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Recently it has turned out that microlocal techniques can be applied very fruitful
to quantum field theory on curved spacetime. However microlocal analysis is still quite
unknown to physicists while mathematicians are in general not aware of the new field of
applications in physics. Therefore the idea of this workshop, which was organized by Klaus
Fredenhagen (Hamburg), Bert-Wolfgang Schulze (Potsdam) snd Eberhard Zeidlet (Leipzig)
was to bring physicists woking on quantum field theory and mathematicians working on
microlocal analysis together and to give them the opportunity to leam something of the
research of the other group. Some of the subjects corvere~ in the talks are

• Fundamentals of quantum fi~ld theory,

• Fundamentals of microlocal analysis,

• Applications of microlocal techniques to quantum fie,ld theo~es on curved spacetime,

• Pseudo differential operators on manifolds .with conical singularity,

• Analytic microlocalization.

Quantum field theory - Introductory remark(for mathematicians
Arthur E. Wightman

Quantum electrodynamics of the free electromagnetic field (no charges or currents) is a
useful example on which to display tbe operation of quantization: Maxwell's theory of
the electromagnetic field + quantum mechanies ~ quantum electrodynamics [Jordan and
Pauli, Zeitschr. fr Physik 47, 151-173 (1928)]. The resulting electromagrietic Held observable
is an operator-valued distribution, which transfonns under the unitary representation of
the PoineST group like: U(a, A)FIIt,>.(x)U(a, .,\)-1 = A~A~Fp,,(Ax + a). The representation
U(a, A) expresses some of the basic properties of the theory: the characterization of the
vacuum state U(a, A)wo = '110 and the spectral condition U(a,l) = exp(iP"a,,), sp(P") c
V+ = {p Ip.p ;::: 0, pO ~ O}. A characterization ofthe theory in terms ofvacuum expectation
values of products of fields leads to the conclusion that such vacuum expectation values

,/ .
are boundary values of holomorphic functions. This leads to a formal solution of some
Lagrangian theoriJ by quadratures (constructive quantum field theory). When all this is
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applied to gauge fields serious difliculties arise, even for tbe free field case. They can he got
around by enlarging the state space and introducing an indefinite metric (Gupta-Bleuler
formalism). The geometry of polarization vectors can he used to motivate this procedure.

An introduction to microlocal analysis and wave front sets
L. Rodino

We present a survey on wave front sets and applications. Attention is fixed, for sake of
simplicity, on definition ofHrmander, 1971, in tbe COO-Schwartz distributions frame, though
other equivalent definitions and variants appear to have some relevance.

The application to the problem of the product of two distributions is discussed first, _
and related elementary examples are presented. Concerning the general theory of tbe linear
partial differential operators with smooth coefficients, the following two basic applications
are reviewed:

Tbe theorem of micro-ellipticity, asserting that solutions are micro-regular at a certain
point, if the datum is micro-regular and the equation is micro-elliptic at the same point.

The theorem of propagation of singularities, showing that propagation of the wave front
set for an operator of real principal type takes place along bicbaracteristic strips.

Quantum fields in curved space-time
Bernard S. Kay

This talk was intended to introduce quantum field theory in curved spacetime to math­
ematicians familiar with PDEs (and microlocal analysis) hut not necessarily with quan­
tum field theory. It focussed on a linear model: the covariant Klein-Gordon equation,
(09 + m 2 )<p = 0 on a globally hyperbolic space-time (M, g). The main moral of the talk
was that any problem c~ncerning tbe corresponding quantum th~ry may be reduced to a
question about the set of all distributions W2 on Mx M satisfying for all Ft , F2 E C{f(M)
the conditions (E =E+.,- E- denotes the advanced minus retarded Greens functiön):

1. W2(Ft ® F2 ) =W2(F2 ® Ft ) (symmetry)

2. (W2(Og +m2)F1 ® F2 ) = W2 (F1 ® (Og + m 2 )F2 ) = 0 (i.e. G is abisolution of the
Klein-Gordon equation) •

3. W2 (F1 ® F1)W2 (F2 ® F2 ) ~ IE(F1 ® F2 )12 (positivity)

4. A suitable generalization to curved space-time of the weIl known universal short­
distance behaviour of th~ (unsmeared) symmetrized two-point function of physically
interesting states in Minkowski space.

Item 4 used to be dealt with by the "Hadamard condition" but an alternative (tbe "micro­
local spectrum condition") which promises many advantages has recently been proposed
by Marek Radzikowski.
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The physieal signifieanee of this set of W~s is that they represent the symmetrized
two-point distributions of the set of physically interesting quantumstates on the *-algebra
of smeared quantum fields satisfying the eo~utation relations

(1)

together with linearity and the (weak) Klein-Gordon equation.
An analogy with the harmonie oscillator (1+0 dimensional quantum field theory!) was

used to explain how curved backgrounds lead to ereation of particle pa~J to explain
the arigin of eq. (1). and last but not least to explain why the coneepts "vacuum" and
"particles" are inappropriate in general: All states (Le. all distributionsG) are on an equal
footing and one must use the algebraic approach to QFT.

Meditation on spacetime singularities
A. Rendall

The intention of this talk was to present various physical and mathematical aspects of
the notion of aspacetime singularity. Physically this can be thought of as a ·region where
extreme conditions cast doubt on the applieability of known physical laws.- The relevance
of quantum gravity and quantum field theory on fixed background to this situation was
discussed, hut the main eniphasis was on the classical Einstein equations. It was pointed
out how the mathematical problem of the global properties of solutions of the Einstein
equations ean be situated within the more general context of nonlinear hyperbolic systems.
The standard mathematical definition of aspacetime singularity used in the singularity
theorems of Penrose and Hawking, is in terms of geodesie completeness. These theorems
do not imply that curvature becomes Iarge, as illustrated by the Misner spacetime. The
question of the stability of geometries of this kind is· related to the study of classical or
quantum fields on such a geometry which can be attacked by using microiocal analysis.
The question of tbe nature of spacetime singularities is largely open but those' results which ..~
have been obtained, and conjectures whieh have been made, where summari~ed. 1"";

Fourier integral operators and Wightman functionals
Marek Radzikowski

We view the Wightman two-point distribution W2 of a quasifree scalar Klein-Gordon field,
satisfying the global Hadamard condition, on a globally hyperbolic curved spacetime as a
Fourier integral operator, by identifying it as the difference of two Duistermaat-Hrmander
distinguished parametrices. Physical interpretations of the wave front set of W2 , which is
restricted to positive spectrum and the propagation of singularities theorem as applied to
W2 are discussed.
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Construction of Hadamard states
Wollgang Junker

Tbe Hadamard states are the pbysical states of the linear Klein-Gordon quantum field
~ on a globally hyperbolic spacetime manifold (M, g). In this talk tbeir existence was
sbown and it was discussed, how they can be constructed by microlocal techniques. In
particular the two-point distribution W2(!b 12) = (1/J, ~(!1)~(/2)1/J) E r>'(M x M) of a
pure Hadamard state can be characterized by two pseudodifferential operators R and I
(such that R is symmetrie, I elliptie, selfadjoint, positive, invertible) on Li(E, d3u) with
respect to a Cauchy surface E in the following form:

wbere nQ is tbe future pointing nonnal vector field on E and E. := E+ - E- is tbe causa!
propagator). It was shown tbat R and I .can be constructed by a factorization of the
Klein-Gordon operator into first order factors. with the help of asymptotic expansion.

Equations on singular spaces and pseudo-düferential calculus with
operator-valued symbols

B.-W. Schulze

The analysis of partial differential equations on manifolds with singularities gives rise to
·new classes of pseudo..differential operators, expressed in terms of hierarchies of operator-

. -valued symbols and associated operator levels. The singularities may be deflned by degen­
erate Riemannian metries which corr~spond to (warped) cones, wedges corners or higher
polybedral singularities, cusps, non-compact exits to infinity, and many types of combi­
nations öf sp.ch configurations. Tbe associated operators (in particular Laplace-Beltrami
operators) are degenerate in a typical way, arid· there are cone (Fuchs-), edge-, corner-,
cusp-degenerate operators. The program to construct parametrices in tbe elliptic case re­
quires the interior elliptic symbols together with conormal symbols, edge symbols, corner
symbols etc.The latter ones are operator-valued, and their ellipticity means bijectivity
for every point in the parameter space. Parametrices are then obtained by inverting' sym­
bols and constructing corresponding operators. This yields, in particular, elliptic regularity
with asymptotics in weighted Sobolev spaces and, globally, the Fredholm property. Also
parabolicity can be treated in tbe context of Volterra operators. Many problems are sill
an enormous challenge, in particular, conceming hyperbolic equations on singular spaces,
though there exist interesting special results.
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Interacting quantum field theory on curved spacetime
Klaus Fredenhagen

Wightman fields are operator valued distributions t/J(f) : D --+ D wbere f denotes a test
function and D a dense domain in some Hilberspac~. They are assumed to satisfy certain
Ioeal and global conditions. If Minkowski space is replaced by a globally byper~olie space­
time, the loeal properties (field equations, commutation relations) can easily be generalized,
but the global properties which typieally use the translation symmetry of Minkowski space
have no obvious counter part. So neither the spectrum condition nor the coneept of a vac­
uum or of particles are declared. But these properties describe astability property of the
quantum system whieh should be preserved in a eurved spacetime.

For free quantum fields Radzikowski found an appropriate Ioeal version of the spectrum
condition in terms of the wave front set of the Wightman funetions Wn(xt, ... , x:n) =
(t/J, 4>(Xl) ... 4>(xn )t/J) , 1/1 E D and proved that this condition is equivalent to tbe so
called Hadamard eondition. Using this property Wiek polynomials of the fr~~~...field could
be eonstructed .and the wave front set of their Wightman functions was.' determined.
This led to a conjecture on tbe wave front set of Wigbtman functions o{- interacting
fields. In order to test this conjecture interaeting quantum fields where construeted in
the sense of formal power series (see the eontribution of Romeo Brunettir As an in­
termediate step an ansatz for timeordered produets of Wiek polynomials was made:
TA1(x) ... An(xnl = E t,(Xb"" xn)A~I(Xl)'" A~(xn) with Wiek polynomials Ai, A~i and
numerieal distributions t,. Provided the wave front sets of t, are in a certain set r~, the
product above defines an 'operator valued distribution. An inductive eonstruction of tbe t,
with the required properties was deseribed in the talk of R. BrunettL

Renormalization in cUJ;"ved space-time
Romeo Brunetti

This talk was a continuation of the talk given by K. Fredenhagen. The indueti~eproeedure
with which it is possible to define the perturbation theory for scalar fields with polynomial
interaction on globally hyperbolic manifolds is sketched. The main point was to eonstruet
induetively the time ordered distributions t, mentioned in the talk of Fredenhagen. Tbey
where first eonstructed on the manifold M, \ ß" where ß., is the fuJl diagonal, and then
it was shown that the problem of extending them to the full manifold M' is equivalent to
renonnalising the theory. The tools for this task are tbe singular degree of t, at ß, (which is
eonnected to the superficial degree of divergence for Feynman diagrams) and its mierolocal
extension. The latter is crueial for proving that tensor produets of distributions have· of
distributions have singular degree that is the suro of the tenns of the product.·

Finally it was shown that the proeedure of extending t, to the full manifold M' is
eonsistent with the basic requirements and that moreover, one obtains tbe Weinbergs power
eounting theorem classifying theories as renormalizable or not as mueh as in the Minkowski
case.
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Maslov's canonical operator and Fourier integral operators
Boris Sternin, Victor Shatalov

The aim of this talk was the presentation of the theory of Fourier integral operators. At
present there are several versions of constructing this theory both from the operational
viewpoint and from the point of view of applications (smoothness or expansions in a small
parameter) .

For the presentation the construction of Fourier integral operators with the help of
the semi-classical version of Maslov's canonical operator was chosen. The presentation was
inductive and uses the example of the Cauchy problem for Schrrlinger operators. Starting
with rapidly oscillating initial data interpreted as an ini~ial Lagrangian manifold it was
shown that with the help of the phase flow of this manifold and of the corresponding
transport equation one can find the semi-classical asymptotics of tbe Cauchy problem "in
the large". The solution of the Cauchy problem with arbitrary initial data can be reduced
to this case. Its solution has tbe form u(x, t) = JK(t, x, y}uo{y)dy where K{t, x, y) is an
application of Maslov's canonical operator to a special funetion.

The right-hand side ofthe obtained expression is exactly the (family of) Fourier integral
operators applied to the function uo{x). So Fourier integral operators are defined as integral
operators / ...-+ JK(x, y)f(y)dy with "canonically represented" kernel K{x, y) (Le. K is a
function in the image of the canonical operator).

Quantum field theory on de Sitter spacetime
Jacques Bros

De Sitter spacetime, whieh was one of the earHest known solutions of Einstein 's equation
(with cosmological constant R) may be represented as the one sheeted (d-dimensional)
hyperboloid Xd (x~_·· ·-x3 = -R2) embedded in d+l-dimensional Minkowski space Rd+l.
This spacetime manifold is globally hyperbolic and it presents so elose similarities with the
Hat Minkowski spacetime (existence of global symmetry group SO(I, d), existence of a
complexified manifold X~c} equipped with tuboid domains and a "euelidean submanifold"
Sd = (iR X Rd-l ) nXJc}) that a general Wightman-type approach for quantum field theory
on this universe is made possible. One of the major problems of quantum field theory on
curved spacetime, namely "giving a substitute to the spectral eondition" is solved here
by prescribing global analyticity domains for the n-point funetions of the theory, which _
closely reproduce those implied by the spectral condition in the Minkowskian case. The •
presentation is of the same nature as those which have been formulated in terms of wave
front sets by previous lectures, but in this special ease it ean be made "global" instead
of "microlocal". The method allows one to give a detailed treatment of (generalized) free
fields on this space and a praof of a Kllen-Lehmann type representation for two-point
functions of a general class ~f interacting fields [J. Bros, y. Mosehella, Rev. Math. Phys 8 J....:..
(1996) 327-391]. A few steps in the general study of interacting fields have also been taken,
[J. Bros, H. Epstein, U, Moscbella, in preparation] they include tbe thermal interpretation
of these theories, the Reeh-Schlieder property and preliminary results of aperturbation
theory.
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Analytic wave front of N-particle scattering functions in Minkowskian
. quantum field theory

Daniellagolnitzer

Several talks in this meeting have presented a wave front condition in curved spacetime
that may replace the usual spectrum condition in Minkowskian spacetime. Here we present
a different domain in which wave fronts have played a crucial role already in Minkowskian
spacetime.

In the latter, the analytic wave front, ratber than tbe Coo wave front, is best adopted
and plays a crucial role in the study of causality and/or analyticity properties of N-particle
scattering functions. In tbe talk the relevant matbematical definition was recalled and a
general result, derived from locality and the spect~al conditioD, on tbe analytic wave front
of N-particle chronological functions and scattering functions was presented. 1t corresponds
to tbe idea that energy-rnomentum propagates from initial to final p~ints only in future
cones, modulo exponential fall-off, in an asymptotic (elassical) limit. "_

More refined results, corresponding to the idea that energy-momentum prop~gatesmore
precisely via real stable intermediate partieles, are also mentioned. Partial feSUltS of tbis
type have been obtained in axiomatie field theory from the further axiom of "asymptotic
eompleteness", and furtber ones have been achieved in constructive field theory.

The situation in theories with charged massive partieles is outlined. A Buchholz­
Fredenhagen analysis indieates that fields creating charged physical states are no langer
neeessarily loeal (even thougb basic ohservables are) but "strings" may have to be attached
to each point. This considerably weakens results that may be derived for chronological
functions hut results on scattering functions (whieh do not depend on ·ehoice -of "strings" )
appear to be weakened in a more limited way.

The Dirac pseudodifferential analysis
Andr Unterherger

Solving tbe free Dirac equation with initial data on some spacelike hyperplane JR3 permits
to identify et-valued funetions on ]R3 with certain functions on the whole spacetime. One
then benefits from the symmetries arising from the Poincar group representation, from
which it is possible to derive the definition of a new symbolic calculus of operators on
L2(]R3, et), covariant nnder the afore-mentioned Poincar symmetries together with the
so-called diserete symmetries C,P and T as weIl.

This is part of a long-term program tbe aim of which is to associate symbolie calculi
of operators witb species of elementary partieles characterized by free wave equations (the
free Schrdinger equation would yield the Weyl ealculus as a result).

The Klein-Gordon analysis has been fully developed as a pseudo-differential analysis,
just as good as the Weyl analysis: it has been applied to the study of same generalizations of
the hypergeometric equation and of a defonnation of spherical-function theory on rank-one
symmetrie spaces.
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Noncommutative residues for manifolds with conical singularities
E. Shrohe

In 1984, M. Wodzicki showed that on the quotient algebra Wcl/W-oo of all classical pseu­
dodifferential operators modula tbe ideal of smoothing elements there is a unique trace
which he called the noncommutative residue.

Nowadays, the noncommutative residue plays an important role botb in mathemat­
ics and mathematical physics. There are relations to Connes' noncommutative geo~etry,

spectral theory, heat kernel asymptoties, KdV-equations, central extensions in QFT, and
to the theory of gravitation. _

Here we considered manifolds with conical singularities and the associated "cone algebra .,
with asymptotics" introduced by Schulze. It turns out that for each conical point there
is a trace on the cone algebra. Each of them vanishes on operators supported on the
interior and is therefore different from Wodzicki's noncommutative residue. On tbe ideal of
opera.tors with vanishing conormal symbol however, we find another trace which coincides
with Wodzicki's on operators in the interior. Moreover it can be shown that all these traces
are essentially unique on a slightly extended version of the cone algebra.

Analytic microlocalization and Fourier transforms
Otto Liess

Tbe talk .was meant to give an 'elementary discussion of a number of results in analytic
microlocalization. Special emphasis was put on the simultaneous use of the geometriealt
respectively analytical point of view. New results on the use of a Iocal form of the Fouder
transform to hyperfunctions which will be sketched in tbe following was also reviewed.

Let us start with a function f : C' ~ C so that f exp(-6) Re (I + (I Im (I) E L2(CJ) for
any 6 > o. If there is aconvex cone GeRn so that supp f C {(I Re ( E G} than we can
define :F-1f as the hyperfunctional boundary value in B(lxl < f) of the function h(z) =
Jexp(i(z, () )f«)d>..«) (dA denotes here tbe Lebesgue rneasure on (,'"). The function h(z)
is of course analytic for {z = x + iy Ilxl < c, y EGO}. If tbe above support condition is not
satisfied, we decompose f into a surn f =10 + E~~l li' wbere supp 10 C {( 1I Re (I ~ M}
with M > 0 and supp f, C {(I Re ( E Gi} for some convex open cones Gi with u:~l Gi =
Rn. We then define u = F-1/ = E?;;I F-I/i and call / a Fourier transform of u. Any e
U E B(lxl < f) is of the form u = :F-1

/ far some suitable /, hut f is not unique.
One can microlocalize this and can show that if (0, {'l) f/. W FAU then 'U can be repre­

sented near 0 in the form u =:F-1f where f satisfies in addition to tbe above condition also
tbe condition f exp(-6) Re(I+ cl Im()) E L2(X) where X ={( E ca I Re( E G} for some
suitable cone Gwhich contains f!J. Applications to the theory of analytic pseudodifferential
ope~ators are given. 4
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Geometrical aspects of gauge fixing
R. Stora

The perturbative regime of Quantum Electrodynamics and its non abelian analogs (Yang­
Mills and generalization) involves in its very definition some arbitrariness referred to as
gauge fixing. One of the basic problems is proving that the physics. produced by such
models does not depend on this arbitrariness which only affects intermediate calculations.
Tbe geometrical picture associated with gauge fixing can be summarized as expressing an
integral over some Q-orbit space P/g (9 denotes the gauge group) as integral over P. Tbe
"physics" lives on P/ Q and, when expressed in P is characterized in terms of 8 cohomology
related to the cohomology of 9 with compact supports. This was an observation made some
twenty years ago, and is now a geometrical fact. Of course, in the field theory setting all
tbe corresponding arguments are completely formal and their eorrectness has to be checked
with due eare.

Local aspects of Tomita-Takesaki theory in quantum field th~~ry
H.-J. BorcherS

This talk has started witb a review of tbe Reeh-Schlieder property of quantum'field theory
and with a review of Tomita-Takesaki theory. Both together imply for each open bounded
region of spacetime the existence of a certain unitary gfoup 6,it, the modular group, which
maps the observables located in this region to itself. The algebraic invariant of this group,
the Connes spectrum, and its connection with tbe type of the loeal von Neumann algebra
was dicussed. In addition the ease of two regions 0 1 C O2 'was treated and methods for
the determination of the algebraic invariants was shown. The remainder of the lecture was
dedicated to examples and applications to quantum field tbeory.

Superselection sectors in curved spacetim.e.
J. E. Roberts .~.

_..s -

The essential part of the theory of superselection sectors involves neither global symme­
tries, such as translations, nor the concept of vaeuum state. Instead only three properties of
the vaeuum representation are involved: irreducibility, the Borchers property and duality.
Thus there is no obvious obstruction to generalizing from Minkowski space to a globally
hyperbolic spacetime. Furthermore tbe basic question posed: analyze all representations of
tbe observables net equivalent to tbe vacuum representation in restrictions to tbe spacelike
complements of double cones, involves just tbe causal structure of our spacetime. R. Verch
has sbown that pure quasifree Hadamard states of Klein-Gordon fields provide representa­
tions with the properties needed to replace the vacuum representation.

If the globally hyperbolic spacetime has a non-compact Cauchy surface the analysis go
tbrough as in Minkowski space yielding tbe usual classification of statistics and tbe exis­
tence of a compact gauge group. Tbe absence of braid statistics (for spacetime dimensions
> 2) hinges on the fact that tbe set of pairs of spacelike separated points is a patbwise
eonnected open set.
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In the ease of a eompact Cauchy surface the an8Jysis is incomplete. Permutation statis­
tics can be established. However the construction of a left inverse has to be modified since
charge ean no longer be transferred to spaeelike infinity. Instead it is transferred to a
point. Similar obstacles have been met and overeome in treating quantum field theory on
the eirele.

Feynman-Kac and pseudodifferential operators
N. Jacob

Tbe Feynman-Kac formula holels for a rouch larger elass of pseudo differential operators,
but these operators mnst neeessarily be generators of a Markov process. In case of a Feiler
process the symbols p(x,~) of the generators -p(x, D) roust have the property that ~ ~

p(x, {) is eontinuous and negative definite. These symbols da in general not belang to same
elassical symbol elasses. However it is possible to handle them in such a way that one can
prove that (sometimes) the operator -p(x, D} extends to a generator of a FeIler semigroup,
hence a FeIler process, see N ~ Jaeob, Pseudo differential operators and Markov processes,
Akademie Verlag (1996) and the references therein. Onee the FeIler process is constructed,
it is possible to write down a Feynman-Kac formula and to apply results of M. Demuth
and J. van Casteren in order to study spectral properties of the operator p(x, D}.

Discussion on some lessons of quantum field theory
RudolfHaag

Remarlq) on the question: what is a physical system, what is an event in the light of
EPR-type experiments arid interference experiments.

On wave front sets and scaling limits in quantum field theory
Rainer Verch

In many talks during the conference it has been emphasized that the notion of wavefront
sets is a very useful tool in quantum field theory on curved spaeetime which allows to impose
stability eonditions and thereby seleet the physical states. The previous works in this area
have been focussing on the formulation of quantum field theory in eurved spaee-time in
terms of Wightman distributions. This contribution is a (tentative) proposal for an analog
of the eoncept of wavefront set in the operator-algebraic setting of quantum field theory. _
This proposal has as its starting point that the wavefront set of a distribution u E t>'(JRß} •
may be represented' in a way which stresses the harmonic analysis aspect of the translation
group on R"; namely, we claim that (y, k) E Rn X (r \ {O}) is not contained in WF(u) iff
there are h E 7>(RJ) with h(O) = 1, and an open neighbourhood V of k, so that

f· e-U-1k',zh(x)(u, Tz (f).))dx =O(AN ) as A -+ 0
JRn

uniformly in ~ E V; for a11 N E N and all families (/).)>..>0 in

Fy(O) := {(!>..}>..>o I I>.. E V(llfI),supp(!>..) C Y + AO, sup Allf>.. 11 Hl < oe}.
>..
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Here, Tz (f) (11) = f (V - x) and 0 is any neighbourhood of 0 Er. The class Fy(0)
of testing families has a counterpart in the scaling-algebra approach to the scaling­
limit/renormalization group analysis of the short distance behaviour of algebraic quantum
field theories [cf. D. Buchholz, R. Verch, Rev. Math. Phys. 7 (1995)] as an algebra of fam­
Hies, parametrized by ~ E ]R+, of operators in the observables algebra. Motivated by the
stated result, we suggest a notion of wavefront set of astate on a quantum field theory in
the operator algebraic formulation.

Non-commutative residue, current algebra, and renormalization
J. Mickelsson

This talk discusses the renormalization problems of fermion fields coupled to extemal
Yang-Mills potentials from the point of view of representations of infinite-dimensional Lie
algebras. The relevant Lie algebra .(which includes renormalized currents) is an .algebra
of pseudodifferential operators (or. even Fourier integral operators) on a manif<?J.fü· Not a11
pseudodifferential operators are allowed: the restrietion comes from the requir~!nent that
the operators should be canonica11y quantizabie in the fermionic Fock space. The ,canonieal
quantization proeess defines a eentral extension of the original Lie algebra. The central term
is most conveniently written using the Wodzicki-Gui11emin residue; it is a twisted version
of the Radul cocyele.

The phase of the fermionie quantum scattering matrix is determined as a parallel trans­
port along the path of time-evolution operators [see J. Mickelsson an~ E. Laogmann, J.
Math. Phys (1996)]. In reeent work briefly explained in this talk, it is shown that for Dirae

.fermions the phase can be defined in a gauge independent manner using a suitable repre­
sentative for tbe connection in tbe cohomology class of quantum curvature determined by
the can9nical process. -

Wave equations in domains with conical points
logo Witt

The talk leads to a. proof of a local-in-time existence result for quasi-linear hyper­
bolic evolution equations of second order in domains with conical points. In the first part,
the existence of solutions to the corresponding linear equations is diseussed including the
asymptotics of solutions near conical points. Using this information, the quasi-linear equa­
tions are then solved by the standard iteration procedure.

The exposition is based on Kato's semigroup-theoretic approach for solving abstract
linear hyperbolic equations and Schulze's theory of pseudo-differential operators on mani­
folds with conical singularies. The former method provides tbe general framework, whereas
tbe latter is the basic tool in treating the specific difficulties in the non-smooth situation.
Significantly, Schulze's theory admits a parameter-dependent version, which allows the
description of the branching behaviour in time of discrete asymptotics of solutions near
conical points. The calc~lus is presented in a form in which the operators are permitted to
have symbols with limited smoothness, as arises in non-linear problems.
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On the use of modular theory in quantum field theory
H.-W. Wiesbrock

In this talk an elementary introduction to some algebraic structures and constructions
arising naturally in quantum field theory are given. They were exemplified in the free case.

The weIl posedness of the Cauchy problem on a globally hyperbolic spacetime gives
us a symplectic structure on tbe vectorspace of initial data. To it in a standard way we
can associate a C*-algebra, the CeR-algebra. ODe migbt think of the elements as bounded
fuctions of smeared free quantum fields. After specifying a distinguished physical vacua
state on that algebra, (for example a quasifree Hadamard state ), we can pass via tbe GNS­
construction to a Hilbert space representation. Furthermore this construction naturally _
enables us to apply tbe modular theory in the sense of Tomita-Takesaki. In general this •
is a rather abstract structure but in quantum field theory one can find a nice geometrical
interpretation of it due to Bisognano and Wichman. Namely in tbe case of observable
algebras on the Minkowski space a8sociated with wedge regions tbe modular group w.r.t.
tbe vacuum gives the representation of a Lorentzboost. These results have a converse in
tbe sense that if they hold the theory have to fulfill the spectrum condition. Even more,
using modular theory one can characterize for a. large class of quantum field theories on
Minkowski space tbe models by distinguishing a finite set of algebras lying in a specified
position relative to their modular theory. ( This was successfully carried out in d< 4 and
for d=4 it is under work.)

But also algebras associated to double cones allow a modular theory. I reviewed kIiown
results and end the talk with a conjecture conceming the geometrical content of these
modular objects. Positive answers might open a new way to characterize the physical
vacua states on quantum field theories on curved spacetimes by purely algebraic methods.

Heat kernel in quantum field theory
I. Avramidi

The heat kernel for an elliptic differential operator acting on sectious of a vector bundle
aver a Riemannian manifold, plays a very important role in quantum field theory. General
eovariant systematic methods are developed for calculating the heat kernel diagonal for
operators of Laplace type by introducing some defonnations of tbe background fields (in- _
cluding the metric of the spacetime manifold) and studying various asymptotic expansions •
associated with these defonnations. In this way it turns out to be possible to get much more
infonnation about the heat kernel, also in the case of general background. For example,
one can determine explicitly the terms of some specific class (say with higbest covariant
derivatives, or without any covariant derivative, or all tbe terms baving not more than two
covariant derivatives etc.) in the coefficients of the usual short-time asymptotic expansion
of the heat kerneI, so ealled Hadamard-Minackshisundaram-Oe Witt-Seeley coefficients ak,
which are known in general only for k =1,2,3,4. In particular, if one restriets oneself to a
finite number of low-order covariant derivatives of the background fields, then there exist
a set of covariant differential operators that together with the background fields and their
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low..order derivatives generate a finite dimensional Lie algebra. This simplifies considerably
tbe calculations and enables one to obtain closed manifestly covariant formulas for tbe beat
kernel diagonal.

Algebraic constructioD of Wightman type fields
J. Yngvason

Tbe talk was devoted to tbe question of existence and abundance of Wightman fields in
spacetimes of arbitrary dimensions. Quantum fields may be regarded as representations
of theBorchers-Uhlmann tensor algebra buHt over aspace of test functions on spacetime.
These representations correspond, in turn, via GNS construction to states on the algebra
that are invariant under spacetime automorphisms and vanish on twa prescribed ideals,
the two-sided causality ideal and a left ideal that accounts for tbe spectrum condition
for energy and momentum. General strategies for constructing functionals. 1.s~~tisfying

these conditions where presented. In particular, a method was discussed whicf(~is based
on defining a C*-norm on the Borchers-Uhlmann algebra modulo the causality".ideal. A
criterion was presented which guarantees tbe existence of Wightman fields th~i satisfy
Base commutation relations but bave bounded field operators, in contrast to all known
examples in dimension ~ 3. Tbis criterion has been partially verified in all dim'ensions. In
space-times with dimension 2 explicit examples have been given by D. Buchholz and K.
H. Rehren. H the criterion can be generally verified this would lead to new examples of
Wightman fields in dimension ~ 4, a problem that have been open since more than 30 years.

Author of the report: Michael Keyl
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