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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 17/1997

Gruppentheorie: Strukturtheorie der endlichen einfachen Grüppen und
Anwendungen

27.04. - 03.05.1997

The meeting was organized by M. Liebeck (London), B. Stellmacher (Kiel) and
G. Stroth (Halle). The main topic of the conference was application of the the­
ory of finite simple groups to various areas like geometry, galois theory, topology,
computational group theoryt invariant theory and division algebras. Here it was
shown that the force of group theory, results and methods are having more
and more impact in other areas of mathematics. Besides this also talks on the
structure of the finite simple groups like subgroup pattern, generation results
and new methods in the classification of the finite simple groups were presented.

The inspiring discussions and the great facilities of Oberwolfach will certainly
be of importance for the future of this field of mathematics. At least two papers
were written during the conference. I
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Vortragsauszüge

s. ABHYANKAR

Attempts to use the power of modem group theory of finite simple groups for
calculating Galois groups

The muse of poetry is responsible for the above poetic rendition of the orig­
inal title of my talk which was "Recognition Theorems and Galois Theory". At
any rate, various Recognition Theorems of Group Theory provide powerful tools
for computing Galois groups. Examples of such Recognition Theorems are:

(1) CT = Classification Theorem of Finite Simple Groups,
(2) CDT = Classification of Doubly Transitive Permutation Groups (using CT),
(3) CR3 = Classification of Rank 3 Permutation Groups (again using CT),
(4) Jordan-Margrafl Theorems on Limits of Transitivity,
(5) Burnside's Theorem (which is a special case of the O'Nan Scott Theorem),
(6) Zassenhaus-Feit-Suzuki Theorem,
(7) Kantor's Rank 3 Theorem (uaing Buekenhout-Shult's Polar Space Theorem),
(8) Cameron-Kantor's Theorems on Transitive Collineation Groups, and
(9) Liebeck's Orbit Size Theorems (which uses CT).

1 shall illustrate how these Recognition Theorems can be used for discovering
nice equations whose expected Galois groups are various preassigned nice groups
and then for establishing that their Galois groups indeed have the desired val­
ues.

M. ASCHBACHER

Quasithin graups

The classification of the quasithin groups is one of the major steps in the clas­
sification of the finite simple groups. Unfortunately Mason never completed his
work on quasithin groups, so the step remains to be done. Steve Smith, Ulrich
Meierfrankenfeld, and I are working to correct this situation. In addition we
take a more general definition of even characteristic, in line with the Gorenstein,
Lyons, Solomon revision. I described how this work is going and outlined our
proposed proof. .

R. BADDELEY

The congruence lattice problem

It is an open problem to decide whether or not every finite lattice ia isomorphie
to the congruence lattice of a finite algebra. Palfy and Pudlak have reduced
this problem to the question: is every finite lattiee isomorphic to an interval in
the subgroup lattice of a finite group? It is generally believed that this question
has a negative answer, and to date most work has been directed towards finding
a lattice of weight 2 that does not so arise. These efforts have culminated in
the work of Lucchini & RB whieh reduces the problem to aseries of questions
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eoneerning the finite simple groups. However, these questions are not readily
resolvable. The talk proposes that the scope of investigation is extended. to a
much wider dass of lattices in the hope of reducing to questions that can be
resolved.
References: R. Baddeley & A. Lucchini, On representing finite lattices as inter­
vals in subgroup lattices of finite groups (to appear in J. Algebra),
R. Baddeley, A new approach to tbe finite lattice representation problem (in
preparation) .

B. BAUMEISTER

Transitive subgroups of primitive permutation groups

For geometrie reasons I became interested in the transitive subgroups of primi­
tive permutation groups (G,O) which are conjugate to Gw in Aut(G).
Notiee, A :5 G is transtive if and only if G =GwA.
Weprove:

Theorem 1: Let G be a primitve permutation group and G = GwG~ for some
0' E Aut(G). Then one of the following holels:
(i) G is affine: G E!! ~3~(L3(2) I X), X :5 Sr transitive;
(ii) Gis almost simple: E(G) ~ AO,Sp4(2R ),n ~ 2,POt(q) or M12 ;

(iii) G is of produet action type: G :5 H I Sr, H of type (ii).

In order to generalize the theorem in the affine case we determine all the groups
Gwhich have a faithful and irreducible GF(p)-module of dimension d and a
subgroup K such that IG : KI = pO, a 2: d. As a corollary we obtain that a
maximal transitive subgroup of a primitive permutation group Geither eontains
O,,(G) or G ~ E23~ (L3 (2) I X), X :5 Sr transtive and A ~ Gw ~ L 3 (2) I X.

A. CHERMAK

Groups of rank 2

We present an outline of one possible approach to classify amalgams arising
from a rather general dass of "rank-2" groups.
For p a prime and S a p-group, let roteS) denote the dass of all finite groups L
such that

(i) S E Syl,,(L) and S ~L, and
(il) S lies in a unique maximal subgroup of L.

We consider groups L in !lJt(S) to be of "rank oDe". The goal is to dassify
amalgams (LI, L 2 , S) satisfying tbe foUowing:

Main Hypothesis: There is a group G = (L}, L2 ) with Li E OOl(S) and with
S n 0"(G) =1. Further, we have, for both i = 1 and 2,
(1) [Op(Li ), OP(Li )] ~ 1, and
(2) OP(Li) ~ ~(Li, M3-i) where, for auy j, Mj is the unique maximal subgroup
of L j containing S.

The approach to the dassification suggested here makes strong use of the Delgado­
Stellmacher work on Weak BN-pairs, and of the Meierfrankenfeld-Stellmacher
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work on Pushing Up Weak BN-pairs.

R.T. CURTIS

Symmetrie generation of finite groups.

The main aim of this work is to produee a standard proeedure for obtaining
the sporadic finite simple groups.
Groups generated by a specified, highly symmetrie set of elements are sought
- the asssumption being that these symmetries are achieved by inner automor­
phisms of the group obtained. It turns out that many of the sporadie groups
emerge quite naturally from this point of view, and those of moderate size are
readily eonstructed by hand using these methods.

P. FLAVELL

Generation Problems for Finite Groups

The starting point for this work is the following result of J. Thompson, whieh
he obtained as a corollary to his classifieation of minimal simple groups.

Theorem: A finite group Gissoluble if and only if (x, y) is soluble for all
x,y E G. .

An elementary proof of this result was obtained by the author a few years ago.
We make the following eonjecture.

Conjecture: Let G be a group and x E G. Then (xG ) ia soluble if and only if
(x, y) is soluble for all y E G.

As a first step towards proving this, we have

Theorem: Let G be a group, p a prime and P E Sylp(G). Then G is p-soluble.
if and onIy if (P, g) is p-soluble for all 9 e G.

The next step would be to establish the following conjecture:

Conjeeture: Let G be a group, p a prime and P e Sylp(G). Then (pG) is
soluble if and only if (P, g) is soluble for all 9 e G.

Progress has been made on this problem. The following result is used to eon­
struet a signalizer functor.

Lemma: Let P ~ Zp, p :F 2 act on a soluble p'-group G. Then C[G.Pl(P} =
(C[g.P] (P}lg E G).
Conjecture: The above Lemma is true for all p'-groups G.

P. FLEISCHMANN

Linear groups with special fixed point free elements

This is joint work with W. Lempken and A.E. Zalessk.ii:
Let G ~ GL(V) finite linear group, char V = p, 9 e G non-central, o(g) = r
prime, C := gG.
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(G,C, V) e FFG(p,r) iff G = (C) and Cv(g) = 0
. (G, C, V) e FFG(p,r)· iff moreover V is irreducible G-morlule.

Goal: Classifying F FG(p, rt , starting with F FG(2, 3t .
(This extends work of Mullineux (G =Altn ) and R.L. Wilson (G E Chev(2A:».)

(G,C, V) e FFG(2, 3)· implies
a)F·(G) = F(G) = Z(G). E, E:= 0 1(03(G» ~ 31+2m

or b)F-(G) = Z(G) • E(G), E(G) quasisimple.

Our result at the present stage gives a full deseription of all groups G with
(G,C,V) E FFG(2,3)" up to some ambiguities in ease b) and E(G) oftype
Chev(2A:). Except this case and the case G ~ Z3 x PSP2m(3) we get a fuJI.
classification of all tripies (G,C, V) e FFG(2,3t. -

R.M. GURALNICK

Rational Funetions Which Are Bijective Modulo p

Let rp E p(x). Let C{Jp denote the reduction of rp (mod p) viewed in IFp(x).

When is C{Jp bijeetive on IfD~ for infinitely many p? If r.p E p[x), this was origi­
nally studied by Schur (1920's) who classified those of prime degree and conjee­
tured that any such C{J is a composition of cyclic polynomials (essentially x r

) and
Dickson or Chebyshev polynomials. This was solved by Fried (1970) translating
the problem inta group theory. The polynomial condition is quite strang. If <p is·
rational, then we use the fact that the genus zero condition yields together the
exceptionality that if C{J is indecomposable (so Aschbacher-Q'Nan-Seott applies)
then up to a finite number of possibilities, <p is related to a polynomial or comes·
from an elliptic eurve and is of degree r or r 2 for some odd prime r. Using the··
theory of elliptie curves, we ean decide which degrees actually oeeue. This is
joint work with Müller and Saxl.

A.A.lvANOV

On locally projective graphs of girth 5

Let r be a graph and G a 2-arc transitive automorphism group of r. For a
vertex x E riet G(x)r(:z:) denate tbe permutation group induced by the stabi­
Iizer G(x) of x in G on the set r(x) of vertiees adjacent to x in r. Then r is said
to be a locally projective graph of type (n, q) if G(x)r(z) contains PSLn(q) as
anormal subgroup in its natural doubly transitive action. Suppose that r is a
loeally projeetive graph of type (n, q), for same n ~ 3, whose girth (that is, the
length of a shortest eyde) is 5 and suppose that G(x) acts faithfully on rex).
(The ease of unfaithful action was completely settled earlier.) We show that
under these conditions either n = 4, q = 2, r has 506 vertiees and G ~ M 23 ,

or q =4, PSLn (4) :5 G(x) :5 PGLn (4), and r contains the WeHs graph on 32
vertiees as a subgraph. In the latter case if, for a given n, at least one graph
satisfying the conditions exists then there is a universal graph W (n) of which all
other graphs for this n are quotients. The graph W(3) satisfies the conditions
and has 220 vertices.
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G. MALLE

The finite irreducible linear groups with polynomial ring of invariants

This is areport on a joint work with Gregor Kemper. In the talk I presented
two recent results on the invariant theory of finite linear groups in arbitrary
characteristic. The first one gives a characterization of those irreducible groups
whose ring of invariants is a polYDornial ring.

Theorem A: Let G :5 GL(V) be finite irreducible. Then the ring of invariants
S(V)G is polynomial if and only if Gisgenerated by pseud~reflections and tbe
pointwise stabilizer of any proper subspace of V has polynomial invariants.

The necessity of tbe two conditions h~ been shown by Serre. Tbe case of char­
acteristic 0 bad been solved by Shephard-Todd and Chevalley. Our proaf uses
the classification of finite irreducible groups generated by pseudo-reßections by
Wagner, Zalesskii-Sereskin, Kantor.
The second result concerns fields of invariants.

Theorem B: Let G ~ GL(V) be finite irreducible generated by pseudo-reflections.
Then the field of fractions of S(V)G is purely transcendental over the ground
field.
Partial results in tbis direction had been obtained by Carlisle and Kropholler.

A. MANN

Counting finite groups and their defining relations

We discuss tbe following

Conjecture A. The number of finite groups of order n and d generators is at
most n cd log n, for some constant c.

We show tbat the conjecture holds for soluble groups. For that end, we first show
that a soluble group of order n and d generators can be defined by (d + l)A(n)

. relations. Here A(n) is the number of primes dividing n, including multiplicities.
This leads to the following

Conjecture B. Let G be as in Conjecture A. Then G can be defined by cdlogn
relations.

Conjecture B implies Conjecture A. Moreover, to establish Conjecture B, it- suf­
fices to show it for simple groups. For most families of simple groups it is known
to hold.
Finally, by considering p-groups, we show that the bounds of the conjectures
are of the right order of magnitude.

C. PARKER

Extremal subgroups in an ultraspecial situation

Extremal subgroups in groups of Lie type were introduced. Applications to
the symplectic amalgam (b =2) problem were given.
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L. PVBER

Cartesian products of nonabelian simple groups

Consider finitely generated subgroups r of the group G = 0:1 PSL(ni' q)
where q is a fixed prime-power and 5 :$ nl < n2 < ....
In joint work with Lubotsky and Shalev it is shown that for certain choices
of the series {ni} the group G has subgroups r with subgroup growth of type
n1ogn •

In joint work with Babai it is shown that such groups r have polynomial i~~~x
growth but ,-,~4 •

(i) they are not linear
(ii) they are not boundedly generated.
These results answer questions of Segal and Platonov-Rapinchuk respectively.

M. RASSY

Vertex-transitive automorphism groups of graphs and "pushing up"

. Given a vertex-transitive automorphism group of a connected graph such that
the stabilizer of each vertex x is finite and acts primitivelyon the set of neigh.
bours of x, the problem of determining the structure of the vertex-stabilizers is
closely related to a certain kind of tJ pushing up" -problem.

G. RÖHRLE

Parabolic subgroups of classical groups and quivers

This is areport on recent joint work with L. Hille (TH Chemnitz). We consider
the action of a parabolic subgroup P of a classical group G on the unipotent
radical Pu respectively on its Lie algebra Pu. We get the following classification
result. Here t{Pu ) denotes the nilpoteney class of Pu'

Theorem 1. Let G be a classical algebmic group and P a pambolic subgroup
0/ G (defined ouer the algebmically closed field k). Suppose that char k is either
zero or a "good" prime for G. The number 0/ P-orbits on Pu is finite i/ and only
i/ either t(Pu) :5 4, or G = S02n{k), l{Pu) = 5 and P satisfies some additional
conditions.
This theorem ean essentially be reduced to the ease of general linear groups
GL(V).
A Levi subgroup of a parabolie subgroup of GL{V) is isomorphie to a produet
of linear groups GLdi{k), for 1 :5 i :5 t, with dirn V = L: di and d = (d1 , ••• , dt)
determines tbe conjugacy class of P. Thus we write P = P(d).
Theorem 2. Let k be field and V a finite. dimensional k-vector space. Let
P = P{cl) be a parnbolic subgroup 0/ GL{V). Write d = (d1 , ••• , dt ). Then the
number 0/ P·orbits on Pu is independent 0/ k i/ and only i/ t :5 5. In particular,
in the case that k is infinite, the number 0/ P ·orbits on Pu is finite ij and only
i/ t :5 5. There is a purely combinatorial /onnula /or the number 0/ orbits only
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depending on d.
Even for the finite groups GLn(q) this result is new.
In our proof of Theorem 2 the question concerning the finiteness of the number
of orbits of P = P(d) on Pu with d = (dl , ... , dt ), t E N, is reformulated as
one about the representation type of a particular category M (t) of modules of
a quiver.

P. ROWLEY

A Baby graph

Suppose r is the rank 4 minimal parabolic geometry for the Baby Monster simple
group. Let g denote the point-line collinearity graph of r (wbere tbe points are
the objects of r whose stabilizer is 21+22 C02). Then 9 is a 11,707,448,673,375
vertex graph. This talk described joint work with Louise Walker which is con­
cerned with determining loeal and global properties of g..

J. SAXL

Linear groups of orders divisible by eertain large primes

In a joint work with Guralnick, Penttila and Praeger, we classify the subgroups
of GLd{q) of order divisible by a prime r wbieh divides q' -1 for some I > dJ2 but
does not divide any qi - 1 for i < I (so-called Zsigmondy primes with I > dj2).
This has applieation to problems coneerning generation of almost simple groups,
recognition theorems (as deseribed in Abhyankar's talk) and computer recogni­
tion algorithms for classical groups..

Y. SEGEV

On eonjeetures of Margulis-Platonov and Potapchik-Rapinehuk

aUf main result is

Main Theorem: Let D be a finite dimensional division algebra over an arbitrary
field. Then no quotiemt of n- is a non-abelian finite simple group.

The Main Theorem was eonjectured by Potapchik and Rapinchuk. By their
result it also makes a eontribution to the Margulis-Platonov conjeeture (see
eonjectures a.1 and a.2 in the book of Platonov-Rapinchuk).
Let X be a finite group. The commuting graph of Xis the graph on the nontriv­
ial elements of X whose edges are eommuting pairs. It is denoted ß(X). Denote
by diam(t:.(X)) the diameter of ß(X), and let d be the usual distanee function
on ß(X). We say that ß(X) is balaneed ifthere are elements x,y E ß(X) such
that d(x, y), d(x, xy), d{y, xy), d(x, x-Iy), d(y, x-1y) are all bigger than 3. The
Main Theorem is proved using the following two theorems:

Theorem A: Let L be a non-abelian finite simple group. Suppose that either
diam(.6.(L)) > 4 or Ll(L) is balaneed. Then no quotient of D· is isomorphie to
L.
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The proof of Thm. A does not require the classification of FSG.

Theorem B: Let L be anon-abelian finite simple group. Then either diam(Ll(L» >
4 or .6(L) is balanced.

The proof of Thm. B is joint with Gary Seitz. It requires tbe classification of
FSG.

A. SHALEV

Simple groups, permutation groups, and probability

We prove a technical result concerning the size of the intersection of some conju­
gacy classes in classical groups with certain maximal subgroups. We then show
that this result can be used to settle several seemingly unrelated problems' in
finite simple groups and finite permutation groups. For example, we prove

Theorem 1: There exists f > 0 such that if Gis an almost simple classical group
in non subspace action, and G has rank l and field size q, then the fixed point
ratio of G is $ q-d.

For large " this sharpens the cq-l bound of Liebeck and Sax!.

Theorem 2: There exists a constant c such that a finite almost simple primitive
group has a base of size $ c, with known exceptions.

This confirms a conjecture of Peter Cameron.
Other applications concern random generation, and the genus conjecture of G-u­
ralnick and Thompson , which is reduced to the case of subspace actions of
classical groups.
This is a joint work with Martin Liebeck.

A. STEINBACH

Weak embeddings of generalized hexagons and groups of type G2

(Joint work with Hans Cuypers, TU Eindhoven)
The group G2(L) is a subgroup of a 7-dimensional orthogonal group O(W, q).
Each lang root subgroup A is a Siegel transvection group, hence [W, Al is 2­
dimensional and [[W, Al, A] =0 (quadratic action).

We classify the embeddings of groups of type G2 in linear groups satisfying
these two assumptions.

Theorem. Let L be a commutative field and G be a group genemted by the dass
E 01 abstmct root subgroups such that G := GjZ(G) ~ G2 (L) and E is the dass
o/long root subgroups olG. We suppose that G :$ GL(V), where Visa vector
space over the skew field K, such that 0 ~ dirn [V, A] $ 2 and [[V, A], A] = 0,
/or A E E.

Then L is isomorphie to a subfield 0/ K and [V, G] is a natuml 7-dimensional
or (in ehamcteristic 2) 6· dimensional module /or G ~ G2 (L) (ouer the bigger
skew field K).

An important tool in the proof are weak embeddings of generalized hexagons
and polar spaces (P,.c) (Le. injective maps 'Ir from P into the point set of same
projective space P generated by 'Ir(P) , such that the set {1l'(x) I x point of l}
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is contained in a line of P, for each line I E L" and for all points pEP, the
image under 1r of {x E P I x not at maximal distance from p} is contained in a
hyperplane of P).

In the proof of the theorem, we first construct a weak embedding of tbe
generalized hexagon of type G2 associated to G into tbe projective space P =
P([V, GD. From this we obtain a weak embedding of the B3-polar space contain·
ing the hexagon as a subgeometry into P. Now the results on weakly embedded
classical polar spaces yield the theorem.

The method introduced above ia very efIective for the determination of sub-.
groups of classical groups generated by transvections or long root elements.

F.G. TIMMESFELD

Presentations for certain Chevalley groups

Certain presentations for Chevalley groups of type An,Dn and En over arbi·
trary field K were given. For example:
G = (Aa:li E 1,2 < 111 < 00) such that:
(1) Ai ~ 1 = (Ai)', i E 1
(2) For each i E 1 there exists a unique i' E I such that:

For each a E Ar there exists a b E Ar with A~ =Ai·
(3) If j f/. {i, i'} then either [Aa:, Aj ] = 1 or .

(i)[Ai, Aj ] = AJ(a:.j) , J(i,j) E I
(ii)[Aa:, AJ(a:,j)] = 1 = [Aj , A/(i,j)]
(iii) [Aa:' ,AJ(i,j)] = Aj

Then, if G is not a central product, G is a covering group of PSLn(K) or Ef,
Kadivision ring or Cayley divison algebra or of a Chevalley group of type
Dn(K) or En(K), K a field.

H. VÖLKLEIN

Braid-abelian generators of classical groups

The rigidity criterion in the case of 3 generators has been used extensively
by Belyi, Thompson, Matzat's Heidelberg school and others to realize various
classes of almost simple groups as Galois groups over Q and <Oab. The largest
body of simple groups - those of classical Lie type - admit a natural dass of
rigid tripies, the Belyi tripies.
Here I show that the groups PGLn(q) and PUn(q) admit another dass of rigid
generating systems, of length n + 1, which I called Thompson tupIes. Their
tbeory is quite similar to that ef the Belyi tripies, which allowed me to get same
new results on tbe Belyi tripIes as weil. The Thompson tuples yield tbe only
known rigid generating systems of lenght > 3 of any almost simple group. In
joint werk with J. Thompson we fouod a dass of generating systems of SPn(q)
of length ~ + 2 which are not quite rigid, but very elose: The pure braid group
induces an abelian group of permutations on inner classes of these tupies. We
use this to realize PSPn (q) over Q for n ~ 4q2 and q a square (and under various
other conditions on n and q as well).

10
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TH. WEIGEL

Generation problems of finite simple groups and applications

Various generation problems of finite simple groups have been solved recently.

In the talk we present a proof of the Magnus Conjecture which asks whether

a free group of rank at least 2 is residually X for every infinite family X of

non-abelian finite simple groups. Using an estimate on the number of rational

points on an affine variety of degree d and dimension k it is shown that a finite

simple group of Lie-type G has a generation system s, t E G such that the length

of a non-trivial relation R satisfies

l(R) ~ max{ log(q), f(l)}

for almost all q, where q = JFI denotes the cardinality of the field of definition,

I denotes the Lie rank, and f is a certain isotonic unbounded function. From

this one easily deduees the Magnus Conjecture.

C. WIEDORN

A Tilde geometey for F4 {2}

There exists a semiclassieal parabolic system with diagram 0 JI and

it is weIl known that ooly the sporadic simple groups M24 and He and a oon­

split extension 37 SP6 (2) can have such a system.

Now consider a parabolie system of rank 4 with diagram 0 0

and assume that the residues corresponding to tbe end nodes both belang to

37 Sp6(2). It can be shown that a group G with such a system always has a

factor group isomorphie to F4 (2) and that G 9! 3833 F4(2) (non-split), if the

kernel of the homomorphism G -+ F4 (2) is abelian.

In the talk we construct an example of such a group as subgroup of the group

34371 B M, which is the automorphism group of the universal 2-cover of the

Petersen-geometry for the Baby monster.

R.A. WILSON

Sobgroups of tbc Baby Monster

The maximal subgroups of the Baby Monster are now (almost) completely deter­

mined. There are eight conjugacy classes of maximal subgroups (all non-Iocal)

not already listed in tbe Atlas. We describe how these were found, and how the

final list is shown to be eomplete.

B. ZIMMERMANN

Finite groups and large groups of isometries of hyperbolie 3-manifolds

We study finite groups C, in particular linear fractional groups PSL(2,q), which

admit large actians by isometries on hyperbolic 3-manifolds M. Here large

means the volume (or the UHeegaard-genus") of the quotient M/C (which is a
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hyperbolic 3-orbifold) is small. Some of these small hyperbolic 3-orbifolds are
uniformized (quotients of hyperbolic 3-space) by hypo tetrahedral groups and
some small Bianchi groups PSL(2, Ok). We classify the finite quotients of type
PSL(2, q) of these groups. For example, for the Bianchi groups PGL(2,01 ==
Z(i]), PSL(2,03) and PGL(2, ( 3), all such quotients are obtained by reduc­
tion of coefficients mod p (and onIy few values of q == p" occur), whereas for the
Picard group PSL(2, Z[i]) almost all groups PSL(2, q) are quotients (and are
not obtained by reduction of coefficients). It would be interesting to consider
other c1asses of finite (simple) groups. We discuss other types of hyperbolic
3-orbifolds of small volume resp. Heegaard-genus.

Berichterstatterin: C. Wiedorn
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