliS
Inedia are presented as examples of large-scale, time dependent applications.

J.E. Flaherty, Troy, USA
An adaptive and parallel framework for partial differential equations

Adaptive computational techniques are having a dramatic impact on the way
that scientists and engineers solve problems involving partial differential equa­
tions. Like adaptivity, parallel computation is being used to an increasing degree.
We have developed a framework for adaptive and parallel computation that is
capable of (i) generating three-dimensional unstructured meshes of tetrahedral
elements, (ii) automatically refining and coarsening these meshes, (iii) partition­
ing the computation into subdomains that may be processed in parallel, and (iv)
maintaining a balanced parallel computation through element migration. Mesh
generation is supported by a hierarchieal database in whieh spatial regions are
linked to their bounding faces, which are linked to their bounding edges, which
are linked to their endpoints. Thc database is connected to geometricalmodeling
procedures and to a parallellibrary having capabilities for processor scheduling
and reassignment. The adaptive finite element framework is being used to study
several flow problems.

M. Griebel, Bonn, Germany
An adaptive multilevel method for sparse grid discretizations of PDEs
based on the finite difference approach

For the efficient representatiön of discrete functions and for the solution of PDEs,
the sparse grid technique has been developed in the last years. It is mainly
based on the finite element approach using a specific tensor product of ID hier­
archical basis ansatz functions. The resulting linear system can be solved effi­
ciently by multilevel methods. While usual discretization methods require basi­
cally O(h-d) grid points, the sparse grid approach needs only O(h-1log(h- 1 )d-l)
grid points. Here, h denotes the mesh size employed and d denotes the dimen­
sion of the problem. The accuracy of the approximation, however, deteriorates
pointwise and with respect to the L 2- and Lmax-norm only slightly form O(h2 )

to O(h2 Iog(h- 1)d-l) provided that the function to be represented is sufficiently
smooth. In the non-smooth case, adaptive refinement can be applied straightfor­
wardly and helps to maintain the advantage of the sparse grid approa'ch over an
adaptive conventional h-version of the finite element mehtod. However, the setup
and solution of the linear system is quite complicated, especially in the case of
PDEs with non-constant coefficient functions. A sparse grid approach 'using the
finite difference philosophy is in this respect much more simple and gives in some
cases even a better performance, i.e. a O(h2 ) accuracy without the log-terms.
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However, the resulting systems are not more symmetrie in general. Furthermore,

the solver ernploys the BieG iteration and a multilevel preeonditioner using so­

called prewavelets. It converges independently of the mesh size of the problem.

We report on our method and its applieation to 2D and 3D PDEs of 2nd oder

with general coefficient functions, discuss the adaptive refinement approach and

describe how we can deal witb general complicated domains.

w. Haekbusch, Kiel, Germany

Error estimators for inexact solutions

The standard error estimators for adaptive refinement require an exact discrete

solution. The lecture shows how the inßuence from unknown iteration errors can

be measured. It turns out that there are three Dorms which are almost equivalent.

The critical equivalence constaut is discussed. Knowing this number, one cau

guarantee error bounds for the inexact solution as soon as. a eomputationally

available error norm is small enough. -~~.

R. Hiptmair, Augsburg, Germany

Multigrid method for Maxwell's equations

We eonsider MaxwelPs eurl-equations in a 3D cavity n with perfectly condueting

walls.. In the framework of time domain diseretization an implicit timestepping

is highly desirable by virtue of its unconditional stability. In a finite element set­

ting each timestep involves the solution of a discrete variational problem for the

bilinear form (·,·)L2 + (curl·,eurl·)L2 posed over H(curl;n). We rely on Nedelec's

eurl-conforming finite elements (edge elements) which properly refiect the conti­

nui ty properties of the electrie field. A multigrid method is employed as a fast

iterative solution method. We observe that on the orthogonal complement of

the kerneI of the eurl-operator the bilinear form resembles that of the Lapla­

dan. On the kernel of eurl we get a mass operator which ean be converted inta

a Hl-elliptie operator using discrete potentials. Thus, guided by the construc­

tion of conventional multigrid schemes, we opt for a nadal (BPX-type) multilevel

decompositian to treat both kern (eud) and its orthogonal complement.

Provided that material properties are homogeneous and an additional regularity

assumption holds, we ean prove that tbe multigrid method converges indepen­

dently of the depth of refinement.

R.H.W. Hoppe, Augsburg, Germany

Residual based aposteriori error estimators for curl-conforming finite

element approximations

Curl-eonforming finite element approximations by means of Nedelec's edge ele­

ments are an appropriate too1 in the computation of the eleetromagnetic fields

or eleet~omagnetic vector potentials in condueting media. They are based on a
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weak formulation of the underlying boundary value problem involving the Hilbert
space H(curl;O).

Given some iterative solution of the Nedelec approximation, for the purpose of
Iocal adaptive refinement of the triangulations we are interested in an efficient
and reliable aposteriori error estimator for the total error which consists of the
discretization error and the iterative error and is measured in the natural norm
of H(curl;n).

Thc basic tool in the construction of such an errar estimator is a Helmholtz type
d~compositionof the total error into a curl-free part and a weakly divergence-free
part which allows to establish upper and lower bounds for these parts separately.

W.F. Mitchell, Gaithersburg, USA
Overwiev.of a parallel hierarchical adaptive multilevel method

In this talk we present an overview of PHAML, the parallel hierarchical adaptive
multilevel method for elliptic partial differential equations. The foundation of
the method is built upon the hierarchical finite element basis for a triangulation
obtained by adaptive refinement using newest node bisection. Recent develop­
ments in parallelizing the method in a SPMD distributed memory environmen't
via overlapping subdomains on each refinement level will be discussed. The ap­
proach produces a full domain partition, in which the usual subdomain on each
processor is extended to cover the full domain.

P. Oswald, St. Augustin, Germany
Modified solenoidal 2D-Stokes discretization: Multilevel precondition-
ing (and adaptivity)

We present a modified PI velocity element (combined with discontinous PO pre­
serve elements) for which the space Zh of discretely divergence-free elements
adnlits a stable multilevel splitting. It is based on unusual coarse-to-fine in­
tergrid operators which preserve the (discrete) divergence-free condition. O(1)­
condition number behavior is proved for uniformly and adaptively refined 2D-
triangulations. The multilevel preconditioner can (and should primarily) be used _
for other Stokes elements. Open problems: 3D case and performance optimiza- .,
tion (numerical tests performed so far indicate the need for this!).

R. Rannacher, Heidelberg, Germany
Residual-based error estimation via duality arguments

The conventional strategy for controling the error in finite element (FE) methods
is based on aposteriori estimates for the error in the global energy or L2-norm
involving loeal residuals of the computed solution. Such estimates contain con-
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stants describing the Ioeal approximation properties of the finite element spaces

and the stability properties of a linearized dual problem. The mesh refinement

then aims at the equilibration of the Ioeal error indieators. Hawever, meshes gen­

erated in this way via eontroling tbe errar in a global norm may not be appropiate

for Ioeal error quantities like point values or contour integrals. This deficiency

may be overcome by introducing certain weight-factors in the aposteriori error

estimates which depend on the dual solution and contain information about the

relevant error propagation. In this way optimal meshes may be generated for

aB kinds of error measures. This general approach is discussed for simple model

situations. More complicated applications can be found, for example, in fluid

mechanics (eomputation of drag and lift coefficients), in elasticity (limit loads in

elasto-plastic deformation), and in radiative transfer (surfaee mean-radiation of

stars).
_...::: .....

S. Sauter, Kiel, Germany .,' .~

Composite finite elements for coarse-Ievel discretizations of PDEs with

essential boundary conditions

Composite finite elements allow coarse-level discretizations of PDEs where the

minimal number of degrees of freedorn is independent of the number of micro­

structures of the problem (geometrie details, oscillating eoefficients, etc.). We

can prove that, for this new finite element space, the approximation property

is valid also for the very coarse discretizations. In Dur talk, we will focus on

the treatment of essential boundary conditions. For this purpose, we will use

prolongation operators which are stable in H1
, are define~ locally, and preserve

the essential boundary conditions.

L.R. Scott, Hauston, USA

Error estimators and mesh optimization for high-order finite element

simulation of Newtonian flows

This was areport on joint work done by the FLACS project at the Univer­

sity of Hauston, in particular, Babak Bagheri, Andrew IHn, Hector Tuarey and

Ralph Metealfe. Further information on FLACS (which stands for Flow Around

Cylinders and Spheres, or Flow Around Complex Surfaces) may be found at

http://www.hpc. uh. edulflacs.

Our objective was a study of residual-based error estimators for high-order finite

element methods for approximating solutions of tbe Navier-Stokes equations. We

focused on the spatial correlation of tbe actual error (computed by eomparison

with numerical solutions on finer meshes) with the residual-based error estimator.

This led us to reconsider the definition of mesh size, hK , of an element K. We

found that the correlation can depend stranglyon possible different definitions

(maximal edge length, diameter, etc.). We introduced an element-level averaged
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error estimator and showed that it yields a significantly improved correlation com­
pared with the pointwise correlation. We also introduced a temporally averaged
error indicator and demonstrated computationally its efficacy in determining bet­
ter meshes for time-dependent problems. It should be noted that these results
were all computational but they have suggested many open problems that should
be addressed theoretically.

E. Süli, Oxford, U.K.
Finite element methods for hyperbolie problems: Aposteriori error
analysis and adaptivity

The aim of this talk is to present a critical review of recent results that con­
cern the a posteriorierror analysis of finite element approximation of initial &
initial/boundary value problems for linear hyperbolic systems. Global & local
residual-based error bounds (with the error measured in negative-order Sobolev
norms) are considered. The implementation of these bounds into adaptive finite
element algorithms is discussed.

A.H. Schatz, Ithaca, USA
A study of some averaging operators as loeal a posterior estimators for
the maximum norm of the gradient on eaeh element

A study is made of a class of simple local averaging operators for use as a poste­
riori error estimators for elliptic problems when using the finite element method.
Included in this dass of averaging operators are the L2-projections of either the
approcimate solution Uh or its gradients onto aspace of polynomials of higher
degree on a local patch of elements of size H (slightly larger than h). The meth­
ods include as a spec~al case the averaging method proposed by Zienkiewicz and
Zhu (1989). They also include difference quotients on a mesh of size H. Two
model problems are analyzed. The first is a smooth Neumann problem for which
conditions on the solution are derived in order that the maximum norm of the
gradient Uh - AUh is an asymptotically exact estimator for the maximum norm
of the gradient of U - Uh on each triangle. Here AUh is the local average of Uh.

Roughly speaking the method is shown to work under same reasonable conditions
which prevents pollution error from dominating the local error. The main ana­
lytical difficulty occurs in trying to compare the two errors on each triangle and
this is overcome by using some very loeal error estimates for the finite element
method. The same situation does not occur for the seeond model problem which
is Dirichlet 's problem with a nonconvex corner. If a quasi-uniform mesh of size h
is used then these estimators are not asymptotieally exact because of the effects
of pollution from the nonconvex corner which precent averaging from producing a
better approximation. Optimally refined grids are then considered and a method
for obtaining a~ymptoticallyexact estimators via averaging is proposed. (Joint
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work with W. Hoffmann and G. Wittum)

M. Schemann, Berlin, Germany
An adaptive Rothe method for the wave equation

The adaptive Rothe method approaches a time-dependent PDE as an ODE in
function space. This ODE is solved virtually using an adaptive state-of-the-art
integrator. The actual realization of each time-step requires the numerical solu­
tion of an elliptic boundary value problem, thus perturbing the virtual function
space method.

We considered the adaptive Rothe method for hyperbolic equations in the model
situation of the wave equation. All steps of the construction were given and
an numerical example (diffraction at a corner) was provided for the 2D wave
equation.

J. Schöberl, Linz, Austria
Efficient solvers for 3D contact problems on adaptive meshes

The boundary value problem of linear elasticity with unlateral boundary condi­
tions is considered. We give two preconditioning techniques to separate boundary
inequalities from inner equations, approximatively. One is based on Dirichlet da­
main decomposition, the other uses the augmented Lagrangian methode Both
lead to level-independent iteration numbers. Each iterative step requires the ap­
proximative solution of a constrained minimization problem on the boundary.
On adaptive meshes these CMPs are solved by CG-like quadratic programming
algorithms. Both algorithms require only standard linear multi-level components.
Numerical examples for 2D and 3D contact problems showing optimal time on
adaptive meshes are presented.

E. Stein, Hannover, Germany
Adaptive hierarchical modeling of plates and shells with the finite­
element-method

Given a sequence of reduced models of a continuous master model by homo~or­

phic mapping, e.g. from the 3D-elastoplasticity down to 2D-elastic shell theory
of lowest order, an expansion strategy is outlined on the basis of error-controlled
adaptive finite-element-method (FEM). Within the approximation process the
solution(discretization)-error and the model-error are both controlled. Model
adaptivity is essential for stiffened plates and shells with layer disturbances and
other singularities (e.g. in the vicinity of single columns).

Local error analysis using Dirichlet-problems with higher hierarchical test spaces
(Lagrange- or Legendre-Polynomials)only admit an error analysis of the discretization­
and of the dimensional errors but not for the model-error.
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Local error analysis of Neumann problems, in which the outer fractions on patches
are computed in aposteriori equilibration process, admit local error estimates
with upper bounds and a split of the discretization and the model-error by COffi­

puting loeal problems.

The strategy is realize.d for complex structures. Some open problems - like the
saturation condition and the implementation of the pollution error - are topics
of current research.

P.S. Vassilevski, Sofia, Bulgaria
Multilevel methods as block-factorization preconditioners

In this talk a unified block matrix presentation of some known multilevel methods
will be given. The multilevel methods are treated as block-factorization precon­
ditioners exploiting in general overlapping blocks. Some specific application are
the classical HB (hierarchical basis), MG (multigrid) and a wavelet-like modified
HB method. Also, multilevel methods that exploit certain algebraic coarsening
strategies may fit into the scherne. One particular example of the algebraic coars­
ening strategy, i.e., based on matrix dependent intergrid transfer operators for
non-conforming elements will be given. Some numerical experiments in 3D for
thc performance of various multilevel methods will also be presented.

R. Verfürth, Bochum, Germany
Robust aposteriori error estimates for singularly perturbed problems

As a model problem consider the singularly perturbed reaction-diffusion equation
-E~'lt + U = f in n with Dirichlet boundary conditions. Standard aposteriori
error estimates applied to this problem yield upper and lower bounds the ratio
of which behaves like E- 1/ 2 9r even e- 1 as € -t O. We overcame this drawback
by tnodifying the weights of the different residual contributions. The resulting
error estimator yields upper and lower bounds which are uniform in €. The main
tools are a trace theorem in deriving upper bounds and judiciously chosen local
test function in deriving lower bounds. The techniques extend in particular to
convection-diffusion equations with dominant convection. The lower bound then
incorporates a term e- 1/ 2 Peclet, where Peclet is the local mesh Peclet number.

C. Wagner, San Diego, USA
Adaptive methods for diffusion-reaction-transport processes in unsat­
urated porous media

In the first part, the multilevel ILU decomposition is introduced. Allowing new
nonzero matrix entries only for connections to so-called parents nodes, a sparse
approximation of the arising Schur-complements is guaranteed. A special con­
struction scheme for those nonzero matrix entries makes sure that the decom­
position exists and the corresponding iterative method converges for symmetrie
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and positive definite matrices. Numerical experiments show h-independent con­
vergence rates at least for model problems.

In the second part, an almost real life example for diffusion-reaction-transport
processes in unsaturated porous media. is discussed. The hierarehical movement
algorithm for the dynamie grid adaption to the eurrent solution is introduced.
The solution proeess and simulation results are presented for an example case
deseribed by a coupled system of three partial differential equations.

W.L. Wendland, Stuttgart, Germany
On localized error estimators and adaptivity for boundary integral
equations

We consider an integral equation

Au = f (1)

on a boundary r of a domain n E rn.2,3 with given right hand side;.:A and a
strongly elliptie integral operator A of order 20. For solving equation (1). we use
the spline Galerkin method. This yields the Galerkin error eh = U - Uh_and the
con1putable Galerkin residue rh = f - AUh. Using the error equation, the global
aposteriori error estimation

(2)

is obvious. We begin with some loealized error estimates based on a localiza­
tion of the error equation and the commutator property for pseudodifferential
operators and COO-truncation funetions whieh are independent of theGalerkin
discretization. One obtains an error estimation on fixed parts (independent of
the discretization) of the boundary with some perturbations which are of.smaller
order of the meshsize than the error itself. To prove mesh-dependent loealized
error estimates we use mesh-dependent truneation funetions. Here, the main
difficulty is the generalization of the commutator property of pseudodifferential
operators for nonsmooth truncation funetions. We obtain a mesh-dependent 10­
calized error estimation with an explieit relation between the smoothness of the
truneation function (which is related to the size of the loeal supports) and the
size of the perturbation terms.

In addition we present a method to compute the norm of the localized residue by
.solving loeal problems. For the localized equations we can use the same method
as for the global equation (l)j the only difference is the numerical realization of
the commutators which, however, is only of teehnical nature. The effieiency of
these methods is shown with some two-dimensional numerieal examples. (Joint
work with H. Schulz)

C. Wieners, Stuttgart, Germany
Adaptive multigrid methods for finite elements
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We presented a general concept for the implemeritation of adaptive multigrid
methods for finite elements. We eonsidered conforrning PI and P2 elements, linear
nonconforming elements and mixed RTo, RTI and BDM elements. The adaptive
solution process and various aspects oE the parallelization were discussed in detail.
Examples for the diffusion problem and in linear elasticity on locally refined grids
of mixed type consisting of triangles and quadrilaterals in two dimensions and
tetrahedrons, pyramids, prisms and hexahedrons were presented. .Finally, we
demonstrated the application of the parallel multigrid method on a problem in
elastoplasticity.

B. Wohlmuth, Augsburg, Germany
Aposteriori error estimators for Mortar finite element methods

In this talk, we are concerned with Mortar finite element methods for linear
second order elliptic boundary value problems. We restriet us to the geonletrieal
conforming situation where the intersection between the boundary of the different
nonoverlapping subdomains is either empty, a vortex or a eommon face. In
the first part 9f this talk, we will foeus on the coupling between standard PI
conforming and PI conforming finite elements. Based on apriori estimates for
the error, we will investigate a residual based as weH as a hierarchical error
estimator. At the interfaces we have to take into accou!lt the Lagrange multiplier
which provides an approximation of the normal derivative of the weak solution
and the jump of the finite element solution. In the case of the hierarchical error
estimator we have to use an adequate saturation assumption to obtain reliable and
effieient error estimators. In principle, there are two different possibilities for the
construction. The first one is based on the solution of Neumann boundary value
problems on the subdomains and the seeond one on higher order ansatz functions
for the Lagrange multipliers. Finally, we eonsider the coupling between standard
conforming finite elements and mixed finite discretizations. This coupling can be
realized without the use of Lagrange multipliers at the interfaces.

H. Yserentant, Tübingen, Germany
Coarse grid spaces e
It has been shown that, with homogeneous Dirichlet boundary conditions, the
condition number of finite element discretization matrices remains uniformly
bounded independent of the size of the boundary elements, provided that the
size of tbe elements increases with their distance to the boundary. This fact
allows the construction of simple multigrid methods of optimal complexity for
domains of nearly arbitrary shape with Lipschitz-continuous boundary.

Berichterstatter: Peter Leinen, Tübingen, Germany
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