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The conference was organized by J. Mawhin (Louvain-Ia-Neuve), K. Schmitt
(Salt Lake City), and H.O. Walther (Gießen). As a main theme the organi­
zers had chosen

Ordinary differential equations and reduction of high-dimensional
systems.

Forty-three scientists from thirteen countries (10 European, 3 American)
took part. Twenty-eight lectures were presented. Participants organized
three additional informal seminars. An evening lecture was devoted to the
work of the late M.A. Krasnoselskii who had died several weeks before the
conference.
Directly concerned with the main theme were twelve lectures. A singular
perturbation approach provided new insight into the dynamics of systems of
ODE's describing the fhing patterns of coupled nerve cells, with an emphasis
on mechan iSIl1S for synchronization and desynchronization patterns. For a
basic delay differential equation (ODE), also related to neural networks, an
attracting invariant set was shown to be a three-dimensional stratification
of invariant smooth submanifolds in the infinite-dime'ional ambient pha­
se space; the ODE-dynamics on this set were obta.ifled in detail. Another
singular perturbation type approach, now for DDE's with state-dependent
delay, led to the study of limit prt;Jfiles for possible shapes of periodic soluti­
ons. These profiles are invariant under difference equations. Their existence,
uniqueness and geometry are related to solutions of fixed point problems with
fittle compactness, which also occur in statistical mechanics and in applied
areas such as machine scheduling. - The largest subset of lectures focussed
on the reduction of the dynamics generated by Partial Differential Equa­
tions (PDE's). For a dass of parabolic equations over a one-dimensional
domain, with a suitable integer-valued Liapunov-functional, a smooth finite­
dilnensional invariant manifold containing the global attractor was obtained.
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For parabolic equations on spatially large domains, modulation equations (Ii­
ke the Ginzburg-Landau equation) were discussed, and the invariant inertial
maniJolds of these simpler equations were compared to those of the original
system. The problem of transmission of encoded information through long
optical fibres motivated the reduction of a PDE to an ODE on an invari­
ant manifold composed of travelling wave solutions of the pulse packet type;
their stability and dynamics were analyzed. A combination of loeal invari­
ant manifold theory with singular perturbation helped to understand better
the geometry in phase space which underlies observed transient behaviour in
the Cahn-Hilliard equations for rapid cooling in composite materials. This
tbeory was supplemented by an interesting estimate involving eigenfunctions
of the Laplacian. Reduction by symmetry and normal forms of ODE's we­
re used to analyze the scenarios for the motion of the tip of a meandering
spiral, as it is observed in various chemical reactions. Symmetries and re­
duction to center manifolds led to results on the persistence of corn plicated
stable heteroclinic cycles under perturbations, for a PDE modelling a fluid
in a rotating sphere. These results may help to understand pole reversal or
the earth 's magnetic field. ODE's permitted to find all periodic solutions
of special reaction-diffusion-systems of the Ginzburg-Landau type, under
Dirichlet boundary conditions. The motion towards the global attractor of
this PDE and on it ean be described by means of a new invariant, the t01·­

sion number. Stationary solutions and limit sets for degenerate parabolic
equations, which are not aecessible by established techniques, were analyzed
with the help of associated ODE's. In partieular it was shown that bounded
solutions of porous media type equations setUe down at single stationary
solutions. A "variety of new existenee results on positive radial solutions for
elliptic boundary value problems were presented, inc1uding equations with a
p-Laplacian.
A next group of lectures concentrated on reversible and Halniltonian dyna­
mies. New upper bounds for Arnol'd diffusion in one of the basic exalnples
were found. A result on boundedness of all solutions was derived using twist
dynamics elose to infinity. Reversible and symplectic iteration schemes were
proven to provide better numerical results, in partieular on attracting invari­
ant tori of perturbed integrable systems. Bifurcation of subharmonie periodic
orbits was explained in terms of suitable reduced problems.
The third group of lectures dealt with a variety of topies of current interest:
Existence and description of chaotic motion via isolating blocks, degenerate
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bifurcation from homoclinic solutions under DonautoDomous perturbations,
coexistence in periodic environments, the role of invariant Lagrangian mani­
folds in a control problem and the use of two-point boundary problems to find
suboptimal feedback strategies. A fourth group of lectures were devoted to
topics of current interest in neighbouring fields: Variational methods for non­
linear Schr"odinger equations in situations without a Paiais-Smale condition,
results on linear stability for travelling waves by Ineans of the characteristic
Evans function (which is defined in terms of an ODE), parabolic functional
differential equations with deviating spatial argument, results on the fixed
point index for maps with asymptotically homogeneous nonlinearities, and
on the dynamics given by certain orientation preserving homeomorphisms of
the disko
In addition participants organized informal seminars with lectu.res and dis­
cussions on DDE's (global bifurcation of periodic orbits, chaotic ~otion), on
PDE's (variational methods and elliptic regularization, loeation ~of extrema
of solutions, conjugaey of elliptic dynamics with an ODE), and on positive
radial solutions of boundary value problems for ODE's and PDE's. Each of
these seminars attracted a large and engaged audience.
\\lith special gratitude the friendliness, assistance, and extra efforts of the
staff of the institute must be mentioned who helped to make the conference
a success.
The meeting ended on Friday, March 21, at 3:30 p.rn.

Vortragsauszüge

TH. BARTSCH:

On a nonlinear Schrödinger equation with periodic potential

I report on joint work with Yanhong Ding. We consider the nonlinear
Schrödinger equation

(NB) {
-ßn + V(x)n = An + g(x, n) x E lRN

n(x)~O Ixl~oo
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with V, 9 periodic in the x-variables. The nonlinearity 9 is assumed to be
superlinear and subcritical, e.g.: g(x, u) = a(x )!uIP-

2u, 2 < p < ~~2' a > O.
The spectrum of -ß + V is purely continuous and consists of a union of
closed intervals in IR, bounded below. We prove that (NS) has a nontrivial
solution u E H~cCIRN) n LP(JRN), p depending on g, if A E a(-ß + V) i8 a
right endpoint of 0'(-ß+V), i.e., (A, ;\+o) nO"(-~+V) == 0 for SOIne (\' > O.
There are a number of existence results for A < inf 0"( -ß + V) or .A in a gap
of the speetrum (Coti-Zelati & Rabinowitz, Heinz, Klipper & Stuart, Alamo _
& Li, Troestler & Willem, Kryszewski & Szulkin). However, this seems to .~

be the first existence result for ;\ E 0'(-ß + V). In the proof we consider the.
functional 4> : H 1 (JRN) ~ IR associated to (NS). Using a 'strongly indefinite
linking' we obtain a generalized Palais-Smale sequence (un ) of 4> and show
that (u n ) converges weakly in sorne completion of E towards a weak solution
u of (NS). We do not know whether u lies in Hl hut can prove lt E Hl~c n LV
and u(x) -7 0, lxi -+ 00.

M. BÜCER:

Periodic solutions of a reaction-diffusion-system

Given tbe reactiou-diffusions-system

~ (:~:::D = (~ l~) ~r ( ~g:;~ )+f(u(t,x), v(t, x)) for t > 0,0 < x < I,

u(t,O) = u(t, 1) == v(t,O) = v(t, 1) == 0 for all t ~ 0,

with u{O,') = uo, v(O,·) = Vo and positive constants Lu, Lv, we ask whether
the semiflow of solutions [0,00) 3 t ~ (u(t,'),v(t,')) E HJ(O, 1) x HJ(O, 1) _
contains a periodic solution. We examine periodic solutions for the special ..
vector field which is given by j(r,<p) = (r{l - r), 1) in polar coordinates.
For t > 0 the solutions of the reaction-diffusion-system exist in the c1assical
sense. If there are periodic solutioos, we are interested in their properties.
For Lu = Lv we solve the problem by reducing it to the oue-dimensional case.
We give conditions for existence and stability of periodic solutions. 1'he case
Iu i=- Iv is more difficult. We examine whether the results shown in the first
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case can be obtained in this case, too.

J. CAMPOS:

Homeomorphisms of the disk with trivial dynamics and extinction
for competitive systems

In this talk we obtain some type of trivial dynamics for a dass of homeomor­
phisnls f : ID ---+ ID where

ID =: {z E ([; : Izi ~ I}.
.--J..~

111 particular we prove if f is orientation preserving and

Fix{f} C aß)

then the oOlega limit set of every point is always contained in Fix{f}. This
result depends essentially on the topology of the plane and the proof follows
froIll ideas developed by Brown (1995) and from a dassical result developed
by Brouwer on homeomorphisms of the plane without fixed points. We also
give an application to the study of the three dimensional competition system
and give a condition for extinction of some of the species. This proof follows
[ronl a reductioll principle of the dynamics to a two dimensional dis~ and the
applic.ation of the previous result.

M. FE(~KAN:

Bifurcation from degenerate homoclinics in autonomous ordinary
differential equations with periodic perturbations

Bifurcations of hOlnoclinic solutions are investigated for ordinary differenti­
al equations with periodic perturbations possessing adegenerate homoclinic
solution. It is shown that generically the set of bifurcation values is diffeo­
Illorphic to a surface of tbe Morin singularity. Also more degenerate Morin
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singularities are obtained.

E. FEIREISL:

On convergence for certain degenerate equations

We shall study the long-time behaviour of solutions to certain degenerate
partial differential equations of parabolic type. Degenerate means that cer­
tain leading coefficients in the equation vanish at some points either duc
to their dependence on the solution itself or because of some external cons­
traints. Consequently, the standard methods do not apply and a refilled
analysis is needed. As an example, we show that any bounded solutioll of a
porous medium type equation stabilizes for large times to a unique stationary
state. The solutions of the underlying ODE stationary problem are studied
in detail.

B. FIEDLER:

Meandering Spirals

We derive normal forms for the dynamics near relative equilibria of finite­
diluensional Lie groups G. The Lie group need not be compact and the
action need not be differentiable originally. Isotropy may oeeur, due to non­
free action. Based on earlier work by WuHr, and joint work with Saudstede,
Scheel, Wulfr, we have to study skew products

iJ = ga(v)

v = lp(v)

where a(v) E alg(G), ep(v) E lRn
, v in a slice V to the group action, and

ep(O) = O. By transformations 9 -+ 99o(v), we can eliminate non-resonant
terms from a(v); resonance is between spec 1,0'(0) and spec ad(a(O)). For
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example, drift resonanees and homoelinic tip shifts in Takens-Bogdanov bi­
furcations of v turn out to be small beyond any finite order. We also observe
random tip motions, for G == S E(2), if v converges to a nondegenerate (re­
lative) hOlnoclinie orbit.

D. FLOCKERZI:

Nonlinear L2-Gain Analysis

As introduction we review the standard theory of dissipation inequalities for
affine control systems (*)± == a(x). + b(x)u with to be controlled· variable
z == c(x)[a(O) == 0, c(O) == 0]. The problem then is: Find (small)-'1'. > 0 and
k(x) ~ 0 with

foT Ic(xWdt ~ -y2foT lul2dt + K(xol

along solutions of the initial value problem (*), x(D) == Xo (with internal
stabili ty). In the second part we generalize to the loeal state feedback Hoo­
problem where disturbances v(t) are included in the model (*) so that one is
illterested in L2-gain estimates like

for an appropriate feedback u(x). The third and main part presents the ga­
rne theoretic approach to the nonlocal Hoo-problem. We relate_~the Isaacs
problern and the Hamilton-Jacobi-PDE to the existence of certain Lagrangi­
an integral manifolds and indicate how two-point boundary value problems
together with Riecati-type equations can be used in the eomputation of sub­
optimal feedback strategies.
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M. GARCIA-HUIDOBRO:

Positive singular solutions for a class of non-homogeneous p-Laplacian­
like equations

We present same results concerning the behavior of positive radially SYJllnle­

tric solutions to an equation of the form

-div(A(I\7uD\7u = f(u) (1)

near an isolated singularity at the origin. Here, the function ~(8) := sA(.s)
is assumed to be an odd increasing homeomorphism of IR onto IR and f E
C(IR+). We first give an apriori estimate of the order of such singularit.y
without imposing any growth restrietion on 4> or f, and then classify the
behavior of positive radial solutions to (1) under an asyn1ptotic Serrill type
condition, that if3, a condition under which any positive solution to (1) is
either regular or it behaves as a 'fundamental' positive singular solution to

-(rN-1t/>(u'))' = O,r E (O,ro),1'o > O.

We also prove existence of such solutions.

T. KAPITULA:

Locating eigenvalues with the Evans function

The Evans function E()') is an analytic function whose zeros coincide wit.h
the eigenvalues of the operator, L, obtained by linearizing about a travelling
wave. The order of the eigenvalue Ao is equal to the order of the zero of
E(A). If p is the order of the eigenvalue, the term 8fE(Ao) is shown to be
proportional to the L2 inner product of an eigenfunction of L· - Aoand a
generalized eigenfunction of L - Ao. A consequence of this result is the ability
to loeate the small eigenvalues for the pulse solution to the parametrically
foreed NLS equation.
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U. KIRCHGRABER:

On Stoffer's approach to symplectic and reversible integration

Nunlerical ODE-solvers are handy tools to explore the dynamical properties
hidden behind systems of ode's. However, how reliable are the results they
yield? A Runge-Kutta method generates an approximation to tbe time-h­
map of the de under consideration. Do these two discrete dynamical systems
(dds) share the basic geometrie properties? In the talk we present the fol­
lowing resuJt due to D. Stoffer. Given a perturbed integrable system, let
us assume that it admits a weakly attractive invariant torus. Then the
dds shares this property provided it is generated by a so-called symplectic
Runge-Kutta scheme and if the step-size h satisfies the relation .~

(
1 ) l/ß

h::; ln(;)

Here E denotes the perturbation parameter and ß is a suitable positive con­
stant. Of course (*) implies·h -+ 0 as c ~ O. Yet (*) is a 'good result' in the
sense that the bound on his· large compared to c, asymptotically speaking
as E -+ O. In the second part of the talk we present Stoffer's variable step
size mechanism, which, if combined with a reversible Runge-Kutta scheme,
respects the reversible structure of the underlying deo The efficency of this
Inethod is illustrated with the help of highly excentric Kepler orbits.

A. KRASNOSELSKII:

Degenerate equations with asymptotically homogeneous nonlinea­
rities

The talk concerns equations with degenerate principallinear parts and asym­
ptotical1y homogeneous nonlinearities. Asymptotic homogeneity of non­
linear operators allows to reduce the calculation of topologieal characteristics
of such equations in infinite-dimensional Banach spaces to the calculation of
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analogous topologieal eharacteristics in the finite-dimensional spaces. In ap­
plications to eonerete boundary value problems these spaces are often J- or
2-dimensional and this makes it possible to calculate these characteristics
exactly. For two-point BVP new theorems on existence and on asymptotic
bifureation points are presented. The problem of forced periodic osci llations
is considered for higher order ODE with hysteresis nonlinearities.

R. LAUTERBACH:

Heteroclinic sets in adegenerate bifurcation problem

A heterodinic cycle is aseries of equlibria Xi and connecting orbits Yi, i =
'1, ... , n, with X = a(Yd, Xi+l = W(Yi) and everything is taken mod n. If one
(or more) of the connections is replaeed by a higher dinlensional set of connec­
tions then we call the resulting object a generalized heteroclinic cycle or a
heteroclinic set. Heteroclinic cycles are not generic within general dynamics.
However, they can occur generically in systems with symmetry. Heteroclinic
sets may occur in degenerate bifurcation problems with symmetry.
Oue such degeneratic bifurcation problem comes up when one studies thc
existence of flows in the spherical Benard problem which support tnagne­
tic pole reversals a.s they have taken place in the earth magnetic field every
10000-40000 years. The main problem in our mathematical model, which is
based on convectively driven dynamo, is to show the existence and stability
of a certain heteroclinic set.
From these results we infer the persistence of this set in the slowly rotating
case. Applying this to the dynamo problem leads to heteroclinic behaviour
in the motion of the fluid in a rotating sphere. This leads finally to pole
reversals.

10

                                   
                                                                                                       ©



S. MAlER-PAAPE:

Spinodal decomposition for the Cahn-Hilliard equation in higher
space dimensions

Oue of the pattern formation phenomena which are modeled by the Cahn­
Hilliard equation will be addressed, namely the initial stage phase separation
known as spinodal decomposition. It will be shown that in one, two, and
three space dimensions most solutionsof the Cahn-Hilliard equation which
originate near certain spatia.lly homogenous equilibria will develop certain
patterns which are strongly related to a characteristic wave length. These
results agree with numerical and physical experiments. (Joint work with
Thomas Wanner, currently Georgia Tech, Atlanta).

J. MALLET-PARET:

A nonlinear eigenvalue problem arising (rom a state-dependent de­
lay differential equation

We begin with a class of state-dependent delay differential equatio~s of the
form

e:x(t) = f(x(t),x(t - r)), r = r(x(t»,

with a singular perturbation parameter E «: 1, a time delay r = r(x), and a
nonlinearity f which enjoys a monotonicity (negative feedback) con'dition in
the second argument. Our interest is in the limiting shape of slowly oscillating
periodic solutions x(t) a.s c -+ O. Upon defining the limiting profile n c IR?
to be the limit r ~k --+ n, in the Hausdorff topology, of a sequence of graphs
r~k = graph(xe,J c IR? of slowly oscillating periodic solutions X~k(t), we
parameterize the increasing and decreasing portions of n as graphs t = tPn(x).
Here each tPn : [- v, J1. J ---+ IR is a. continuous function, where Jl and - v are
the limiting maximum and minimum of the solution sequence, with n E 72.
Using a singular perturbation analysis, we show that each tP = tPn satisfies a
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functional equation of the form

p + tjJ(x) = max [a(x,~)+ 1/J({)], -D ~ x ~ j1.,
-y(x):$(:$~

where a(x,~) is a known kernei, ")'(x) is a continuous monotone function
with 0 < ,(x) < x for 0 < x < j.L, and ,(0) = 0, and where p is an unknown
'additive eigenvalue' representing the limiting period of tbe solution sequence.
We then show, under various monotonicity conditions on r, that p can be
explicitly given, that a(x, e) = a(e) is independent of x, and that the general
solution of (*) has the form

for a certain 'basis' {-tP(i)}f;l of solutions, where Ci E IR are arbitrary COIl­

stants. Although M = 1 generically (implying uniqueness of the lilniting
profile 0), it is possible that M > 1, yielding nonuniqueness of solutions of
(*). This also shows that n can vary discontinuously with respect t,o other
parameters in the system.

R. MAN ASEVICH:

Some existence results for positive solutions for p-Laplacian type
equations

We consider systems of the form

(P)

u(R) = 0, u'(O) = 0, v( R) = 0, v'(O) = 0,

where ' = 1;. These systems arise when studying radial solutions to some

non linear partial differential equations on a ball in ]RN.
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Under certain conditions for the functions cP, () : IR -t IR and for the powers 6
and p. we show the existence of positive (componen-twise) solutions to (P).
We will discuss generalizations of these results.

A. MIELKE:

Inertial manifolds for modulational problems

We consider parabolic problems on spatially large domains. If the problem
is above but elose to the threshold of instability of the natural spatially ho­
lnogeneous state then the theory of modulation equation allows us formally
tu study the dynamics in the associated modulation equation. We show that
in this situation both systems possess an intertial manifold and that the flow
on them is closely related.
As application we consider the Swift-Hohenberg equation and - hopefully ­
the Navier-Stokes equation.

R.D. NUSSBAUM:

Limiting profiles for the differential-delay equation
€X'(t) = f(x(i), x(t - r)), r = r(x(t))

In joint work with John Mallet-Paret we have proved the existence of slowly
oscillating periodic solutions of the equation

(l)t; EX'(t) = f(x,t),x(t - r)),r = r(x(t)),E > 0,

under natural assumptions on fand r. We suppose that Ek -+ 0+ as k -t 00

and Xt:k is a slowly oscillating periodic solution of (1 )~k' and we consider r ~k ,

the graph in IR? of X~k' By taking a subsequence of (Ek) we can assume that
r ~k -t r in the Hausclorff metric on compact subsets of IR2

• If we define
JL == sup{~I«, T) E r for some T E IR} and -v == inf{{I(~, 'T) E r for some
T E IR}, we have proved in great generality that JL > 0 and v > O. Our
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general program is to describe the set r as precisely as possible, and we have
exactly determined r for large classes of fand r. In studying (1). we are led

to a dass of 'max-type' equations:

(2) x(s) +p:= max{a(s,t) + x(t)IO'(s) ~ t ~ ß(s)},O ~ s ~ JL.

Here JL > °is viewed as given and 0' : [0, J.l1 -+ [0,1-11 and ß : [0, JLl -+ [0, J.l1 are
given continuous functions with O'(s) ~ ß(s) for s E [O,J.lli a(s, t) is a given
continuo

us
, real-valued function defined on {(s, t)IO'(s) ~ t ~ ß(s),O ~ s ~

J.l}. One seeks x E C[O, 1-11 and p E IR such that (2) is satisfied. In the discrete,
finite-dimensional case (p + Xi := maxj(aij + Xj), X := (Xl, X2, ... , Xn) E IR

n

)

there is an extensive literature (for example, in operations research) concer-
ning such maps. If, in our notation, O'(s) ::= °and ß(s) ::= 1-1, R.H. Griffiths
has considered (2) in connection with the Frenkel-Kontorova models of sta­
tistical mechanics. In our case, new problems are introduced by the fact that
usually, when 0' and ß are not constant, the right hand' side of (2) defines a
nonlinear operator which is not compact. Nevertheless, we develop a general
abstract theory sufficient to handle (2). A very special case of our resllits is

the following theorem.
Theorem: Assume that 0' is increasing on [0, JLl and ß is decreasing on [0, J.l];
we allow 0' or ß to be constant on subintervals of [0,1-1]' Assume that for all
s E [0, J.l], limi-oo O'i(s) := 0, where O'i denotes composition of 0' with itself
i times. Assume either (a) 0' is constant on a neighbourhood of °or (b)
there exists So > °with a(so, so) > °and So ~ ß(I-I)' Then eq. (2) has a
solution (x, p) with X E C([O, J.l]) and p ~ a(So, so)· The number p in eq. (2)

is uniquely determined.

R.ORTEGA:

Boundedness of a piecewise linear oscillator and a variant of the

small twist theorem

Consider the differential equation
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where n ~ 1 is an integer, p is 21T-periodic and h : lR ~ m. is a nonline­

ar bounded function. In 1969, Lazer and Leach obtained conditions for the

existence of 21T-periodic solutioDS that sometimes become necessary and suf­

ficient. Namely, if h has limits at infinity, denoted by h(+oc» and h( -00),

and
h(-oo) ~ h(x) 5 h(+oo)Vx E IR,

then there exists a 2rr-periodic solution if and only if

1T1~1 < h(+(0) - h( -00),

where ~ = i; J~ll p(t)e-intdt.

The main questions in this talk are: Do the conditions of Lazer and Leach

contain some information on the dynamies? Are all solutions bO':!J:lded? A

positive answer to these questions is given when h is the piecewise linear

function

h(X)={ fx
-L if

if
if

x ~-1

x 2: 1
lxi ~ 1

and p lS of class e5
• In this case all solutions are bounded and the dynamics

(for solutions of large amplitude) can be described my means of a twist

Inapping.
The proof is based on a variant of Moser 's invariant curve theorem that

applies to certain mappings of the cylinder that have the intersection property

an cl can be descri bed as

{

Bt == 0 + 2rr + t511((J,r) + ...
rl == r+612(O,r)+ ...

(6 smalI)

Among other conditions, it i5 required that the differential system

has a first integral. The invariant curves of the mapping are located in neigh­

bourhoods of the closed orbits of the continuous dynamical system.
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B. SANDSTEDE:

Finite-dimensional reduction of the dynamics of pulse packets

We consider dissipative nonlinear partial differential equations Oll the real
line IR which admit stable equilibria u.. A pulse packet is on initial va­

lue resembling Neopies of u. widely separated in spaee. rfhe issue is then
the temporal behavior of the associated solution of the PDE. We prove the e
existenee of N-dimensional, locally invariant manifold consistiug entirely of
pulse packets. The manifold is exponentially attracting with respect to t.hc
semiflow generated by the PDE. Moreover, it is pararnetrized by the trallsla-
tion of the pulse packet and the N - 1 distances between consecutive copies
of u.. Therefore, as time varies, only the relative position of the different.
copies of u'" ehanges. Finally, we give an explicit description of the ved,or
field governing the flow on the invariant manifold in tenns of the equilibriullJ
u. alone.

R. SHIVAJI:

Semipositone Problems

In this presentation we discuss the critieal developnlents in the theory of
selnipositone problems. A typical example is the study of non-negative so­
lutions to the Dirichlet-problem

-~u >"f(u) in n
u 0 on an

where >.. E (0,00) is a parameter, n i5 a 5mooth bounded region in Rn, ß
is the Laplacian operator and f : IR -+ IR i5 a smooth fUllction such that
j(O) < O. We further suggest important open problems.
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c. SIMO:

The classical Arnold example of diffusion with two equal parame­
ters

We consider the time dependent Hamiltonian with two degrees of freedorn,
which can be written a.s the autonomous Hamiltonian with three degrees of
freedorn given by

1 0

H(I, 4» = "2(1; + Ii) + 13+ c(cos cPl - 1)(1 + J.L(cos 4J2 + cos 4>3)).

This system (in a slightly different, equivalent, form) was introducecl1°:by Ar­
nold to illustrate the transition chain rnechanism. It is a popular example
which displays a (very slow) drift of the actions for any value of €, provided J.l
is smaH enough. This model has two difficulties to be considered as a typical
exanlple of diffusion. On one side, how small J.l must be depends on E. Tbis
is a cO~lsequence of a naive use of Melnikov's formula to measure the splitting
of separatrices. On the other side, it has a strong degeneracy because all the
'normally' hyperbolic tori which appear for J.L = 0 subsist when introducing
the perturbation. This communication deals with the first difficulty. To this
end the two parameters are taken as equal. Jl could also be taken as apower
~f c. From now on, and for scaling purposes, we set Jl = E = .,.,2.
rrhe manifoJd Tw given by /1 = <PI = 0, 12 = W, 13 = 0 is an invariant three
dilnensional whiskered torus for any value of w. Our purpose is to show that,
under a suitable diophantine condition on w, the separatrices of these tori
have a transversal intersection. This is enough to guarantee diffusion in the
presen t case.
First we shall obtain a rigorous upper bound of the splitting of the separa­
trices of the whiskered tori. Then a combination of symbolic and numerical
methods is used to compute the 'real' splitting on a suitable section and
display the main features of the splitting. It is seen experimentally that the
order of magnitude of the 'true' splitting is the same as the one given by
the theoretical result. Then a method is sketched to obtain analytically the
dOOlinant term. The key idea is that, for a given value of .,." one has to da
some steps of a normal form procedure belore applying Melnikov Js methode
The number of steps is constant for Tl on some interval, hut when .,., goes to
zero it increases to infinity. In this way the most relevant resonances for this
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range of values of "7 are put in evidence. The dominant terms in the splitting
are, of course, related to the approximants of w.

A.L. SKUBACHEVSKII:

Elliptic and parabolic functional differential equations and appli­
cations

A field rotation in a two-dimensional feedback loop of a nonlinear opticaJ
system leads to generation of multi-petal waves. A mathematicaJ model
of such a system is described by bifurcation of periodic solutions for the
nonlinear parabolic functional differential equation

(1 ) Ut + U = Dßu + K(l +,cosug)(x E Q,t E lR)

with Neumann boundary condition. Here Q C lR? is a bounded domain with
boundary 8Q E Goo; ß is the Laplace operator; D, " K E lR; D > 0 is the
diffusion coefficient, , > 0 is the visibility of the interference pattern, K =I 0
is the nonlinearity coefficient, U = u(x, t) is the nonlinear phase modulation,
U g = u(g(x), t) , 9 is a nondegenerate transformation, g(x) ~ x. Let tU be a
solution of the equation

(2) W = K(l + ,cosw)

for K = k, and let"
(3) l+K,sinw#O.

We put K = K+ K, and denote by w( K) a solution of equation (2) for suffi­
ciently small 1\" We define the unbounded linear elliptic functional differential
operator L(K) : L2 (Q) ~ L2 (Q) given by

L(K)V = Dßv - v(K + K),Vg sin W(K),

{
2 8v

D(L(K.») = v E W2 (Q): 8v 1aQ = O},

where Wi(Q) is a Sobolev space of functions in L2(Q) having aB generalized
derivatives up to the second order in L 2 ( Q), v is the unit normal vector to
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BQ. The operator L(I\.) has a discrete spectrum consisting of eigenvalues

..\8(1\.) = 0.,(1') + iws(It)(s = 1,2, ... ). Assume that the following conditions

hold:
(4) Ä1(0) = iw is a simple eigenvalue of L(O),

where w> 0;

(5) nwi f/. O'(L(O)) (n = 0,2,3, ... );

(6)
6~ (0) # O.

Denote by Wi,1 (021r) the Sobolev space of functions in L2(fh1r) having all

generalized derivatives with respect to x up to the second order in L 2(n Z1T )

and the first generalized derivative with respect to t in L2(n Z1T ), where rh1f =

Q x (0,27T = 0). Let

21
21 8u

W2,N(S1z1r ) = {u E Wz' (0211"): 8ii 1aQx (O,21r) = O,ult=o = Ult=21r}'

where ii = (v, 0).

Theorem. Let conditions (3) - (6) hold, and let g(Q)::::: Q,g(x) = Kx+b(x E

Q), where K is an orthogonal matrix such that K 2 :/: E, b E IR? Then

there is co > 0 such that there exists an analytical vector-valued function

E ~ (v(c:),W(c),K(C:» frorn (-co,eo) to W~~(n21r) x.lR2 such that

(7) v(O) = 0, w(O) = 1, 1\.(0) = O.

Furthermore, the funetion u(x,t,c:) = w(K:(e» + v(x,r,c) is a 21T(WW(c:)-1­

periodic in t solution of equation (1) with the Neumann boundary condition,

where T = w(€)wt.

R. SRZEDNICKI:

On chaos inside isolating blocks

By chaos for the flow generated by an ordinary differential equation we mean

the existence of a loeal section such that its Poincare map is semiconjugated

to a subshift of finite type and the counterimage of any periodie point of the

subshift contains at least one periodic point of the Poincare map. We descri­

be suitable forms of Conley's isolating blocks which guarantee the existence
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of chaos.

I. TERESCAK:

Inertial manifolds for infinite dimensional dynamical systems with
discrete Lyapunov functionals t

-l

We consider the following parabolic equation e
Ut = U xx + f(x, u, ux ) (1)

on an interval I with Dirichlet, Neumann or periodic boundary conditions.
The nonlinearity F is assumed to be C2 in all variables. Then this equation
generates a Cl semiflow on an appropriate Banach space X ~ C 1(1). lf
the semiflow is point dissipative then it admits aglobaI compact attractor
A. We establish that there is a finite dimensional Cl submanifold M of X
containing the attractor A and being positively invariant under the semiflow.
The construction is based on choosing a dimension n of M and finding an
appropriate Cl submanifold S of X diffeomorphic to the (n - 1)-dimensional
sphere such that flowing of S for all positive times together with the attrac­
tor A form'a desired manifold M. The structure of the semiflow enabling
this construction is given by the fact that the difference of two solutions of
our original equation satisfies a linear parabolic equation of type (1) and by
two properties of this equation. The first property is a compactness of the
solution operator for positive differences of times. The second one is crucial
saying that the numbers of zeros on I of a nonzero solution of such a linear
equation evolves monotonically with time and is finite for all positive tinle
instances. This property actually gives a discrete Lyapunov functional for
the semiflow.
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D. TERMAN:

N etworks of neural oscillators

Inhibition in oseillatory networks of neurons can have apparently parado­
xical effeets, sometimes creating dispersion of phases, sometimes fostering
synchrony in the network. We analyze a pa.ir of biophysically modeled neu­
rons and show how the rates of onset and decay of inhibition interact with
the time scales of the intrinsic oscillators to determine when stable synchrony
is possible. We show that there are two different regimes in parameter space
in which different eombinations of the time constants and other parameters
regulate whether the synehronous state is stable. We also discuss the eon­
struction and stability on non-synchronous solutions, and the imp02~tions
of the analysis for larger networks. The analysis uses geometrie techniques of
singular perturbation theory that allow one to combine estimates from slow
flows and fast jumps.

A. VANDERBAUWHEDE:

Subharmonie branching in reversible and Hamiltonian systems

In reversible or Hamiltonian systems periodic orbits typieally appear in one­
parameter families (parametrized for ~xample by the energy in the Hamilto­
uian case), and branches of subharmonie solutions may bifurcate frorh such
~primary branches' of periodic orbits. The study of this subharmonie bran­
ching reduces, via the Poincare map, to the study of the bifurcation of peri­
odie points from a fixed point in diffeomorphisms which are either reversible
(i.e. conjugate to their inverse via a linear involution) or symplectic. We
present a general reduction method for this kind of bifurcation problem.
Fix some integer q ~ 1; then there is a 1-1 relation between the bifur­
cating q-periodic points of the original diffeomorphism and the bifurcating
q-periodic points of some reduced diffeomorphism which is defined on some
low-dimensional 'reduced phase space' and which has a 7lq-symmetry; this
reduced diffeomorphism inherits the reversibility or the symplectic structure
of the original diffeomorphism; moreover, q-periodic orbits of the reduced
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diffeomorphism must also be 7lq-orbits. We show how this 7lq-symmetry of
the reduced problem explains the elementary subharmonie branching fouod
in reversible and Hamiltonian systems.

Z.-Q. WANG:

Nonautonomous singularly perturbed elliptic BVPs

In this talk, we present some multiplicity results of positive solutions for a
class of nonautonomous semilinear boundary value problems including both
Dirichlet and Neumann boundary value problems. Our results show that
with the spatial dependence the solution structure is affected by the shape of
the graph of the potential function. This is in contrast to the earlier results
for autonomous problems where the shape of the domain plays the dominant
role. The shape of the solutions is also considered and all solutions given are
showed to be single-peaked solutions. More precise qualitative information
is also given.

J. WU:

A 3-dimensional invariant manifold with boundary for a delay dif­
ferential equation: Geometry, topology and dynamics

In this work with T. Krisztin (Szeged) and H.O. Walther (Gießen), we con­
sider the scalar delay differential equation

x(t) = -JLx(t) + j(x(t - 1)),

where jt 2 0 is a constant and f : R -> R is a CI-map satisfying a cer- e
tain positive feedback and dissipativeness condition with j(O) == o. The
spectrum of the generator of the Co-semigroup associated with the lineari-
zed system (at zero) is given by areal ..\0 and a sequence {JLk ± iVk} with
Vk E «2k - 1)1r,2k1T) for k ~ 1. Assuming PI > 0, then there exists a 3­
dimensional invariant manifold W tangent at 0 to the reellified eigenspace of
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the generator associated with {Ao, J.ll ± iVl}' We give a complete description
of the geometry and topology of c/W and of the dynamics of the semifiow
restricted to clW.

F. ZANOLIN:

Periodic solutions ror population models

Consider the nonautonomous differential system of Kolmogorov type:

(1)

where Vi = 1, ... , N, hi : IR X (IR+)N -+ 1R is a continuous function· which is
T -periodie (T > 0) in the t-variable. We propose an existence theorem for
positive T-periodic solutions of (1) (that is, coexistence states), which is ba­
sed on a continuation theorem in [Capietto, Mawhin, Zanolin, Trans. AMS
192]. As an application, we consider a three dimensional Kolmogorov system
generalizing the classical May-Leonard model of cycling competition with
periodic coefficients. A necessary and sufficient condition for the existence
of coexistence states is obtained for some classes of equations. This is a joint
work with Anna Battauz (University of Udine).

Author: B.G. Walther
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