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Schubert Varieties;

Geometry, Algebra and Combinatorics

31.03. bis 05.04.97

The conference was held under tbe leadership of Professors W. Fulton (Cbicago)~

A. Lascoux (Paris) and P. Pragacz (Torun). 41 mathematicians from all around the
world attended tbe meeting. Tbe organizers' goal was to bring togetber mathe­
maticians working with Schubert varieties though representing the different fields
of geometry, algebra and combinatorics. The aim of the meeting was to create
an opportunity for an exchange of ideas among such mathematicians representing
different areas and points of view. One should stress that up to the conference~ the
contacts between different groups of mathematicians working on Schubert varieties
were rather loose; it was only after the conference when the interaction between
these groups started to be stronger. In the organizers~ opinion, the eonference
fulfilled this main goal; it has begun a serions exchange of information between
different people working on Schubert varieties. Visible fruits of some of the discus­
sions during the meeting are some recent papers whose ideas were born during the
conference.

The seventeen talks covered almost all subjects of those chapters of geome­
try, algebra and combinatorics which are related to Schubert varieties. One of
the central subjects of tbe meeting was the Schubert ealculus, different aspects
of which were discussed in the talks by S. Fomin, M. BrioD, M. Haiman, S. Billey,
F. Sottile and W. Graham. New results about singularities of Schubert varieties and
the related Kazdhan-:Lusztig polynomials were presented in the talks by S. Kumar
and F. Brenti. The rich algebro-combinatorial theory of Bott-Samelson schemes
which are desingularizations of '>'chubert varieties was the subject of the talks
by M. Shimozono, P. Magyar and A. Zelevinsky. The standard-monomial-theoretic
approach to Schubert varieties was represented by tbe talks of K. N. Raghavan,
P. Magyar and M. Shimozono. Schubert varieties for classical groups were discussed
in the talks by S. Billey, M. Brion and W. Graham The related Schubert polynomi­
als (simple and double) and Kostant polynomials arose in the talks by M. Haiman,
S. Billey and W. Graham. New results about symmetrie functions related to tbe
Schubert calculus were presented in tbe talk by B. Leclerc. The topology of real
Schubert varieties was discussed in the talk by A. Vainshtein. Total positivity in

1

                                   
                                                                                                       ©



2

Schubert varieties was tbe subject of the talk by A. Zelevinsky. Plactic algebra
and noncommutative methods were represented by the talk by P. Littelmann. The
appearance of modern cohomology tbeories (quantum cohomology and arithmetic
intersection tbeory) in the theory of Schubert varieties was sbown in tbe talks by
I. Ciocan-Fontanine and H. Tamvakis.

During the meeting a demonstration of two computer systems: ACE and SYM­
METRlCA took place. These c9mputer systems are particularly suited to helping
in research about Schubert varieties.

According to the common opinion of the participants of the meeting, the con­
ference was very fruitful and the choice of the talks reßected in a competent way
the proportions of recent trends in the research in the theory of Scbubert varieties.
Tbe conference confirmed arecent, quick progress of this theory.

It would be very desirable to repeat, in a few years, a similar meeting about
Schubert varieties.
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Vortragsauszüge

(following "Vortragsbuch-Oberwolfach" )

Kostant Polynomials and the Cohomology ring for G /B

Sara Billey

The Schubert Calculus for G/ B (G =Kac-Moody group) can be completely
determined by a certain matrix related to the Kostant polynomials. These polyn0­
mials are defined by vanishing properties on the orbit of a regular point under the
action of the Weyl group. For each element w in Weyl group the polynomials also
have nonzero values on the orbit points corresponding to elements which are langer
then w in the Bruhat order. Dur main theorem is an explicit formula for these
values. We then generalize this formula to give explicit formulas for the functions
~u defined by Kostant and Kumar in [The Nil Hecke ring and cohomology of G/P
for a Kac-Moody group G*, Adv. Math. 62 (1986), 187-237].

Combinatorial farmulas far Kazdhan-Lusztig polynomials

Francesco Brenti

In this talk a new nonrecursive formula for the computation of the Kazdhan­
Lusztig polynomials of a Coxeter group is presented and a comparision of this one
with other previously known ones is discussed. Let (W~ S) be a Coxeter system,
T the set of reßections of W, cp : T -t {O, 1,2, ... } a total reflection ordering
(as defined by M. Dyer) , and B(W) the Bruhat graph of W (Le., the directed
graph having W as the vertex set, and directed edges J.1. -t v iH 1(J.1.) < l(v) and
J.1.v- 1 E T). If IJ -t 11 in B(W), then set A(IJ;II) = cp(J.1.1I- 1

) , and for a directed
path 6 : ao -t al -t ... -t an set D(ß) = {i E [r - 1], A(ai-b ai) > A(ai, ai+l)}.
Given a lattice path r : [0, IJ) --+ Z (Le., r(O) = (0), and Ir(i + 1) - r(i)1 = 1 for

i = 1, ... ,IJ-1) let l(r) = J1., d+(r)=~,N(r) = {i E [1-'-1]: f(i) < O} and
r>o = J1. - 1 -IN(r)l· Then the Kazdhan-Lusztig polynomial of IJ, v E W, J.I. < v,
is-given by

PlIlV(q) = L (_l)r~o+d+(r)q f(1')-r(f!~+rcl(r»

(I\~)

where the sum is over all pairs (r, ~) when r is a lattice path, ß is a directed path
in B(W) from I.L to v, l(r) = 1(6), N(r) = D(6), and r(l(r») < o.
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Schubert varieties in group completions

Michel Brion

Let G be a connected complex algebraic group which is reductive, and let BeG
be a Borel subgroup. We consider generalizations of Schubert· calculus in varieties
X where G acts, such that B has only finitely many orbits in X (such varieties are
called spherical). In particular, we consider the following questions.

1) (X smooth and projective) Describe the B-orbit closures in X, and the coh6­
mology H* (X) in terms of their classes.

2) (X = G/ H bomogeneous; then H has only finitely many orbits in the ßag vari­
ety G/ B). Describe the classes of H-orbit closures in G/ B, in the cohomology
H*(G/B).

Ta any B-invariant subvariety Y of a spherical variety X, we associate
• a subset W(Y) of the Weyl group W, and
• a fun~tion d(Y, -) : W(Y) -+ N (in fact the values of d(Y, -) are powers of 2)
such tbat question 2 can be answered as folIows:

Theorem 1. Let G/ H be a spherical homogeneous space, let V c G/ B be a H­
invariant subvariety corresponding to aB-invariant subvariety Y c G/ H: Then

[V]= L d(Y,w)[flwow ] in H*(G/B) where nwow=BwowB/B.
wEW(Y)

A similar statement describes the intersection of the closure of Y (in any equi­
variant completion X of G/ B which is regular in tbe sense of De Concini and
Procesi) with a closed G-orbit in X. In tbe case where X is a (G x G)-equivariant
completion of the group G itself, we obtain

Theorem 2. Any 1JSchubert variety" BwB c G = X is singular in codimension 2
exactly unless w = Wo or G contains a direct lactor 01 type A 1.

Finally, we describe the classes of the BwB in the (T x T) - equivariant coho­
mology of C, similarIy to results of Kostant-Kumar and Arabia for G/ B .

Quantum Cohomology of Flag Varieties

Ionut Ciocan-Fontanine

The small quantum cohomology ring of a (partial) Hag variety F is adeformation
of the usual cohomology ring, with parameter space H2 (F, Z), obtained by using
the 3-point, genus 0 Gromov-Witten invariants as structure constants for the basis
of Schubert varieties. Presentations for this rings have been computed (for every
G/ P), and for the type A case there are analogues for tbe classical formulas of
Schubert Calculus. The talk surveyed these results, due (in increasing generality)
to Bertram, Fomin-Gelfand-Postnikov, and the speaker.
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Quadratic algebras, Dunkl elements, and Schubert calculus

Sergey Fomin (joint with A.N. Kirillov)

Let cn be the assoeiative algebra with generators [ij] , 1 ~ i < j ~ n, subjeet to
relations

(i) [ij]2 = 0 for i < i;
(ii) [ij][jk] = [jk][ik] + [ik][ij]

[jk][ij] = [ik][jk] + [ij][ik] for i < j < k;
(iii) [ij][kl] = [kl][ij] for distinet i, j, k, I.

(These are exact1y the quadratic relations satisfied by the divided differenee oper­e ators of type A.) In this algebra, the "Dunkl elements"

9j ~ - E[ij] + EUk]
i<j" j<k

generate a eommutative subalgebra. We show that this subalgebra is eanoriieally
isomorphie to the cohomology ring of the Hag manifold. Dur main eonjecture- states
that the evaluations of Schubert polynomials at the Dunkl elements (}j belong to the
eone spanned (over Z+) by noncommutative monomials in the [ij]. A proof of this
conjecture would lead to a combinatorial proof of the nonnegativity of structure
eonstants of the cohomology ring.

A generalizationof the main construction to quantum cohomology is also sug­
gested.

The paper (same title) is available from http://www-math.mit.edu/-fomin

The class of the diagonal in ftag bundles

William Graham

This talk is on the elass of the diagonal in BB XBa BB, where G is a complex
reductive group, B a Borel subgroup, and BB, BG are the classifying spaces of
these groups. The motivation for studying this class comes from degeneracy loci
defined by Hags of vector bundles in classical groups; the space B B x BG BB is the
universal space for studying such loci. If HeB is a maximal torus and f) its Lie
algebra, then H*(BB XBG BB) = R ®s R where R = S·(f)*), S = S·(~·)w. Let
[6.] denote the cohomology class defined by the diagonal. We discuss 2 problems:

1. Characterize [6.] E R @s R
2. Find a lift of [~] to R @c R

(note: H* means cohomology with complex coefficients, so R ®c R ~ R l8>s R).
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Nilpotent Schubert Varieties

Mark Haiman (joint with Will Brockman).

Let N denote the "nulleone" of nilpotent n x n matrices. We study the sub­
variety Nw ~ N consisting of those matrices wbich are compatible with same Hag
belonging to the Sehubert variety .xw (defined with respect to a fixed standard Hag).
These nilpotent Schubert varieties, as we propose to eall them, were reeently COD­

sidered by J. Carrell, who showed using analytie methods that the scheme-theoretic
intersection of N'W with the diagonal matrices h has coordinate ring isomorphie to
the cobomology ring of.xw (for GLn ). We give a purely algebraic proof of Carrell's
theorem. Tbe key to this is a lifting of the double Se~ubert polynomials 6 1J (X, A)
to "matrix" double Sehubert polynomials §v (X, A) in whieb X is a matrix and
A = (al, ... ,an) is a sequenee. The polynomial §.v(X, A) vanishes when there is a
Hag F E .xw , for w l v, such that X is compatible with F, and all" . ,an are the
eigenvalues of K, in the order imposed upon them by the ßag F.

Singular locus of Schubert varieties

Shrawan Kumar

Let G be a semisimple eomplex algebraie group, BeG a Borel subgroup and
W the assoeiated Weyl group. For any w E W, let X w be the Schubert variety
BwBIB c GIB. We determine the singular locus of X w in terms of the Nil Hecke
ring introduced by Kostant and Kumar. There is a similar eriterion for the rational
smoothness.

Schur functions and affine Lie algebras

Bernard Leclerc (joint with Severine Leidwanger)

Tbe Schur funetions S A are symmetrie funetions whieb can be regarded as gen­
erating funetions for irredueible ebaracters of tbe symmetrie groups:

BA = L XA(p,)pl-'lz~
~~n

Sehur defined another family of symmetrie funetions PA whieh play the same role
for irredueible spin eharacters of the spin symmetrie groups.

It was diseovered by Sato, Date, Jimbo, Kashiwara, Miwa in 1981 that Schur
polynomials naturally arise in· the representation theory of the infinite rank affine
Lie algebras 9i: and 80;. We exploit this interpretation to obtain algebraic iden­
tities relating S- and P-funetions.
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A plactic algebra far semisimple Lie algebras

P. Littelmann

Let 9 be a complex semisimple Lie algebra. Tbe plactic algebra can be viewed as
a "noncommutative" model for the representation ring of g. Such a model was first
constructed by Lascoux and 8chützenberger for the Lie algebra sln. It is the word
algebra on an alphabet (ordered) on n letters, modulo the two sided ideal generated
by the Knuth relations. This algebra has a basis which is "naturally" given by the
Young tableaux (semi-standard). As a byproduct of tbe construction they abtained
tbe first correct praof of tbe Littlewood-Richardson rule to decompose tensor prod­
ucts of sln(C)-representations. In the talk we presented a generalizatian of the
construetion to arbitrary semisimple Lie algebras. Tbe word algebra is replaced by
the algebra of formal linear eombinatians of piecewise linear parts in XIIl ending
in an integral weight (X = weight lattiee), and the Knutb relations are replaeed
by a sort of homotopy of patbs. Tbe resulting algebra is noncomrnutatix~;. it is
naturally equipped with a basis, every basis element has a "shape" and a':weight
(tbe endpoint of the path), such that the cbaraeter of the irreclucible representa­
tion VA is the surn E e'1(l), where the sum runs over a11 basis elements of shape
A. Tbe sums (E

f7
shape A Tl) form a commutative subalgebra which is isomorphie

to the representation ring of g. One of the eonsequences is a generalization of the
Littlewood-Richardson rule in tbe setting of semisimple Lie algebras. It also pro­
vides a eombinatorial model for standard monomial theory. An interpretation in
terms of quantum groups is that the algebra above is a combinatorial eonstruction
of the algebra of erystal bases.

Standard Monomial Theory for Bott-Samelson Varieties

Peter Magyar

Let G be a reduetive algebraic group: W =< Sl, ... ,sr> its Weyl group (with
simple reßection generators), and Pi ::> B the minimal standard parabolic subgroup
generated by B and Si. Let i = (i 1: • •• ,iN) be a ward with i 1 , • •• , iN E {I, ... ,r}.
Then tbe Bott-Samelson variety of i can be defined as a quotient

where (Pb . .. ,PN) . (b 1, ... , bN) = (Plbl, b1
1
p2b2' ... : b"i/_lPNbN).

We mayaiso realize Zi aB a fiber product inside a product of Hag varieties
(GIB)N+l :

Let Pi be the maximal parabolic associated to Si, and 0 (1) -+ GIPi tbe minimal­
degree ample line bundle. Consider tbe pullback 1rjO(l) under Tr; : GIB -+ GIPi
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and for m. = (ml~'" ~ mN) with mj 2:: O~ define Lm. = 0 ® 1rilO(ml) ® ... ®
1r:

N
O(mN ) ~ a line bundle over (G / B)N+\ and denote by the same symbol .cm. this

line bundle restricted to Zi: We have a surjection

Problem: Find an explicit set of elements in the above tensor product whieh
restriet to a basis of HO (Zi' LuJ.
Solution: Lakshmibai (1995) has given an explieit basis {P1T} of HO (G/Pi , 0(1))
indexed by the LS paths 1f E lB(Wi) defined by Littelmann. [See Littelmann's talk
at this conference.] (Here Wi is a fundamental weight.) Consider the set of paths a
B(i, m) defined by •

where 1Ti = tbe straight line path from 0 to Wi, 1f *1f' denotes Littelmann's concate­
nation of paths, and fi denotes Littelmann's lowering root operator.

Deuote thc piece of a path a E lB(i, m) by a = all * ... *alml * ... *~Nml *... *
aNmN' Then we have tbe "refined Demazure eharaeter formula"

Theorem. The set

{PU ll ® ... ® PUl ml ® ., . ® PUNI ® ... ® PUNmN }uEIH(i,m.)

restriets to a basis 0/ HO(Z:i~r.mJ.

Monamial Bases far Representations
of classical complex semisimple Lie algebras

K. N. Raghavan (joint with P. Sankaran)

A procedure is given that associates monomial basis elements of an irreducible
representation to standard tableaux (Lakshmibai-Seshadri paths) of the correspond­
ing shape. As a main applieation one obtains an easy proof of standard monomial
theory for classieal groups.

Tableaux Combinatories of Standard Monomial Bases of
line Bundles over Bott-Samelson Varieties in type A

Mark Shimozono (joint with Vic Reiner)

The ßagged Schur module SE(E) for the diagram D can be realized as
HO(Zi' :r!!1.)~ the space of global sections of a line bundle 3m. over the Bott-Samelson

                                   
                                                                                                       ©



9

variety Zi given by the reduced ward !~ when D does not contain the subdiagram

We give an explicit combinatorial deeomposition of tbe eharacter of HO (Zi' :JmJ
into Demazure characters.

Pieri-type farmulas far the Classical Groups

Frank Bottile (joint with N. Bergeron)

A Pieri-type formula in the Chow ring of a Hag variety is a formula expressing
the produet of a Schubert class by a special Schubert class in terms of the Schubert
basis. Reeently, Pragacz and Ratajski have given such formulas in the Chow rings of
all Grassmannians (isotropie subspaces of dirn k (::; n) in a 2n or 2n+ 1 dimensional
vector space equipped with a nondegenerate sympleetic or othogonal form). We
seek such formulas for the Hag varieties, expressed in terms of chains in the Bruhat
order.

Tbis talk will discuss joint work with Naotel Bergeron towards extending and
unifying known Pieri-type formulas. We first deseribe a geometrie motivation be­
bind this '~chain-theoretic" expectation, and then express the Pieri-type formula
for tbe elassical SLn / B Hag variety in this form. We then present a new Pieri-type
formula for SP2m/ B, where the special Schubert class is the pullback of a class
from the Lagrangian Grassmannian. Time permitting, we discuss how the results
used in its proof shed light on the more general Littlewood-Richardson problem for
Chow rings.

Arithmetic Intersection Theory on ftag varieties

Harry Tamvakis

Let F be the complete Hag variety aver Spee Z with the tautological filtration
o C EI C ... c En = E of the trivial bundle E over F. Tbe trivial bermitian
metric on E(C) induces metrics on the quotient line bundles Li(C), Let cl(Ld be
the first Chern class of Li in the arithmetic Chow ring CH(F) and Xi = -Ci (Li)'
Let h E Z[Xl' ... ,xn ] be a polynomial in tbe ideal In =< eb' .. ,en >. We give
an effective aigorithm for computing h(Xl' ... ,xn ) in CH(F); as the class of an
invariant form on F(C). All arithmetic Chern numbers are rational. An ':arithmetic
Schubert calculus" is established using the theory of Sln-Schubert polynomials.
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On the number of connected components in the intersection of two
open opposite Schubert cells in the real ftag manifold

Alek Vainshtein (joint with B. Shapiro and M. Shapiro)

Problem: Given two opposite Hags g, / in IR", find the number #n of connected
components in the set U~g of all Hags transversal to both fand g (actually, un

does not depend on the choice of fand g).
Conjecture: #n = 3 . 2n - 1 for n > 5.

Theorem 1. (First combinatorial reduction) #n equals the number 0/ connected

components 0/ a graph an whose vertices are pseudoline arrangements with signs a
assigned to all intersections and edges are defi,ned by transition mIes 0/ Berenstein- _
Fomin-Zelevinsky.

This graph is tremendously large and difficult to work with.

Theorem 2. (Second combinatorial reduction) #n equals the number 0/ connected
components 0/ a gmph r n whose vertices are standard pseudoline afTCJngements with
signs at all intersections and edges are defi,ned by elementary trans/onnations:

a

/ "b b Ho

" /
c

Ci

/ "b b

" /
c

Theorem 3. (Algebraic reduction) #n equals the number 0/ orbits 0/ the action
on the space V m 0/ m x m upper triangular matrices over lF2 generated by trans­
formations (a b) ....-.. (a+a+d b+a+d).

J I c d c+a+d d+a+d

Let :F be the set of fixed points of this action, then vm / F ~ V m - 1 and we get
the induced action on vm-1. It can be described as folIows: consider arrays of O's
and l:s on an equilateral triangle on the hexagonal lattice:

The generators are just adding the entry to each of its neighbours. Define a qua­
dratic form q(x) as folIows: q(x) = #{x = I} + #{edges between x = I}

Theorem 4. The conjugates to the action on V m - 1 are just all the transformations
presenJing q(x).

This almost implies the conjecture.
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Total positivity in Schubert varieties

Andrei Zelevinsky (joint with Arkady Bernstein and Sergey Fomin)

An n x n matrix is total1y nonnegative if a1l its mrnors are 2:: O. These matrices
play important part in several areas of mathematics, from differential equations
to comhinatorics. Recently G. Lusztig extended the notion of total positivity to
Schuhert varieties in arbitrary semisimple groups. He also introduced a family
of natural parametrizations of the totally positive varieties, which are ':algebraie"
counterparts of his combinatorial parametrizations of the canonical bases for quan­
tum groups. Our main result is an explicit formula for the inverses of Lusztig's
parametrizations.

Applications include:
• a family of minimal criteria for testing total positivity, generalizing classical eri-

teria by Fekete and Cryer, .! :.:.

• P. Magyar's geometrie study of Bott-Samelson desingularizations,
• a beautiful description of conneeted eomponents of the int~rsectionof two oppo­

site open Sehubert cells, due to M. and B. Shapiro and A. Vainshtein.
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