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Die Tagung wurde organisiert durch R. Ho\ve (Ne,v Haven), E. Kaniuth (Pader­
born) und G. Schiffmann (Strasbourg). Ein \vesentliches Ziel der Tagung ,var die
Zusammenführung von Mathematikern, deren .Arbeitgebiete die ganze Breite der
modernen Harmonischen Analyse und der Darstellungstheorie umfassen. Dies
spiegelt sich in den Vortragsthemen der Teilnehmer wider. So wurden unter
anderem Vorträge aus den folgenden Bereichen gehalten: Darstellungstheorie
diskreter Gruppen und ihre C·-Gruppenalgebren, Harmonische Analyse sym­
metrischer Räume und Darstellungstheorie halbeinfacher Gruppen, Gelfandpaare
und Harmonische ~~nalyse auf nilpotenten und auflösbaren Liegruppen, Darstel­
lungen p-adischer Gruppen, C·-i\lgebren von Transformationsgruppen und ihre
An\vendungen auf die Darstellungstheorie. Neben den Vorträgen blieb ausrei­
chend Zeit für Diskussionen und Kurzvorträgen in kleineren Kreisen.

Vortragsauszüge

M.B. Bekka
On the characters of SL(n, Z), n ~ 3

Let r be an almost periodic countable group (that is, the finite dimensional
unitary representations of r separate the points of r). Let c·(r) be the full C·­
algebra of r. A natural question is whether the finite dimensional representations
separate the points of C· (r). This is indeed the case if r is amenable or if r is a
non-abelian free group. This is also true for 5L(2, Z). In contrast, we show that
the finite dimensional representations do not separate tbe points of C·(SL(n, Z))
for n ~ 3. This also holds for other arithmetic groups like Sp(n, Z), n ~ 2 or
8L(2, ZV6), 8 > O.

A character of r is an indecomposable central positive definite function on r.
Using information on the restriction of such functions to appropriate subgroups of
r, \Ve sho,v that there is no faithful tracial state on C·(f) \vhere r = SL(n, Z), n ~

3. This answers a question of E. Kirchberg.
1
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~10reover, we give a description of all characters of SL(oo,Z) = limSL(n,Z).
~

An essential tool in our proofs is the congruence subgroup property of SL(n~Z), n ~

3.

C. Benson
Combinatorics and spherical functions on the Heisenberg group

Let V be a Hermitian vector space and K a compact Lie subgroup of U(V)
\vhich acts in a multiplicity free fashion on C[V]. One obtains a canonical basis _.
{pola E A} for C[VIR]K, consisting of homogeneous polynomials, and also a basis ..
{qa 10: E A} by orthogonalization of the Pa '5. The coefficients that appear in the
expression for qa in terms of the Pß '5 are called generalized binomial coeffieients
by Z. Yan. We describe some ne\v combinatorial identities that involve these coef-
ficients. These have applieations to analysis on the Heisenberg group H = V x :IR
obtained from V. Indeed, the polynomials qa determine most of the bounded
spherical functions for a Gelfand pair obtained from the action of K on H.

T.P. Branson
Spectra of intertwinors

In arecent paper [JFA, 1996], Olafsson, 0rsted and I presented a ne\v \vay of
computing intertwining operators

Ind~fANa® v ® 1 .5,. Ind~fANa ® (-v) ® 1

\vhen such exist. Here G is a semisimple Lie group, MAN a maximal parabolie
subgroup, and we assume that K -types oeeur with multiplicity one. The idea is
to compute the speetra of the operators J.

One may eonsider relaxing the restrictive assumptions above; namely

(1) a ~ a to a ~ A (changing M-types).
(2) fvIultiplicity one to higher multiplicity (of K-types).
(3) a ® v ® 1 to (J ® v ® 7 (N aets nontrivially berore inducing).
(4) MAN maximal to arbitrary parabolics. .

In this talk, \ve deseribe progress in direction (1), and applications to the so'lution
of some old problems about Stein-Weiss operators (gradients) D. In partieular,
\ve determine:

• \vhich linear combinations of operators D*D are elliptic or of Oth order.
• the spectra of all n*D on the standard sphere sn.

J.L. eIere
Compressions and contraetions of hermitian symmetrie spaees

Let D be a hermitian symmetrie space, realized as a bounded domain in cn
(Harish-Chandra embedding). Denote by G the (eonnected component of) the
group of holomorphic diffeomorphisms of D, and let K be the stabilizer of the
origin 0 E D, so that D == GIK. The action of G is by rational maps, and there
is a eorresponding action of its complexifieation Ge. The compression semigroup
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r is the set of elements in ac such that g(D) S; D. vVe show that r aets by
eontraetions on D, when D is equipped with the Bergman metrie (= G-invariant
metrie). This uses the realization of the semigroup r as G exp(C) (Olshanskii's
theorem), where C is the maximal invariant eone (up to ±1) in i,g. There is
strong indieation that a stronger statement is true, as Neretin showed for elas­
sieal hermitian symmetrie spaces, and \Ve fonnulate a conjecture for the general
case.

M. Co\vling
Intertwining operators and the Kunze-Stein phenomenon
(joint ~'ork \vith S.Meda)

Let G be a non-compact semisimple Lie group ,vith finite centre. Although G
is non-compact, it behaves in sorne respeets as if it were. The Kunze-Stein phe­
nomenon, that LP(G) *L2 (G) ~ L2(G) if 1 $ p < 2, is one manifestation o~4t~is.

A related phenomenon has been observed for split rank one groups, namely,~ that
IEFI 2:: CIEIIFI, where lEI denotes the Haar measure of a measurable s!Jbset
E of G, C being a constant independent of E and F. This is dedueed from the
result that LP,l(G) * LP(G) ~ V(G), where V,l(G) is the usual Lorentz space
on G. vVe give real variable proofs of an estimate on matrix coefficients related
to the Kunze-Stein phenomenon and of the measure theoretie inequality, whieh
rely on sho,ving that the Knapp-Stein intertwining operators map V (G/ P) into
LrI (G/ P) for the elass-one principal series representations which are naturally
isometrie on LP (G/ P) and LP' (G/ P) respectively.

H. Fujhvara
A conjecture of Corwin and Greenleaf

Let G = exp 9 be a connected, simply eonnected nilpotent Lie group with Lie
algebra g. \\'e consider a monomial representation T = ind~X of G induced"from
a unitaI1t charaeter X of an analytic subgroup H = exp.f). Let D-r (G / H) be the
algebra of smooth invariant differential operators on Gwhich leave stable the
space of functions satisfying the same H -eovariance relation as those of 7-space.
When T is of finite multiplicity, Convin and Greenleaf proved that D-r(G/ H)
is eommutative and conjeetured that it should be isomorphie to the algebra of
H-invariant polynomial fnnctions on the affine spaee

r-r = {l E g*: ll~ = -Hdx}
of g*. \\Te study their eonjecture by applying Penney's Plancherel fonnula for T

to get some partial affirmative results.

B. C. Hall
The Berezin-Toeplitz quantization for Lie groups of compact type

I describe a quantization scheme for the cotangent bundle of an arbitrary Lie
group K of eompact type. The cotangent bundle of K cau be given a canoni­
cal complex structure whicb allows us to identify tbe cotangent bundle with the
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complexification of K. I describe a Hilbert space of holomorphic functions on the
cotangent bundle '\vhich in the simplest case K = ]Rn reduces to the '\vell-kno,vn
Segal-Bargmann space of holomorphic functions on cn =T* (Rn). Onee ,ve have
this space, ,ve may define for each function r/J a Toeplitz operator Trp ; the map
4> ~ Trp is the Berezin-Toeplitz quantization. I describe several results and eon­
jectures about this quantization scheme.

A.G. Helminck
On representations associated with p-adic symmetrie spaces
Uoint 'work ,vith G.F. Helminck)

In this talk ,ve generalize the eoncept of real reductive symmetrie spaee to p­
adie groups and analyse the multiplicities of the representations in the Planeherel
decomposition of tbe left regular representation. These symmetrie spaees are de­
fined as follows. Let k be a p-adic field, G a reduetive p-adic group, a E A.ut(G)
an involution and H = Cu the fixed point group of a. The p-adic manifold
X = G/ His ealled a p-adie reduetive symmetrie spaee. There exists aG-invariant
measure dx on X. Let L be the left regular representation of G into L 2 (X, dx).
We first show that L decomposes multiplicity free, when H is cornpaet~ For H
non-compaet larger multiplicities can oceur. Using induced representations and
H-fixed distribution veetors ,ve give an estimate of these multiplicities. We also
discuss ,vhieh of these representations oecur in the Plancherel deeomposition'-

.A. Hulanicki
Pluriharmonic funetions on symmetrie domains in cn
(joint ,vork ,vith E. Damek, D. Müller and M. Peloso)

Let D be a bounded homogeneous domain in cn. Then there exists a solvable
Lie group S of biholomorphic maps of D onto D ,vhose action is singly transitive.
It eontains a nilpotent subgroup .lV(if!) ,,~hich acts "parallel'~ to the Bergman­
Shilov boundary of D and its action extends to this boundary on ,vhich it aets
singly transitively. In a paper by E. Damek, A. Hulanieki and R. C. Penney
an elliptic, real, second order operator L with the follo,ving properties has been
constructed. .

(1) L anihilates holomorphic fnnctions
(2) the elass of bounded L-harmonic funetions on D is equal to the "Poisson

integrals" of LOO-functions on the Bergman-Shilov boundary of D
(3) L eommutes \vith tbe action of S.

Property (2) says that L defines '~the smallest" elass of bounded functions har­
monie ,v.r. areal second-oreder elliptic operator whieh includes bounded plurihar­
monie functions. A natural question arises whether one can exihibit additional
seeond order operators ,vhieh ,vould characterize pluriharmonic functions. We are
going to sho,v how this can be done in the ease of symmetrie irreducible domains.
Instead of bonnded holomorphic functions ,ve deal with H2-funetions. The Hardy
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space H2(D) is defined as the space of holomorphic functions F on D such that

(H2 ) sup ( IF(u· z)12du < 00.
zED lN(cI»

It follows from recent ,vork of E. Damek, A. Hulanicki and R. Penney that for
the funetions F on D \vhich satisfy (H2) we have

LF = 0, iff F is the Poisson integral of a function f E L2(N(<I»)).
vVe exihibit a number of seeond order degenerate elliptic S-invariant operators 6.j

on D which characterize pluriharomonie funetions F, the real parts of holomor­
phie functions F + iF, among the ones whieh are L-harmonie and satisfy (H2 ).

Then also F satisfies (H2
), so F + iF E H 2 (D). We restrict our considerations

to irredueible symmetrie domains, only. For those the number of operators ß j is
small I e.g., for the Siegel domain biholomorphic to the unit ball in cn the opera­
tor L is the Laplaee-Beltrami operator w.r. to the Bergman metrie and we have
to add only ODe more operator 6. = T2 + J(l - H, where T is the central element
in the Lie algebra of N(~) and H is the invariant differentiation in the direction
of A. vVe need rand 2r additional operators on the symmetrie irreducible' tube
domain and for irreducible symmetrie type 11 Siegel domains, respeetively, r being
the rank of the domain. 1rreducibility of D is nesessary for this type of results.
For the produet of n copies of the upper-half plane the number of second order
real operators needed to characterize pluriharmonic functions is of the order of n2 .

Our methods yield a charact~rization of the functions f E L2(N(~)) such that
the Poisson integral of f is pluriharmonic. For the tube domains this is nothing
new: our condition reduces to Bochner's theorem: J(X) = 0 for X rt. rr' u -n·.
For type 11 Siegel domains our result generalizes a result of G. Laville.

P.E.T. Jorgensen
ReBection symmetry for unitary representations of Lie groups ' ..r­

(joint work ,vith G. Olafsson)
Let G be a Lie group, 9 the Lie algebra of G, T E .i\ut(G) an automorphism

of period 2, 'Ir E Rep(G,1i) a unitary representation of G, K, a closed subspace
of 1i, and J : 1l -+ 1-1. a unitary operator. We say that the system has reflection
symmetry (RS) if J1r = ('Ir 0 T)J, Je is invariant under the action of H := GT and
(vIJv) ~ 0, \Iv E !C. \Ve characterize the possibilities, including a classification if
G is non-compact semisimple, and show that only trivial possibilities oeeur if G
is the ax + b group or the Heisenberg group. Let ~,q be the ±l eigenspaces of
T on g, and let gC = ~ + iq. Let GC be the eorresponding simply connected Lie
group. We show that if (RS) holds, then there is a unitary representation 1rC of
GC on

1-I.C = (Je/{v : (vIJv) = O}r
such that 'lr

C and 'Ir agree on Hand 'lrC(iy} = i'lr(Y) for all y E Q.
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V.F. Molehanov
Tensor products and canonical representations
(joint work ,vith G. van Dijk)

Quantization on para-Hermitian symmetrie spaces G/ H is closely connected
\vith tensor products of representations induced by charaeters of maximal para­
bolic subgroups p± associated \vith G/ H (or maximal degenerate series represen­
tations). These tensor products are eonnected \vith the so-called canonical rep­
resentations which were introduced for Hermitian symmetrie spaces by Berezin.
In this talk we give the decomposition of the tensor produets 1r~v ® 7r;'v' J.L E
lR, v = 0,1, of maximal degenerate series representations of G for the case _
G = SL(n, lR), H = GL(n - 1, lR). We use heavily the deeomposition of tbe •
Berezin form for the space G/ H obtained by the author earlier. It turns out that
the Sch\vartz space ~v(S x S), \vhere the tensor product initiallyacts according
to its definition (here S is the sphere in Rn), needs some "completion" to eontain
an orthogonal decomposition with respect to the Berezin form. If J.l belongs to
the interval (-~-1 + k, -';+1 + k), k E Z, k =I 0, then this completion includes
Ikl irreducible subspaces in addition to tbe case k = 0 (\vhen the decomposition
includes irreducible unitary representations of continuous and discrete series).
For k > 0 these spaces eonsist of distributions coneentrated at the boundary r
of G/ H. The action of G on these distributions is diagonalizable. We give an
explicit construction for this diagonalization.

K.-H. Neeb
U nitary highest weight representations and Riesz distributions

Let n be an irreducible symmetrie cone and L = Aut(O)o the connected au­
tomorphism group of O. Then the dual cone 0* carries a distinguished family
of L-semiinvariant tempered distributions Rs , SEC, called Riesz distributions.
The positivity of these distributions corresponds to the unitarizability of the as­
sociated highest weight representation of G = A.ut(Tn)o, ,vhere Tn is the tube
domain \vith basis O. "Ve generalize this correspondence to the setting of vector
valued highest \veight representations and explain ho'v their properties can be
analyzed in terms of operator valued Riesz distributions.

Y. Neretin
Boundary values of holomorphic functions and constructions of discrete
spectra .

Denote by Bp,q (resp. Tp,q) the space of complex (resp. real) p x q-matriees
Z such that IIZII < 1. Obviously, one has Bp,q = U(p, q)/(U(P) x U(q)), Tp,q =
O(p, q)f(O(p) x O(q)). Consider Hilbert spaces Hs(Bp,q) and Hs(Tp,q) defined by
the reproducing kernel

Ks(z, u) = det(l - zu*)-S,

\vhere s = 0,1,2, ... ,p - 1 or s > p - 1. It is easy to see that the restriction
operator Hs(Bp,q) ---* Hs(Tptq ) is a unitary isomorphism, equivarülnt with respect
to O(p,q). It is known that lims-+00 Hs(Tp,q) is L2(O(P,q)j(O(p) x O(q»).
Problem Decompose the representation of O(p, q) in Hs(Tptq ) = Hs(Bp,q).
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Denote by M the set of real p x q-matrices such that Z· Z = lp. Then we
obtained
Theorem (Neretin-Olshanskii) If s < (q - 2p-I)/2, then there exists a eorreetly
defined restriction operator Hs(Bp,q) -+ LI (M).

Hence we obtain an action of O(p, q) in same Hilbert spaee of funetions on M.
Construetions of such type allow to construct discrete increments to speetra in
various problems of harmonie analysis.

T. Nomura
Berezin transforms related to multiplicity free aetions
(joint \vork with E. Fujita)

Let V be a finite-dimensional complex veetor spaee on ",·hieh a compact Lie
group K aets linearly. The action is said to be multiplicity-free if tbe space P(V)
of bolomorphic polynomial functions on V has a multiplicity-free K-irred:~_cible

decomposition P(V) = LOEA Pa(V), \vhere A is an index set. Fixing "'j~~K­
invariant hennitian inner product on V, we consider the normalized Gaus~;ian

measure JL and the corresponding L2-space L2 (V, dJ.L). Then each Po(V)'is a
subspace of L2(V, dJ.L) \vith reproducing ·kernel "'0. The Berezin transfonn Ba
associated to Po(V) is, by definition, an integral operator on L2(V, Ko(Z, z)dJ.L)
\vith integral kernel

Ka(Z, Z)Ka(W, w) .

Here K,o(z, z) is strictly positive on a dense open subset 0 of V. f\1y major in­
terest consists in the spectral decomposition of the bounded positive selfadjoint
K -invariant operator Ba' Some general facts and two case-studies are preserited.

G.Olafsson
Spherical Laplace Transforrn for ordered symmetrie spaces

Let G/ M be an irreducible, globally hyperbolic symmetrie spaee, and let
4'>.(8) = JA1/Hnz P_>.(sh) dh be a M-spherical function on the semigroup S° =
M exp Co, CO an open cone in g. We derive a Harish-Chandra type fonnula für
'P>.:

ep>.(a) = en(A) L Co(WA}~w>.{a), a E A+ C SO n A.
wEWo

This gives an analytic eontinuation of the spherical Laplace transform

V(S)# :3 F >-+ .cF(>') = c(~) JF(O,x)P->.(x) dx

= c(~) L+ F(O, a)<p>.(a)6(a) da

where V(S)# is the commutative algebra of G-invariant Volterra kerneis. The
expansion formula also shows that cp>.(s) is analytic on So for all parameters,
where <P>. is defined, by using the \vork of Heckmann and Opdam. Let CA1C(A) be
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the Harish-Chandra c-function for the Riemannian symmetrie space G/ K. Define
E>. by

'" CMC(WA)
CMC(A)E>..(s) = L C(WA)· CPw>.(s)

wEWo\W

'" C+(WA)
L cn(wÄ) 'Pw>.(s).

wEWo\W

Then E>.IA n SO agrees \vitb the K-spherical function 'l/J>.. We have tbe inversion
formula:

F(O, s) = cJ'cF('x)K>.(s)d'x.

J. A.. Packer
The equivariant Brauer group of prineipal bundles
(based in part on joint \vorks \vith I. Raeburn, D. \Villiams and S.T. Lee)

We use the reeently developed equivariant Brauer group of D. Crocker, A.
Kumjian, 1. Raeburn and D. Williams to establish conditions under \vhich cer­
tain hvisted transformation group C·-algebras are strongly Morita equivalent to
one another, in part generalizing a theorem of P. Green and M. Rieffel. This
result can be applied to study certain t,visted group C·-algebras associated to
discrete, finitely generated, torsion-free, t\vo-step nilpotent groups.

R.C. Penney
The Riesz-Fischer theorem far the Hua system on non-symmetrie do­
mains in cn

In this talk \ve stated aversion of the Helgason conjecture for any Kähler man­
ifold, ,vhich relates to describing the boundary behaviour of the COO-functions
that are harmonie ,vith respect to the scalar valued universal differential opera­
tors. Our main results, however, \vere for a system (the Hua system) of differential
operators on a homogeneous domain in cn which generates the algebra of uni­
versal operators. Dur main result states that a function that i5 harmonie ,vith
respect to this system has boundary values on the Shilov boundary and an L2_

function on the Shilov boundary is a boundary value of a Hua harmonie function,
if and only if its Fourier transform is supported on a particular set of orbits in
(Rn). under the adjoint action of tbe cone group. This set of orbits equals (Rn).
a.e. if and only if the domain is symmetrie.
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G. Ratcliff
The spherical transform of a Schwartz function on the Heisenberg
group
Uoint '\vith C. Benson and J. Jenkins)

Let Hn be the (2n + l)-dimensional Heisenberg group, on \vhich tbe unitary
group U(n) acts by automorphisms. Let K ~ U(n) be such that K ~ K b< Hn is
a Gelfand pair, and let ß K be the Gelfand space. Then the spherical transform
from L'k(Hn ) to L2(tl K ) is an isometry.
Question: vVhat is the image of the space of K -invariant Schwartz functions
nnder the spherical transforID?

vVe give a complete answer in terms of the decay of operators applied to func­
tions on ßK' These operators are combinations of differential and difference
operators.

W. Rossmann
Action-angle variables and weight multiplicity

Let K be a compact classical group, T ~ T a maximal torus, and A c
L('f'")· = Rr thc \\-'eight diagram of an irreducible representation of K, vie\ved
as a set of points \vith multiplicities. It is known that A can be relized in a
natural ,,'ay as the image nnder a linear projection 1IF ~ W of the integral
points in a polytope Il in a Euclidian space of dimension equal ot the number N
of positive roots (Gelfand-Tsetlin tables). This suggests that there should exist
an lV-torus r containing T, \vhich acts naturally in the representation space
and \vith multplicities = 1, so that the map Il --t A is induced by the projection
L(1rm)- --t L(T")-. According to the method of geometrie quantization, such a
torus ']fffi \vould be expected to act symplectically on the orbit of the hightest
weight K· A c L(K)-. (In classicallanguage, such a torus action is equivalent to
action angle variables for the elements of H E L(T'"), considered as Hamiltonian
funct.ions on K ·A). The case K = U(n) is \vell-known and amounts to a ,,~ersion of
Jacobi's elliptic coordinates. vVe present a construction of action angle variables
\vhich applies to classical groups and produces tbe desired map II ~ A.

S. Sahi
The binomial formula for nonsymmetrie MacDonald polynomials

The q-binomial theorem is "essentially" tbe expansion of

(x - 1)(x - q) ... (x _ qd-l)

in terms of the monomials x k for k :5 d. We describe a multivariable general­
ization of this, where the "xk's" are replaced by "MacDonald's nonsymmetrie
polynomials" Eß(:X; q, t), and the q-shifted powers ':(x - 1), ... (x - qd-l)" are re­
placed by the inhomogeneous polynomials Gß(X; q, t) introduced by F. Knop and
myself. The binomial coefficients in the expansion can themselves be expressed
in terms of the Gß 'so
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G. Savin
Lifting automorphic forms from G2 to PGSp6 using the minimal repre­
sentation of E7

The lift is the first step in pressing that antomorphie forms on G2 are mo­
tivie. Gross and I have sueeesfully developed both Ioeal and global aspeets ·of
tbe theory. In addition, G2 admits a canonical form (like the Ramanujan ß in
GL2-ease) ,vieh lifts to a niee form on PGSP6: holomorphic diserete series at
infinity, Steinberg at p = 2, and unramified for p > 2.

T. Steger
Monotony of free group representations
(joint work ,vith G. Kuhn)

Let r be a nonabelian free group on finitely many generators. Let 0 be tbe
boundary of f, C(O) tbe C·-algebra of eontinuous funetions, and A : r -7

Aut(C(O)) the left regular action. A representation 1f' of tbe erossed product
r t>< A C(O) on 1i' is given by a unitary representation 1f' : r ---* U(1l') and a
*-representation 1f' : C(O) ---* C(1-l') satisfying, for x E r, 9 E C(O)

1f'(x)1r'(g)1r'(X)-l = 1r'(A(X)g).

For a fixed unitary representation 1f : r -7 U(1i), a boundary realization of 1f

is a pair (t,1r') \vhere

• 1f' is a r ~ A C(O)-representation on 1-{,'

• t : 1-1. -7 1{' is an isometrie r -map
• t(1i) is cyelic for 1f'.

The realization is perfeet if t is bijeetive. We say that monotony holds for 1r if, up
to obvious equivalenee, 1f admits a unique realization (t,1f) and that realization
is perfeet.

The anthor and G. Kuhn sho\v that the representations they introdueed in
"~10re irreducible ... ,~ Duke J. (82) 1996, are monotonous and they provide a
ne\v, easier~ and more sophisticated proof of irreducibility.

P..Torasso
Minimal representations of simple Lie groups over a loeal field of zero
characteristic

By means of Duflo's orbit method we attach unitary irredueible representations
to the admissible minimal nilpotent orbits of simple Lie groups of relative rank
at least three over a loeal field. Using Duflo's method \ve construct irredueible
unitary representations of the standard parabolic subgroups whieh fit together
on their pairwise interseetions.

When tbe field of definition is real \ve prove that the infinitesimal annihilator
of any one of our representations is a eompletely prime ideal, the Gelfand-Kirillov
dimension of which is minimal: in particular \vben tbe absolute type of the group
in hand is not An, this ideal is the Joseph ideal. If moreover the group possesses
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a maximal parabolic with abelian nilradical \ve give a realization of the infinites­
imal version of our representation through the Gencharov homomorphism.

A.. Valette
Richard Thompson's group F

F is the group of orientation-preserving homeomorphisms of [0,1] which are
piecewise-linear, whose derivatives have finitely many discontinuities - all of them
at rational dyadics, and whose slopes are powers of 2. By results of Brown­
Geoghegan and Brin-Squier, it is known that F is a finitely presented group that
does not contain the free group IF2 as a subgroup. Geoghegan conjectured in 1979
that F is non-amenable (iftrue, F would be the first counterexample of finite
presentation to von Neumann's question: is non-amenability of a group due to
the presence of lF2 ?).

We present results by PanI Jolissaint (1997): F and its commutator subgrbup
F I are inner amenable (better: the von Neumann factors W· (F) aod W· (FI

)

have property (r) of Murray and von Neumann). We give some speculations on
ho,v to prove Geoghegan's conjecture; in particular, \ve construct a holomorphic
family of uniformly bounded representations of F ,vhich are not obviously similar
to unitary representations.

Berichterstatter: Siegfried Echterhoff
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