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Unter der Leitung von L. Danzer (Dortmund), G. C. Shephard (Norwich) und
E. Schulte (Boston) trafen sich 50 Teilnehmerinnen und Teilnehmer aus Belgien, Kanada,
Deutschland, Frankreich, Großbritannien, Malaysia, Mexiko, Österreich, Russland, der
Schweiz, Ungarn und den USA. Knapp ein Drittel der Teilnehmenden kam aus Deutsch­
land. In den fünf Vormittagssitzungen wurden jeweils drei einstündige Vorträge gehalten,
die Einsicht in ein komplexeres Themengebiet gaben pder aktuelle Entwicklungen zu ein­
schlägigen Fragestellungen zusammenfaßten. Bei den vier Nachmittagssitzungen standen
insgesamt siebzehn 20- bis 30-minütige Vorträge auf dem Programm, die sich speziellen
Analysen und Ergebnissen widmeten.

Ein Thetnenschwerpunkt der Tagung war die Packungs- und Überdeckungsproblematik
in ihren verschiedenen Ausprägungen, wie Dichten für endliche und unendliche Gitter­
und allgemeine Packungen, endliche Überdeckungen sowie Kugelpackungen in hyper­
bolischen Räumetl. Fast ebensoviel Raum nahm das aktuelle Gebiet der aperiodischen
Strukturen ein, wobei neueste theoretische Ansätze und Ergebniss~mitAnwendungen
in der Physik der Quasikristalle verbunden· wurden. Ein drit'ter Schwerpunkt waren die
abstrakten Polytop~ und die damit verbundenen Klassifizierungs- und Realisierungs­
fragestellungen. Weitere Vorträge kamen aus den Gebieten Gebäudetheorie, Rigidity,
Gittertheorie und Konvexgeometrie sowie der Matroidtheorie und der algorithmischen
Geometrie mit ihren Universalitätssätzen. - Es ist schwer zu sagen, welches die wichtig­
sten vorgetragenen Ergebnisse waren. Mindestens zwei können wohl als wegweisend
und besonders zukunftsträchtig bezeichnet werden: Die Anwendung der parametrisierten
Packungsdichte auf Fragen des Kristallwachstums von J. Wills und Coautoren, sowie die
·von J. Lagarias eingeführte Hierarchie der Modellmengen für Kristalle ulid Quasikristalle.
Hier zeichnet sich endlich eine Ordnung in der Vielfalt der betrachteten Mengentypen ab.
- Über die Lösung eines berühmten Problems, das auf der vorigen Tagung noch offen war,
berichtete R. Connelly: Jede flexible, triangulierte und orientierbare 2-Mannigfaltigkeit
im IE3 (beliebiges Geschlecht, Selbstdurchdringungen zugelassen) hat konstantes Volumen
(Sabitov 1995).

In einer Abendveranstaltung stellte J. Richter-Gebert das Programmpaket "Cinderel­
las Cafe" unter Ausnutzung der Präsentationsmöglichkeiten des Instituts vor. Dieses
interaktive und im Onlinebetrieb nutzbare Programmpaket kann in der Lehre zur Darstel­
lung geometrischer Sachverhalte sowie zum Training geometrischer Fertigkeiten eingesetzt
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werden. Es ist aber auch auf hohem mathematischem Niveau nutzbar und ermöglicht
es dem Forscher, komplexe geometrische Sachverhalte verschiedenster Art auf einfache
Weise einzugeben und so einer computerunterstützten und visuellen Analyse zugänglich
zu machen.

Besonders zu erwähnen sind sicherlich die "Problemsession" am Dienstagabend und
die "Session on Solutio~s and Problems" am Ende der Tagung. Hier wurden insgesamt 26
Probleme unterschiedlichster Art vorgestellt, diskutiert und zum Teil gelöst. Bei diesen
Sitzungen sowie in den selbstverständlich neben dem offiziellen Programm stattfindenden
Diskussionen in kleineren und größeren Kreisen stellte sich die oben schon angedeutete
Bandbreite der Teilnehmerinnen und Teilnehmer innerhalb der diskreten Geometrie als
besonders anregend und fruchtbar heraus. Eine Auflistung der gestellten Probleme und
der sofort oder bis vierzehn Tage nach der Tagung eingegangen Lösungen und Kom­
mentare, findet sich in diesem Beicht im Anschluß an die Vortragsauszüge unter der _I
Überschrift ttproblems". -

Berichterstatter: Gerrit van Ophuysen
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VORTRAGSAUSZÜGE

Coincidence Structures and Colour Symmetries of
Quasicrystals

Michael BAAKE (Tübingen)

Discrete point sets S (such as lattices or quasiperiodic Delone sets) may admit, beyond
their symmetries, certain isometries R such that Sn RS is a subset of S of finite density.
These are the so-called coincidence isometries which form a group under rather general
assumptions. In the first part of this talk, the proper mathematical setting was developed,
and a selection of examples in dimension 2 and 3 was solved. In many cases, due· to the
relation to algebraic number theory, one can fully characterize the group of coincidence
isometries and one can determine a Dirichlet ·series generating function for the number
of conicidence submodules of index m (for the module generated by S). In the second
part of the talk, the clasely related problem of similarity sublattices resp. submadules
was cansiclered and solved in the same spirit. This is helpful in understanding the pos­
sible colaur symmetries of periodic and non-periodic discrete structures, as was briefly
outlined.

Polyhedral fundametal domains far discrete
subgroups of PSL(2, IR)

Ludwig BALKE (Bonn)

We consider the fallowing situation: Let r be a discrete subgroup of Isom+(JHI2), the
group of orientation preserving· isometries of the hyperbolic plane, r acts on 180m+(JHI2)
just by left translations. We want to construct a fundamental domain for this action.
I describe the solution found by Thomas FISCHER in his Ph.D. thesis, 1991. Look­
ing at the Poincare disk model, Isom+(nf) can be identified with PSU(l,l), where
S := 8U(1, 1) = { (: ~) E M(2 x 2, C) I aä - bb == I} ~ (c2 = }R4. In real coordinates, we

have S == {x E }R4 I x~ + x~ - x~ - x~ = I}. The full preimage of r is denoted by r. We
lllust assume, that r has elliptic elements and have to chaose a point u E IHfl with non­
trivial stabilizer. Für pES, let Hg := {x E R4 I XoPo + XIPI - X2P2 - X3P3 ::; I}. Set

Qx:= n Hg
gEr

gu=x

and p:= UQx'
xEru

Furthermore, let lRt := {x E JR4 I x~ + x~ - x~ - x~ > O} and let Fg denote the closure
of the interior of ap n aRg n aRt. Then, we have

Theorem: (Th. FISCHER)

Fg is a fundamental domain for the natural action of f on 8P n IRt. If, moreover, r
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is cocompact, then Fg is a compact polyhedron. Projecting linearly from 8P n IR.t
onto S yields the desired fundamental domain ;:g. The faces of ;:g are totally
geodesie in the geometry of S given by the bilinear form definings.

Concluding, I want tomention, that Isom(IHr) acts on S via conjugation. This enables
us to detennine the symmetry group of the tiling of S by the fundamental domains :F9 ,

gEr.

On partial covering of convex regions by strips
Andras BEZDEK (Budapest)

CaU the closed region between two parallellines a strip. If K is a closed convex body in
the plane, let w be the width of the narrowest strip, which covers K. In his memorable
paper (1950) T. BANG solved the TARSKI plank problem (1932) by proving that should
I< be covered by a collection of strips, the sum of the widths of the strips must be at
least w. Elegant generalizations, refinements of this result are known hut they don't deal
with the problem where K is partially covered by the strips and the task is to estimate
the size of the uncovered pieces in term of their areas, widths, diameters and radii. It
was shown in the talk that if K is the unit circular disk then the surn of the widths of
the strips plus the surn of the diameters of the incircles of the uncoverd components is at
least the width of K. rhe following new problem was discussed: Let R(p, 1) be the closed
ring deterrnined by the concentric circles of radii 0 < p < 1 and 1. It is conjectured that
if p < 4 and R(p, 1) is covered by strips, then the surn of the widths of the strips is at
least 2, Le. the same as that, if the entire unit disk is to be covered. The case of 3 strips
was proved.

On the status of. the dodecahedral conjecture
Karoly BEZDEK (Buclapest)

KEPLER'S conjecture (1611) says that the maximu~ density of packings in IE3 with
congruent spheres is Jis = 0.7404805 .... In connection with this L. FEJES TOTH (1943)
conjectured that the volume of any Voronoi polyhedron of a packing with unit spheres
in }E3 is at least 5.550291 ... the volume of a regular doclecahedron with inradius 1. This
conjecture, called the dodecahedral conjecture implies that the density of any packing in e
}E3 with congruent spheres is at most 0.75469 .... Despite the recent efforts to prove the
conjectures, both conjectures are unproven.

Let '.P be an arbitrary packing of unit spheres So, SI, ... ,Sm, . .. in IE3. If the centers
of the unit spheres are denoted by Co, Cl,." ,Gm,"', then let

k = card{Gi 11 ~ ~dist(Go, Gi) ~ 1.0854} ;

l = card{Ci 11 ~ ~dist(Co, Gi) ~ 1.196} and

n = card{Ci 11 ~ ~dist(Co, Ci) ::; J3 tan K= 1.2584086 ... }

(One can prove that k ~ 15, l ~ 19 and n ~ 21.)
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Conjecture: (The distance cünjecture of 14 and 15 nonoverlapping unit spheres in IE.3.)
(Part 1) If 13 ~ k ~ 14, then

~ [t dist(Co•Ci)] ~ 12.0854 + 1.0854(k - 12)

(Part 2) If k = 12 and 13 ~ l ~ 14, then

~ [t dist(Co•c;)] ~ 12 + 1.196(l - 12)

In the talk we give an outline of the prüof of .the following theorem.

Theorem: (1997) The above distance conjecture implies the dodecahedral conjecture.

On the random generation of oriented mat·roids
Jürgen BOKOWSKI (Darmstadt)

The talk presented a new definition for oriented rnatroids via Petrie polygons, it described
the algorithmicadvantage of hyperline configurations. By using this concept, a decisive
irnprovement for extending oriented matroids in a fast way was fOllnd. Applications were
given:

• randorn generation of chirotopes
• generation of P3-maximal line arrangements
• a possible solution of a long standing problem: Does there exist an orientable tri-

angulated 2-manifold that is not geometrically embeddabl~ in R3?

Main Reference: J. BOKOWSKI, J.-P. RONDNEFT, T.-K. STREMPEL: All decompositions
of the projective plane with Petrie Polygons of constant length. Discrete Comput. Geom.
(1997).

Lattice points in large convex bodies
Karoly BÖRÖCZKY JR. (Budapest)

As already GAUSS observed, the number of lattice points in a large convex body is elose
to its volume. Let K be a convex body in .}Rn. The deep estimate

n(n-l)

#(rK n zn) = V(K) . rn + O{r n+l )

if 81< has positive curvature was achieved through the work of SIERPINSKI, HARDY,
HLAWKA, etc.

Recently this estimate was improved. The smallest errorterm belangs to HUXLEY

(1993) in the plane, and to KRÄTZEL and NOWAK in the higher dimensional spaees.
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If K is any convex body then the optimal estimate is provided by a result of U. BETKE

and myself.
A related problem is the number of lattice points in ßK. ANDREWS (1963) proved

that if BK is strictly convex then

BARANY and LARMAN (1997) showed that the estimate of ANDREWS is optimal. For
general eonvex bodies, I could prove

#(BK n zn) < &(8K) + O(diam(K)n-l- n~2)

where &(K) is the so-called lattiee surface area. Here the optimal exponent in the er-
rorterm is at least n -~. . _'I

Realizations of Regular Polyhedra in ]R4
Javier BRACHO (Mexico City)

Let P(d, n) .be the set of similari ty classes of non-degenerated faithfull realizatioris of
d-dimensional ineidence polytopes in JE".

The opposite of PEP<oo(d, n) was described by projeeting iota projective space pn-l,
taking there the opposite I-skeleton (each edge goes the other way around) and then lifting
allee again to JEn . .

Theorem:

P<oo(4,4) ~ { cl~~cal } U op { . cl~~cal } U {T, OP(T).}* .
polytopes polytopes

Conjecture:

The praof was outlined. It relies heavily on the classification of 1'{3, JP3). _
• T is a special ease assoeiated to the cube; its facets are toroidal maps {4, 414}. This •

was pointed out to the author by Peter McMuLLEN.

A U niversality Theorem for Realization Spaces of
Maps

Ulrich BREHM (Dresden)

A universality theorem f~r maps in ]R3 is shown, stating essentially that every semialge­
. braic set ean oeeur as a realization space of some map (with distinguished set of vertices);
more precisely:
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Theorem: (Universality Theorem for Maps).
Let n, k ~ 0 and G be a graph with vertex set {VI"'" Vs, Wb"" wn }. Let
P ~ IR3n+k be a semialgebraic set defined over Q. Then there is a map 9Jl (on
some orientable 2-manifold)

• which contains only triangles and quadrangles and
• which contains G as an induced subgraph,

such that for each subfield K ~ lR and each straight standard· embedding f of G
in K3 the fo11owing a:re equivalent:

1. f can be extended to a polyhedral. embedding (i.e. the facets are strictly
convex) of VJ1 in K3.

2. f can be extended to an nc-embedding (Le. with planar facets) of VR in K 3 .

3. There are >'1"" ,Ak E K such that (f(wd,· .. , f(wn ), Al, ... , At) E P.

(*: 'standard' means that VI, ... ,Vs are mapped onto some fixed given projective base.)

Corollaries:

(1) For each strict subfield L of the field of real algebraic numbers there is a map
VJ1 \vhich can be polyhedrally embedded in IR3 but not in L3.

(2) The realizability problem for maps in ]R3 is polynomial time equivalent to the
'Existential Therory of the Reals' and thus NP-hard.

Plenty of small regular thin geometries
Francis BUEKENHOUT (Bruxelles)

A thin geometry r is a connected labeled simplicial co~plex of some rank (the number
of distinct labels) in which every rank 2 link is a polygon. It is regular provided its
automorphism group G acts transitivelyon the set of maximal simplices. Together with
M. DEHON, Ph. CARA and D. LEEMANS, we have developed computer programs in
Maglna, starting from a given group G and looking for a11 possible r up to isomorphism.
We got hundreds of geometries of rank 3 and 4, none of higher rank, from a dozen of
groups PSL(2, q), q:::; 19, the Mathieu group Mu , the Suzuki group Sz(8), etc.. The
latter is particularly prolific with 181 rank 3, thin geometries, none of rank 2:: 4. A theory
has been developed. for the symmetrie groups.

Inductively Minimal Geometries and trees
Philippe CARA (Bruxelles) .

We consider finite incidenee geometries with conneeted diagram and their automorphisms.
A pair consisting of a geometry of rank n and a group of automorphisms acting ßag­

transitively is called minimal if the order of the group is at most (n + I)!. Let (r, G) be
such a pair. If we take the residue r F of a Hag F of r, the stabilizer GF of F in G acts
on r F as a flag-transitive group of automorphisms. This yields a pair (fF, G F) for every
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Hag of f. The pair (r, G) is calledinductively minimal if (rF, GF) is minimal for every
residue r F whose diagram is connected.

For a given rank n, we are able to enumerate all inductively minimal pairs up to
isomorphism. This is achieved by constructing a bijection with the class of trees of n + 1
vertices.

The Bellows Conjecture - An Update
Robert CONNELLY (Ithaca, NY)

The Original Bellows Conjecture: Any Hex of a triangulated 2-dimensional surface in 1R3

Hexes with constant volume.

The Bellows Result (SABITOV - 1995): 12 times the volume bounded by a 2-dimensional
(oriented) surface X is integral over the ring generated by the edge lenghts (squared).

Recall that A is integral over the ring R if there is a polynomial
p(x) = xn + an_IXn- 1+ ... + alx + ao, an-I,· .. , ao ERsuch that p(..-\) = O.

A flex of a triangulation is a continuous motion of the vertices that preserves the
edge lengths.

Generalizations:

1. The 2-dimensional manifold can be taken' to be an oriented (possibly) singular
simplicial 2-dimensional cycle.

2. (with Anke WALLS): The integrality result holds in JR4 for 3-dimensional ori­
ented cycles.

Remark: There is a "non-trivial" flex of a 3-dimensional oriented cycle (that is a singular
3-sphere) in ]R4. (Hint: This is obtained by taking the join of two flexing intersecting
quadrilaterals (cyclic) in complementary copies of 1R2 in ]R4.)

Questions:

1. Does the integrality result extend to IRd for d ~ 5?
2. Is the 4-dimensional volume of a 4-simplex intergral Qver the ring generated

by the (squared) areas of the ten 2-dimensional areas of the triangular faces? •

Recognizing euclidean triangulated 3-orbifolds
Olaf DELGADO (Bielefeld)

Periodic tilings of a simply-connected space can be encoded combinatorially by so-called
D-symbols or Delaney-symbols as introdueed by A. DRESS. A D-symbol satisfying eertain
necessary loeal conditions can be interpreted as a triangulation of an abstract (topological)
orbifold, Le. a manifold with singularities encoding point stabilizers. Given a crystallo­
graphie group f, its action on IE3 , say, is completely encoded in the orbit space IE3 Ir as an
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orbifold. The D-symbol of a tiling is constructed basically as the image of the barycentrie
subdivision in the orbit space. Thus, the problem of determing whether a given D-symbol
corresponds to a tiling of]E3 ean be reduced to determining whether a given triangulated
orbifold is homeomorphic to a quotient ]E3Ir for some crystallographic group r.

The group corresponding to a given D-symbol ean be caleulated as a group given by
generators and relators. By systematically searching for a candidate for the full transla­
tional subgroup of this group, tbe euelidicity problem can be reduced to the problem of
recogllizing a triangulated 3-torus. In joint work with D. H. HUSON, a general approach
to the classification of periodic tilings with a certain pre-given topologicaljcombinatorial
type of tile is presented, and, using the machinery· sketehed above, applied to the elassi­
fication of tBe-transitive tilings by combinatorial eubes, oetahedra and tetrahedra.

Embedding of Voronoi and Delone partitions into zn
Michel D EZA (Paris)

CaU the skeleton of a (Delone or Voronoi) partition of n-space embeddable if it is embed­
dable isometrieally (or with doubled distances) into a eubic lattice. With M. 1. SHTOGRIN

we identify embeddable skeletons for partitions associated with:

1. irreducible root lattiees,
2. parallelohedra tilings (ind. non-normalizable Olles) of 3-space,
3. bilattiees D-complex, Y-complex, h.e.p. and two generalizations A~, D~ of the

diamond packing Dt·

Rigidity of Zonohedral Spheres
Nikolai DOLBILIN (Moseow)

Given a polyhedral abstract sphere S, f: S -+ lE3 is called a morphism if

1. 1IF is isometrie on all faces F c 8,
2. 1(F) is a planar polygon,
3. 1 is an iInmersion of the edge-skeleton of S.

A morphism 1(8) is rigid if there is no non-trivial Hex of it.

Theorem 1. A morphism of a sphere 8 with centrally symmetrieal faees (zonohedron)

is rigid.

Corollary. Quadrillages of a sphere admit rigid morphisms only.

Theorem 2. Given a sphere with positive curvature vertiees only, if there is a morphism
which flexes it, then the sphere has at least 8 (2n + 1)-gons.

Corollary. A morphism of S with positive curvature veriices and at most 7 (2n + 1)-gons
is always rigid.

(jointly with STAN'KO, SHTOGRIN)
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The (p, q)-problem
Jürgen ECKHOFF (Dortmund)

The "(p, q)-problem" in combinatoiial geometry was introduced by HADWIGER and DE­
BRUNNER in 1957. In its "classical" form it asks for the smallest number of points needed
to "pierce" all members of a family J( of convex sets in }Rd having the (Pt q)-property.
This property states that among any p members of K., some q intersect. Here P and
q are given integers satisfying p ~ q ~ d + 1. If N(p, q; d) denotes the above minimum
number, thenHADWIGER and DEBRUNNER proved that N(p, q; d) == p - q + 1, provided
p(d - 1) < (q - l)d. To this day no other value of N(p, q; d) has been determined. Even
the existence of the remaining· numbers had not been established for 35 years. Their
finiteness was finally proved by ALOU and KLEITMAN in 1992.

In this sürveying talk, we presented an outline of the ALOU-KLEITMAN proof which
uses various ingredients from the combinatorial geometry of convex sets in a stunning way.
We also described how the bounds obtained can be improved in special cases, such as for
N(4, 3; 2) (it turns out that N(4, 3; 2) :5 282). A short review of general (p, q)-problems
(which are studi~d .in a much broader context today) was included.

Some problems on circle covering
Gabor FEJES TOTH (Budapest)

We present the following two results on coverings with circles:
Let Tn· be the maximum radius of a circular disc which can be covered by n closed unit

circles. We have

21r
T8 == 1 + 2cos 7 and rg = 1 + J2.

Let d(w) be the minimum density of unit circles covering a strip of width W, with
respect to the strip. It is easily seen that d(w) = w"':-w2 foT' 0 < W ~ V3, however, for

W > v'3 the determination of d(w) is a difficult task. We make a first step towards a
solution by showing that d(w) = W(2+~~) for v'3 ::; w ~ Wo with some wo.> J3.

On the area SUfi of a convex polygon and its polar e
reciprocal

August FLORIAN (Salzburg)

Let K be the unit circle centred at the origin 0, and let P be a convex polygon inscribed
in K. If P* denotes the polar domain of P with respect to 0, thep

S(P) = a(P) + a(P*) ~ 6

with equality only if P is a square inscribed to K(J. ACZEL an L. FUCHS, 1950).
If S(P) is much greater than 6, what can be said about the deviation of P from a

square? In this talk astability theorem is proved that says, e.g.:
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If 6 ~ fJ ~ 6.008 and S{P) ~ fJ, then there exists a square Q such that

pH (P, Q) ~ SJ2(fJ - 6) (pH denotes the Hausdorff distance).

On the other hand, there is a pentagram P such that

H - 4 1r 1r)~
p (P,Q)~;(cos8-cos4 vfJ-6

for every square Q.

Matching Rules.& Substitution Tilings
Chaim GOODMAN-STRAUSS (Fayetteville,Arkansas)

A substitution species E(T, a) is a set of tilings in r such that every bounded configu­
ration appears as the interior of same n-Ievel supertile an(A), A E· T - where T is a set
of tiles and 0 can be thought of as an "inflate and subdivide" procedure in that no tHing
in the species is invariant under any infinite cyclic group acting on En.

Now, typically, our tiles T can tile in f!1any ways other than in the tiling in E(T, a).
Our problenl becomes: Can we decorate our tiles and produce a new set of tiles T', such
that every tiling with the tiles T' is essentially a tHing in E(T, 0). In short, can E(T, a)
be "enforced by matching rules" .

VVe prove: (Theorem 1996) "Every substitution tHing (*) E(T, a) in En>l can be enforced
by rnatching rules."

vVhere (*) is an unfortunate technical, but mild candition:

(*) "such that the tiles T admit a set of hereditary edges for which the tHings in E(T, a)
are sibling edge to egde."

Fortunately, every known substitution tHing with polyhedral tiles T satisfies the condition
so we can conjecture

Conjecture: "Every substitution tHing with polyhedral tiles T satisfies (* )."~.

As a coroUary to the theorem: "Every substitution tHing (*) in En>l gives rise to an
aperiodic set of tiles T'" - that is, a set of tiles·that do admit a tHing of r, but
admit no tiling that is invariant under any oo-cyclic group acting on JE7I.

Quotient Polytopes and the Flag Action
Michael HARTLEY (Klang,Malaysia)

It has long been known that every regular abstract polytope is a quotient of a universal
polytope. In this talk I define an action, called the ßag action, of astring Coxeter group
on the set of 8ags of a polytope. We shall then see how the Hag action may be used to
show that any abstract polytope is a Quotient of a universal polytope. These results will
be applied to some cases of polytopes where facets are quotients of cubes.
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Integral bases of polyhedral cones
Martin HENK (Berlin) .

For a rational polyhedral cone C = pos{a1., .... , am}, ai E Zd, a subset B(C) c C n Zd
of minimal cardinality satisfying

Cnzd = {tnibi :ni E N,biE B(C),1 E N}
is called an' integral basis of C. We describe some geometrical properties of these bases
as weIl as relations to Diophantine'approximation problems and integer programming.

Generalized sphere packings in hyperbolic space
Ruth KELLERHALS (Göttingen)

For horoball packings Boo of extended hyperbolic spaee, the loeal density Idn(Boo ) for
eaeh element Boo E Boo can be well-defined and estimated from above by the simplicial
clensity funetion dn(oo) (Theorem of K. BÖRÖCZKY sen.). Here, dn(oo) is given by

, voln(Boo n S~g)
dn(oo),.= (n + 1) I (Soo) ,

VO n reg

where S~g c IRIn denotes the ideal regular simplex formed by the uankers" or base points
of n + 1 mutually tangent horoballs.

Formulae for dn (00) and the euelidean simplieial density funetion dn - Lare presented,
e.g.

n-l n-k

n+l n (k-l).2d 00 ---.--. --n( ) - n - 1 2n- 1 [! k + 1

3
d2 (oo) = -.

1r

,Applieations are discussed in eonnection with. the monotot:licity result
dn(r) /' dn(oo) for n» 1 and for hyperbolie manifolds Mn with .m cusps (i.e.
Mn = Mcompact U Cl U ... UCm , Ci diffeo. Nr- 1

X (0,00) with Ni euelidean compaet •
mf.):

2n

m·---
n(n + 1)'
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Geometrie Models far Quasierystals
Jeffrey c. LAGARIAS (Florham Park, NJ)

Quasicrystals are physical materials which have lang range order under translations as
indicated by X-ray diffraction patterns with sharp spots, but which exhibit symmetries
forbidden for crystals, e.g. lO-fold symmetry. This talk reviews point set models for
crystals and quasierystals (geometrie crystallography) and then presents a hieraehy of
sets as possible models for the atomic structure of quasicrystals and related materials.
A Delone set or (T, R)-set is a set X in Rn such that each ball of radius T contains at
most one point of X (uniform discreteness) and each ball of radius R contains at least
one point of X (relative denseness). A Delone set of finite type is a Delone set X such
that X - X is a discrete set. A Meyer set is a set X such that X - X is a Delone set.
The general class of Delone sets of finite type forms an "universal" class for most models
of quasicrystalline materials, incIuding random tiling models. Various characterizations
of Delone sets of finite type are given. Finally, two nations of "perfeet quasicrystal" are
described: sets X with perfect Iocal rules and linearly repetitive sets.

Regular Polytopes in Ordinary Spacei;~
Peter McMuLLEN (London) .

The nation of regular polyhedron has been successively extended from Platonic (con­
vex) polyhedron, through Kepler-Poinsot (star) polyhedron, Petrie-Coxeter< polyh<edron
(sponge) to Grünbaum-Dress polyhedron. Thus the faces and vertex-figures are regular
polygons, but not necessarily planar. DRESS completed the enumeration of regular poly­
hedra in }E3; in this talk, a much briefer proof of his eharacterization was presented. The
groups were also described; a key ingredient is the circuit criterion: the group of a regular
polytope is determined by that of its vertex-figure and its edge circuits. A new notation
for quotient polytopes was also introduced.. Finally, it was shown that, in addition to the
tHing {4, 3, 4} of IE3 by cubes, there are just 7 other diserete regular 4-apeirotopes in ]E3.

Applications of Topology To Geometrie Transversal
Theory

Luis MONTEJANO (Mexico City)

The main purpose of the talk was to introduce the following two relevant concepts for
the study of transversals of convex bodies

1. cahomological cycles of -X-planes in IRd

2. Separoids.

In order to show the importance of (l) I will just state the most simple generalization
of Hadwiger's theorem· for transversals which of course, with this ideas can be easily
generalized.

Theorem: Let F be an ordered family offaur convex sets in }R3 with the property that
every three of them have a line transversal which meets the sets consistantly with
the order, then there is an essential cycle of plane transversals to the whole family.
Furthermore the converse is also true.
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The idea of the praof uses heavily the notion of separoid which tries to eapture "the
separation structure and is related with the eoncept of order type. A separoid is a finite
set :F together with a relation ( I ) on the subsets satisfying

BIT {:} TIB

BIT =} SnT = 0
S' c Sand BjT =} S'IT.

Examples: Finite set of points or finite collection of convex sets in euclidean space with
the usual separation structure.

The following two. theorems for separoids are important for the study of transversals of
convex sets.

Theorem: Let :F be a family of convex sets in jRd. P a finite family of points in jRn,

d > n, <p: :F --+ P a bijection preserving the separation structure. Then the set of
all vectors v E §d-l for which there is a hyperplane transversal to aB members of :F
and perpendicular to v, is a hOInolocigal (d - n - 1)-sphere.

"Let us consider also the space f2(r, d) of all embeddings of r points generating jRd up to
affine equivalence. Then

Theorem: O(r, d) is a Grassmannean with a natural decomposition given by the Schubert
cells in" whieh the cells are the separoids.

Self-similarities and invariant densities for model sets
Robert V. MOODY (Edmonton)

Model sets (also calledcutand project sets) are generalizations of lattices. We introduce
the notion of averaging operators on suitable spaees of functions on model sets, these
averaging operators encoding information about entire elasses of self-similarities with a
give~ inflation factor. An averaging operator is a Hilbert-Schmidt opera:tor or the space
of continuous functions on the acceptance window of the model set. Its leading eigenvalue
(= 1) gives rise to an invariant density on the InodeI set. There is a strong connection
with the theory of continous refinement operators and this leads to a description of the e
invariant density as ·an infinte convolution product. We derive same properties by an
invariant density, inducting an infinite product expansion for the amplitude function.

Canonical Theorems far Convex Sets
Janos PACH (New York)

I present various structure theorems for families of convex sets, including the following
result of SOLYMOSI and myself. Let:F be a family of pairwise disjoint compact convex
sets in the plane, none of which is contained in the convex hull of two others, and let
r be a positive integer. We show that F has r disjoint LCrnJ-membered subfamilies :Fi
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(1 ::; i ::; r) such that 00 matter how \ve pick one element Ci from eaeh :Fi , they are in
convex position, Le., every Ci appears on the boundary of the convex hull of U~=l Ci'
(Here er is a positive constant depending only on r.) This generalizes some results of
ERDÖS-SZEKERES, BISZTRICZKY-G. FEJES TOTH, BARANY- VALTR and others.

We can also prove that if :F is a family of n eompact convex sets in the plane, no r of
which pair\vise intersect, then :F has t\VO disjoint lc;.nJ-membered subfamilies such that
no member of the first one intersects any member of the second. We do not know if under
the same assumption :F has lc,.nJ pair\vise disjoint members (r 2:: 3).

Symmetries of Tilings
Charles RADIN (Austin)

This concerned tHings of Euclidean spaces such as the kite&dart and pinwheel tHings of
the plane. The key feature of such tilings emphasized in this talk was their hierarehical
structure. Two themes were discussed: their statistical rotational symmetry; and the
problem of distinguishing such tHings using only global features. One solution to the
latter problem involved use of a "stahle manifold" under the hierarchical map.

NP-hard problems in combinatorial Geometry
Jürgen RICHTER-GEBERT (Zürich)

Matroids and oriented matroids are important objects of combinatorial geometry. While
rnatroids model incidence relations in linear vector spaces, oriented matroids in addition
model relative position information. If E = {I, ... ,n} is a finite set of labels and n E N
is an integer any matroid on E of rank d can be given by a map J1.: Ed ~ {O, I}, while
an oriented matroid is a map X: Ed --+ {-I, 0, +1}. Any oriented matroid gives rise to
an underlying matroid J.Lx == lxi. The orientability problem asks for the opposite:"Given
a Inatroid J.L. Is there an oriented matroid X with lxi = J.L?"

It is proved that this decision problem is NP-complete. The proof is done by encoding
3-satisfyability inta pseudoline arrangements with preseribed incidence properties.

~

Extremallattices
Rudolf SCHARLAU (Dortmund)

An overview on some recent notions and problems for lattices in euclidean n-space is
given. Starting from common properties of certain dense lattices (COXETER-TODD,

BARNES-WALL, LEECH, QUEBBEMANN in dimensions 12, 16,24,32, and others). H.-G.
QUEBBEMANN has introduced the nation of a modular lattice of levell. For smallieveis
l E {I, 2, 3,5,6,7,11,14, 15, 2~}, the nation of "extremality" ('Iarge minimum') is defined,
using the theory of modular forms. This poses an existence- and uniqueness-problem for
a finite list of parameters (n, l), which is briefly discussed. Work of B. VENKOV (mostly
unpublished) relates this analytic extremality to the elassieal nation of a lattice being
extreme, that is perfect and eutactic. This is achieved using theta series with harmonie
coefficients and spherical designs.
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On Constructing PL-homeomorphisms, isomorphie
triangulations and pairwise disjoint paths in the

plane
Rephael WENGER (Columbus, Ohio)

Let P and Q be homeomorphic polygons, possibly with holes. I described algorithms for
constructing piecewise-linear homeomorphisms from P to Q using O(n) vertices where n
is the original number of vertices of P and Q .

.Sphere Packings and Crystal Growth
Jörg N1. WILLS (Siegen)

Let K and C be convex bodies· in Euclidean d-space JEd, d 2:: 2 and let V denote the' 41.".'
volume. .

For a finite set Cn = {Cl, ... , Cn} c JE:d let Cn + K denote a finite packing of translates
of ](, if int((ci + K) n (Cj + K)) = 0 for i i- j. Finally let p > O. Then

nV(K)
d(K, Cn, pe) = V( C· C)conv n + P

is the parametrie density of the packing Cn + K with respect to p and C. p and C
control the influence of the boundary region of the finite packing, p its intensity arid C
its isotropy. A similar definition can be given for lattice packings. .

This definition has been introduced by the author in 1992, and it turns out that this
definition is good and flexible enough to developa joint theory of finite packings and
coverings.

Here we show for lattice packings of spheres that for large n and sui tably chosen p
and C one obtains Wulff-shapes, Le. the shape of real crystals. The C is responsible for
unisotropies by chemical bounds.

Even extreme shapes of crystals (e.g. whiskers) ean be realized via parametrie density
and density deviation.

Triangulations of Lattiee Simpliees
. - Günter M. ZIEGLER (Berlin)

This is a survey of both classical and recent work about unimodular triangulations of
lattice simplices: triangulations with only integral vertices into simplices of unit volume. e
(this topic relates e.g. to the geometry of numbers, torie varieties, Gröbner bases, .... )

Some, hut not all lattice simplices have unimodular triangulations. We describe a
large class of "Watanahe simplices" that do, and a large dass of "elementary simplices"
that don't.

A classical theorem of KUNDERSEN ET AL. (1977) shows that for every lattice simplex
some large (?) dilatation has a regular unimodular triangulation. An open problem is
to bound the dilatation constant: is there some Cd that depends only on the dimension?
We show that c = 4 suffices for 3-dimensional elementary lattiee simplices. A complete
solution even for 3-dimensional tetrahedra is still not availahle.
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PROBLEMS

1. For the background on regular polytapes, consult papers by McMullen and Schulte
(or wai t for "Abstract Regular Polytopes" ).

a) Let P be a discrete realization of a regular apeirotope, which has a full group
of translational symmetries. Suppose that P is blended (not pure, so that the
group is affinely reducible), and that one component of the blend is discrete.
Must the other component also be discrete? .

b) Let r == (Po, . .. ,Pn-l) be astring C-group, and let ~ == (ao, ... ,am-I) for
some 1 < m < n - 1 be such that Pj 1--7 Gj for j == 0, ... ,m -1 induces an iso­
morphism. The mix r o· ~ ~ r x ~ has generators (Pj, aj) for j == 0, ... ,n - 1,
with Gm = ... == Gn-I == f. Is r 0 ~ a C-group? (This is true·for m == 1 or
n - 1.)

Peter McMulien

2. Preliminary: Let Pi 2:: 2 and let W be astring Coxeter group oftype {PI"" ,Pd-I},
Le. the group (So, ... ,Sd-I) with relations

S; == 1

(SiSj)2 == 1

(Si_lSi)Pi == 1

for all i

for all i # j, j ± 1

for all i such that Pi finite.

Diagram: • Pt • P2 •.••~

[Let m be the universal polytope based on W.]

Let A be a subgroup of W satisfying

(1) skHk n w- 1Aw == 0 for all k, and

(2) Aw(W<i n W>i)Hk == AwW<iHk n AWW>iHk whenever i < k < j,

where W<j, W>i and Hk are the parabolic subgroups:

W<j == (SI: l < j)
W>i == (SI: l > i)

and Hk = (SI: l # k) .

[That is, fJJl/A is a well-defined quotient polytope.]
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Problem: ?? Then ?? (Proof (preferably!) or counterexample required).

AWW>i n AWW<i+l = Aw

and therefore

for all w E Wand for all i

nAwHi=Aw.
aB i

Motivation: It can be shown that any polytope 'lJ is isomorphie to a quotient
fm/A where A is a stabilizer of a given Rag of V u~der a certain action of
W. Classifying polytopes can thus be done by classifying quotients. It can be .
further shown that if A' is the stabilizer of a certain' ßag of a quotient VJi./A,
that AwHi = A'wHi for aB wand i. If it can be shown that A = A', aB other
results about these quotient will beeome much more powerful.

Michael Hartley

3. Find the minimum number n = n(d) with the property, that the unit d-cube can be
covered by n smaBer cubes.

Known: n(d) ~ d + 1 (perhaps the best possible).
Wlodzimierz Kupe~berg and Geibor Fejes T6th

4. Cut the d-cube in two parts with a hyperplane through the cube's center, so that

a) the diameter
b) the circumradius

of each part is minimum.

4t'

Wlodzimierz K uperberg

Solution: a) Let a hyperplane P cut a~ edge AB of the, unit cube in a point C,
so that vertices A and B are on opposite sides of the hyperplane and let
-'A, -B and -C be the centrally symmetrical images of the points. Then
(-B)( -A) is cut by the hyperplane in -C, and the points A and -B are on
one side of it. Consider a rectangle O(AB(-A)(-B)). It has edges length
vn-=I" and 1 and is cut by P into two equal parts with diameters not less
than J(n - 1) + (1/2)2. Since the diameter of one part of the cube is at least
the diameter of the corresponding part of the rectangle, it cannot be less than a
J(n - 1) + (1/2)2. However, this value is always attained when the cutting •
hyperplane is perpendicular to some edge. So we have

min diam = J(n - 1) + (1/2)2.

b) The circumdiameter is not less than the diameter. Let us take a cut perpen­
dicular to an edge of the eube, rninimizing the diameter. However, in this case
the circumdiameter is equal to the diameter of the parts. Hence

min circumdiam = min diam = Jn - 1 + (1/2)2.

Nikolai Dolbilin and Igor Sharygin
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5. A separoid is a finite set :F together \vith a relation ( I ) bet\veen certain subsets of
:F, satisfying

1) S IT {::} T I S
2) S IT =? Tn S = 0
3) S' c Sand S IT => S' IT

Fact: Every separoid can be realized \vith convex sets.

Problem: Characterize which separoids can be realized \vith points.

Luis Montejano and Javier Bracho

6. Given a lattice L c]E2 and an L-polygon P general, G(P):= card(L n P)
t E ]E2 \ L, x: Euler-char. .
Hadwiger and W. (1976) in Crelle Journal 28o, p.61-69 have shown

G(P) - G(P + t) ~ X(P)

Problem: Analogue in JEd, d ~ 3?

and U=" occurs for all X E Z.

Jörg M. Wills

7. a) Given a 3-polytope P = conv(vl"" , vn ),

conV(Wl,'" ,wn ) }

is combinatorieally
isomorphie to P

Problem: Ho\v complicated can 'Rk(P) be ?

b) Decision problelll TOR:
Given: a cell-decomposition C of the Torus.
Decide: is C realizable (i.e. Hat embeddable, no intersect.).
Problem: Is TOR NP-hard ?

I 2 3 I

4 5 6 4

7 8 9 7

"I 2 3 I

Jürgen Richter-Geben

8. Let G be a simple graph with vertex set V = {vo, ... , V4, Wb ... , wn }. Let
R(G) := {(f{wd,··· ,f{wn )) I f: V ~ IR3 is a standard embedding oCG} the
realization space;
standard: f{vo) = (0,0,0), f(vd = (1,0,0), f(V2) = (0,1,0), f(V3) = (0,0,1),
f(v4) = (1,1,1).
Let R(G, g) := {f E R(G) I f is topologically isotopic to g}.
Problem: How complicated can be R(G,9)? Characterize up to stable equivalence
the set of all sets of the form R(G, g). Does there hold a kind of universality
theorem?

Ulrich Brehm
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9. The following is a problem of C. ZONG:

Let P be a polytope formed by intersecting 2n closed halfspaces containing the unit
ball lBn of}Rn. Must P have a vertex at least ..;n from the origin? This is true for
n ~ 4.or if P has at most 2n vertices.

David Larman

10. Is there a tetrahedron T C JE,3 and a similarity s, such that sT can be tiled by
congruent copies of T, other than the threeobvious examples (is of the cube, ~ of
the cube, i4 of the rhombic dodecahedron circumscribed to the cube)?

Chaim Goodman-Strauss

11. a) Given p, q E {3, 4, .... }. Does there exist a regular {p, q}-tiling of some compact 'e.
surface S?

b) Find f : {3, 4, ... }2 H Z so that f(p, q) is X(S), where S is a compact surface
of minimal genus admitting a regular {p, q}-tiling.

Chaim Goodman-Strauss

Solution ~o part a): Let ~ + ~ ~ ~. ·Are there regular maps of type {p, q}?

Yes! Define W: ~ ~ r~
P

W is residueally finite.
Wl,' .• , 1.Un E Hf \ {I} => 3 horn. cp from W onto a finite group, such that
cp(wd f:- 1 'ti.
=> Normal subgroups

W / N = (Po, PI, P2) (Pi = TiN) is the automorphism group of a map with
p; = 1 = (Popd P = (PIP2)Q = (POP2)2. EOMUND, EWALD and KOLKANI proved
that. .

Egon SchuZte

12. Let S be the boundary of a convex body in ]R3. A geodesie circle of radius T on S ~

is a subset C of S such that the geodesic distance between each point. of C and a e
given point of S, the center of C, is at most r.

a) Consider a packing (covering) of at least three geodesie eireles of equal radius
on the boundary of a convex body such that each of them is a topological disco
Can the density of the cireles be arbitrarily elose to I? Cau it be I? What
happens in higher dim~nsions?

b) The boundary of a convex body with totational symmetry can be tiled with
two circles. Does there exist a convex body with this property, which does not
have rotational symmetry?

Gdbor Fejes T6th
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Theorem:

Conjecture:
t5n = 2(n - 2)v'3 + 21T'

n·1T
6n > Fi'- 2(n - 2)v3 + 21r

Pro 0 f: For n = 2 obvious. For n = 3 we give one surface where equality is
attained, for n 2:: 4 a large class of surfaees. Let n ~ 4 and (V, E) be the graph of a
triangulation of the sphere §2 \vith n vertiees such that tbe valency of each vertex
is S 6, where V = {I, .. . ,n}, E ~ (~).

~Remark on (a): Packing of geodesie discs on convex surfaces
- Let ön be the maximal possible density for a packing of n ;::: 2 geodesie discs of equal

radius on a convex surface.
n·tr

Let A be asymmetrie (n x n)-Matrix with aij = aji E [1,4] if
n

{i, j} E E and aij = 0 otherwise, such that E aij = 6 for each
j==1

i = 1, ... ,n

(i.e. each edge gets a weight between 1 and 4 such that the surn of the...weights of the
edges nleeting at a vertex is equal to 6 for each vertex). With each such matrix we
associate the following eonvex metric on §2, which is isometrie to a convex surface by
the theorem of Pogorelov. Let Gij :=- aij . ~, ßij := (aij - 1) . i·- Note that ßij ~ O.
Let )., ]2, ... ,jv(i) be the neighbours of the vertex i in the canonical cyclic order of
the enlbedded graph (V, E) on §2, where v(i) denotes the valency of i.

Figure 1 Figure 2
With the vertex i we associate the following set Mi: Mi is a unit dise with caps
having an angle of ~ at the cone point and with angles Qiit,··., Oijv(i) betweenthe cone points seen from the centre of the disco Ir {i, j} E Ethen the parts of
the boundaries of Mi and Mj corresponding to Q:ij = O!ji (see Fig. 1 and Fig. 2)
are identified. A triangle of the triangulation eorresponds to the interseetion of the
three corresponding sets Mi, which is a common cone point (see Fig. 2). (V, E)
is a triangulation of the sphere, thus we have by EULER'S formula n - e + ~e = 2,
thus e = 3n - 6. We have ~e == 2n - 4 shaded triangles, each having area J3 and
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sectors of unit discs having total area

L ßij = i (( L aij ) - e) = i(3n - 3n + 6) = 27r.
{i,j}EE {i,j}EE

i<j i<j

Thus the total area of the convex surface is (2n - 4) . J3 + 21r and the total area
of the geodesie unit discs is n . 'Tr. The set of the n unit discs contained in the Mi 's
forms the wanted packing with density

n·n

edge weights

~
4

n == 3:

The Mi 's are the Dirichlet-Voronoi dümains of the centres.

It remains tü construct for each n ~ 4 a triangulation of §2 with
satisfying (*).
For n == O(mod3) we can take the weighted graph G3m .

(special case, with the same construction as
for a triangulation).

n == 6:
where --:- indicates edge weight 2, aB
other edges having edge weight 1.

Recursive construction:

replace __A_. __ by G3(m+l) ==
~

e
~i

0

-t:

For n == l(mod3) and n == 2(mod3) replace one or both of the two triangles~

by ~. In the cases n = 4, n = 5 we get~ and A.
This finishes the prüof.

Remarks:

(1) The curvature measure is concentrated on those parts of the boundaries of the
circles which are also on the boundary of the Mi 'so Everywhere else the metric
is Euclidean.

(2) The set of possible weights for a triangulation satisfying (*) is a polytope or
empty. For the edge graph of the icosahedron this polytope is 18-dimensional,
on the ather hand there are also many triangulations allowing only one weight
matrix satisfying (*).

(3) For some graphs and weights the convex surface degenerates to a planar
convex set being regarded as two-sided. It is easy to characterize those graphs
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\vhere this can happen. On the other hand for describing the degenerated
case one l;las to consider also embedded graphs with multiple edges, such as

~ ~~ corresponding to V;\:J

regarded as a two-sided surface with 6 circles. In the theorem and conjec­
tures the convex surfaces shall be non-degenerate, Le. the boundary of some
compact convex set in JR3 with nonempty interior.

Conjecture: Each packingof n ~ 3 geodesic unit discs on a convex surface with
density 2(n-~·~+21f is congruent to 9ne of the packing~ constructed in the proof, i.e.

for n ~. 4 there is a triangulation of S2 tagether with a weight matrix A satisfying
(*) such that the associated packing (and surface) is congruent to the given one.

In Figures 3, 4 and 5 we show some views of the convex surfaces for n = 3,9,5.

Figure 3
Figure 5

Ulrich Brehm

Figure, 4

Solution to part (b): Consider the ellipsoid E in JEd (d ~ 3) defined by

with focuses 11 and 12 (112 - Itl < 2). Let M be a (d - 2)-manifold in E such that
the union U of the cones

Ki := {Xli I'x E M} , i = 1,2

is the boundary of a convex body K (e.g.: M := E n 11., where 11. is a hyperplane
separating 11 from 12 not orthogonal to /2 - 11.). In U the shortest paths joining
11 and 12 are pecisely the paths fIX U'XI2 with x in M. So, if 0 < p < 2, the two
geodesic balls C(ll, p) and C(/2' 2' - p) form a tHing of U.

Ludwig Danzer (and fOT d = 3 also Peter Schmitt, Ulrich Brehm et al.)
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13. Give a useful and precise definition of a hierarchical tiling in d dimensions; at least
for d = 2.

You may employ the idea of substitution, but neither translations norsimilarities.
The definition shall be applicable as weIl to JEd as to 1H[d.

Ludwig Danzer

14. Example: Given two sets of 3 points, on a 2-sphere any set of 3 angles or distances
which match are sufficient to force local eongruence (i.e. p, q E 8 2, same 3 data
and IIp - qll < f :::} p congruent to q).

Example: 4 points on a sphere. . .

5 distances <:1> '~ not local, no problem.

So 5 ·distances is fine.

Error:~ 4 distances and 1 angle, but 4 data on one triangle! •

Given lVI points in generic position on the 2-sphere, and ILllines defined by pairs of
points, with incidences I. A necessary condition for independence of the constraints
- angles A, distances D

jD'1 + jA'1 + 11'1 ~ 21 V '1 + 21L'1 - 3 for all subsets with lVI + ILI ~ 2 (i)
Ta be a minimal set forcing IDeal eongruence, add

IDI + JAI + 111 = 21VI + 21LI - 3 (ii)

Conjecture: (i) and (ii) are sufficient for a' minimal set foreing loeal congruence.

Comments..

a) If lAI = 0, distanees only (drop L), then this is true (Larman's theorem for
plane rigidity applies to the sphere).

b) If we take general eonfigurations of points and lines, and try to characterize
even independent incidenees, this is probably NP-hard.

e) Nothing like this is true on the plane for angles alone. (This problem is also
. very hard.)

cl) The counts IDI + JAI + 111::; 21VI + ILI- 3 etc. define a submodular function
. f: D U A u 1 ~ N which defines a matro~d on pairs of points (D) pairs of lines
(A) and pairs of points and lines (1). This generates a nice O(IVI 2

) algorithm.
e) This formulation takes care of "degeneracies"

~
cycle of angles

IDI + I~I + I{I = 4 + 4 >2 + 8 - 3 = 21V1 + 21LI- 3
.'. Forbldden.

Walter J. Whiteley

15. What are the packing properties (in JE3) ofthe double cone de- ~II' .

termined by the circle x 2 + y2 = 1, z = 0 (as the base) and the
two points (0,0,1), (0,0, -I)? Is (one of?) the densest packing
obtained by putting the base circles into thesquare faces of the
cubic lattice (and the points inta the centres of the cubes)?

Peter Schmitt
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16. a) For fixed k and n sufficiently large (k ~ 2) is it true that tbe volume of an n­
simplex is integral over the ring generated by the "areas" of the k-dimensional
faces? Is it true for k = 2, n = 4 ? (For k = 1, n ~ 1 it is well-known.)

b) Is it true that if the areas of the k-faces of an n-simplex are fixed, then there
exists (k smalI, n large) a one-parameter family of n-simplices ar, 0 ~ t ~ 1
such that each ur is not congruent to a~ for t f; s? Does vol(ur) change? Is
it true for k = 2, n = 4? (Peter McMullen claims to have such an example for
k = n - 2, n large and odd.)

Robert Connelly

17. Let A = {Xiii E Z, Xi E ]Rl} be a Delone set with parameters (r, R) and f : A ---t Z,
f{Xi) := i strict1y increasing. As 2r < lXi, Xi+ll < 2R it is

2r =: c < lXi - xjl < C .= 2R.
If(xi} - f{xj)1 .

'Rence f is a Lipscbitz map.

Conjecture: This is true for JEd, d ~ 2
Nikolai Dolbilin

Comment: M. BAAKE presented a preprint "Seperated nets in Euclidean space and
Jacobians of biLips'chitz maps" (1997) by D. BURAGO and B. KLEINER in which it
is proved that: .

There exists a seperated (== a Delone) set in the Euclidean plane which is not
biLipschitz equivalent to the integer lattice. So the conjecture fails for all n ~ 2.

It turned out that this question was first posed by M. CROMOV - "Asymptotic in­
variants for infinite groups." In NIBLO and ROLLER (eds.), Geometrie group theory.
London Math. Soc.; 1993.

Nikolai Dolbilin

18. Suppose T is a tHing of §2 with n congruent regions each of diameters~all~rthan
~. Can n be greater than 120?

Wlodzimierz Kuperberg

A historical comment: A rather similar question was posed by B. DELONE after bis
talk to a representative of the Soviet Space Agency ( a soviet analogue of the NASA)
in the early 1960's. The representative visited hirn to possibly get a consultation
on the following problem. Assurne Olle needs to build a large enough semispherical
construction ... on the moon (1). Since the construction was supposed to be erected
by robots it would be desired to have deviation from being congruent to each other
as little as possible (2). On the other hand, the limited size of a rocket gives astrang
upper bound fo.r the size of the pieces (3).

These three requirements inspired DELONE to the question: is it possible to tile a
sphere by congruent copies whose diameters are smaller than the diameter of the
fundamental domain of the symmetry group of the icosahedron?

Nikolai Dolbilin
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19. Is there a eonneeted non-simplyeonneeted rep-tile?

•Michael Hartley

2. layer 1111

J: and 3. layer

Chaim Goodman-Strauss

Example with 123 == 1728 tiles: Build the figured torus with unit cubes. Two such tiles
can be assembled to a 3 x 3 x 4-block, 4 . 4·3 of which rebuild the basic cube as
12 x 12 x 12-cube.

Example with 24 tiles: Again two tiles fit together build­
ing a rectangular box, twelve of which give a bigger
tile (See the figure). The edgelengths are x ==~
and y == .yg if z is choosen to be of unit length. It
should be not to difficult to give in this manner ex­
amples for tiles with even higher genus ("just glue two
or more tiles together at their xz-faee").

Gerrit van Ophuysen

20. a) Chara~terize all neighborly regular polytopes!
Expample: {3,5}s.

b) An abstract regular polytope'P is called centrally symmetrie, if there exists an
involution in the center of r(p) which does not fix any vertex. In how many
ways can a centrally symmetrie regular polytope be centrally symmetrie?

Egon Schulte

22.

21. This is a question not a problem:

Fenehel's Conjeeture: In a finite Fuehsian group you can find a subgroup without
torsion.

What is the first reference? (Known: J.Nielsen, Mat. Tidsskift B 1948.)
Hans-Christoph Im Hof

For a covering C of the plane by closed unit circles, let D(C) denote the part of the e
plane covered at least twice by the members of C. Let d(p, q) denote the distance
between two points p and q of the plane, and for p, q E D(C) let l(p, q) denote the
length of the shortest path connecting p to q inside D(C). Determine (give bounds
for) the value

l(p,q)
sup sup -.--.

C p,qED(C) d(p, q)

G6.bor Pejes T6th
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23. Consider an n-gon in JE2, n odd. Let the midpoints of every edge move parallel to
the edge, then the center of gravity stays at its place and the area is fixed.
Problem: What is the situation in JE3?

Luis M ontejano

24. The carpenter's rule problem from Joe MitchelI:

Consider a polygonal are A embedded in the Euelidean plane. Can one continuously
unfold A inta a straight line segment keeping each edge of A at the same eonstant
length and at no time having any self-intersections?

Robert Connelly

-25. Given n points Pl, ... , Pn in the plane and given k, decide whether there exist k
lines isolating the given points. What is the complexity of this decision problem?
(Is it NP-complete?)

K omei Fukuda

26. Strange Unfoldings of Convex Polytopes ,~L

An unfolding of a convex polytope F! in }R3 is a planar embedding of its- boundary
obtained by cutting the edges of some spanning tree T of the graph of P and flat­
tening the boundary along the remainjng edges. Two natural (but naive) que~tions

are

(a) Is every unfolding of a convexpo)ytope non-selfoverlapping?

(b) Is every unfolding of a convex polytope unambiguous?

Here an unfolding is defined to be unambiguous if the .original polytope is uniquely
constructible from it.

Both questions have negative answers. There are many constructions known for
the· negative answer of (a), but Makoto NAMIKI (namiki@wa.ka.c.u-tokyo.ac.jp) con­
structed the stnallest example, askinny tetrahedron, which admits a. selfoverlapping
unfolding. Note that it has a non-selfoverlapping unfolding as weIl. . ~.:.

For the question (b), Tomomi MAT- ~.

sm (tomomi@misojiro.t.u-tokyo.ac.jp) con- ~
structed a polytope with 6 faeets and 5 ver-
tiees which admits an ambiguous unfold-
ing.These two examples can be fot~nd in the Geometrically

Selfoverlapping
UnfoldPolytope package for Mathematica by ambiguous

unfolding
NAMIKI and FUKUDA (1992). unfolding
Consequently more intelligent questions .are

(a') Does every convex polytope admit a 'non-selfoverlapping unfolding?

(b') Does every convex polytope admit an unambiguous unfolding?

As far as I know, these questions ~re still open. I conjectured at the Dagstuhl
meeting on Computational Geometry (February 1997) that

(1) Any minimum-Iength spanning tree of a eonvex polytope induces a non­
selfoverlapping unfolding.
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The positive answer to this would resolve the question (a') positively as weIl.

Recently Günter ROTE (rote@opt.math.tu-graz.ac.at) has constructed counterex­
amples to this conjecture. The smallest among them has 7 faeets and 9 ~ertiees

(1997). ROTE constructed also a polytope whieh admits a eombinatorially ambigu­
ous unfolding (1997). One can eonstruct twoeombinatorially different polytopes
from such an unfolding: MATSUI's example mentioned above gives rise to two geo­
metrieally different polytopes whieh are combinatorially equivalent.

Two minimum-perimeter selfoverlapping unfoldings and their polytopes

Combinatorially
ambiguous

unfolding and
its two

polytopes

m······
..~_ tI .' '.' .' •

'~. .

~
" .. ", ..'

. ...t_

Note that a question (related to
(a')) on the existence of an un­
folding without overlaps, where
it iso allowed to cut any place in
the boundary, was answered posi­
tfvely by ARONOV and O'ROUKE

. (1991). .The key idea was to
cut through geodesic paths from
a 6xed vertex to all other vertiees.
In fact this result motivates us to
pose another open problem.

(2) Does a shortest-path spanning tree of a convex polytope induce a non­
selfoverlapping 'unfolding?

Here a shortest-path spanning tree is a tree composed ofshortest paths from a fixed
vertex to all other vertices.

K omei Fukuda

Remark: Recently, Mr. Wolfram, SCHLICKENRIEDER (schlicke@math.tu-berlin.de) a
has reported that he found several examples that answered the ques-.,
tion above negatively. We shall post some example(s) in t~e www page
http://www.ifor.math.ethz.eh/staff/fukuda/unfold-home/ unfold_open.html as soon
as we verify his claim.

K omei Fukuda
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