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Tagungsbericht 23/1997

Galois Groups and Fundamental Groups

15.06 - 21.06.1997

The meeting on Galois groups and fundamental groups \vas organized by D. Harbater
(Philadelphia), Y. Ihara (Kyoto) and B. H. Matzat (Heidelberg). It was attended by 49
participants, coming from Austria, France, Germany, Israel, Japan, Netherlands, Russia,
Spain and the USA. .

The 26 talks during the week gave an excellent overview on the state of the art in inverse
Galois theory including the Noether problem and on recent results on arithmetic fundamen­
tal groups including achievements concerning the anabelian conjecture ofGrothendieck and
the relationship bet,veen the absolute Galois group of Q and the Grothendieck-Teichmüller
group. In a special session problems \vere presented that might be interesting to solve
\vithin the next time.

Tbe meeting was rounded up by a hiking trip in the lovely surrounding of the institute.
The team spirit of the Oberwolfach Institute also appeared in a music session given by
several of the participants.
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Vorträge:

s. Abhyankar: Arithmetic fundamental groups

No\v that Harbater and Raynaud, as weH as Pop, Tamaga\va, and others, have thrown
suffieient light on the algebraie fundamental group of an affine algebraie eurve over an
algebraically closed ground field, it is time to start speeulating about the algebraie funda­
mental group in some other situations. Towards this end, I shall present some ra\v material
and pose same eonjectures. As usual, let me proeeed in a historieal manner..

During my Ph.D. work, my guru Zariski advised me to use Chevalley's loeal rings to a
algebraeize Jung's surface desingularization of 1908 for earrying it over from the eomplex .,
domain to the ease of positive eharaeteristie p. In my Amer. Jour. paper of 1955, I
eoneluded that this eannot be done beeause in that case the algebraie Ioeal fundamental
group above anormal erossing of the braneh loeus is not even,solvable. A simplified version
of the example I eonstrueted for this purpose is the surfaee F(Y) = y(m-l} + XY + Z
over an algebraieally closed ground field k of eharaeteristie p, where q > 1 is any power of
p and m > 1 is any integer, and I am using the abbreviation (i) = 1 + q + q2 + ... + qi.
Clearly the braneh loeus Z = 0 has a simple point at the origin, and it turns out that
Gal(F, k(X, Z)) = Gal(F, k((X, Z))) = PGL(m, q). This supports the

Local Conjecture. For d ~ 2 and t 2:: 1 we have 1r~(Nt,t) = Pt(p).
Here Nt,t represents a neighbourhood of a simple point on a d-dimensional algebraic variety
over k from whieh ,ve have deleted a divisor having a t-fold normal erossing at the simple
point. ~/Ioreover, Pt(p) is the set of a1l (p, t)-groups, i.e., finite groups G for ,vhich G/p(G)
is an abelian group generated by t generators, where p(G) is the subgroup of G generated
by all of its p-Sylo\v subgroups. The above exarnple also supports the

Global Conjecture. For d ~ 2 and t ~ 0 we have 1rA(L~tt) = Pt(p).
· Here L~,t represents the d-dimensional affine spaee Lg over k frorn which ,ve have deleted

, t hyperplanes H 1, • •. l H t ,,~hieh together with the hyperplane at infinity have onIy normal
crossings. This ean appropriately be generalized by replacing the hyperplanes by hyper­
surfaees. The above example supports the

Local Global Conjecture. For d ~ 2 "re have 1r~G(Lttl) = P1(p).
Here the algebraie IDeal-global fundamental group 1r~G(Lg,l) is defined to be the set of all _
Galois groups of finite unramified Galois coverings V of L~,l for \vhich there exists an affine .,
line L in L~ meeting BI in a point P such that the inverse images of P and H 1 on V are
irredueible. This Ioeal-global eonjeeture is obviously stronger then the t = 1 eases of the
above loeal and global eonjeetures as weIl as of the so called Abhyankar eonjeeture for a
onee punctured affine line proved by Harbater.
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E. Bayer-Fluckiger: Multiples of trace forms and Galois cohomology

Let k be a field, G a finite group and let L be a G-Galois algebra over k. Let

qL : L x L ~ k, (x, y) ~ TrLjk(xy)

be tbe trace form. Tbis is a G-fonn.
Set rC8;QL = qL EB ... ffi qL (orthogonal surn). (tbe G-Galois algebra corresponds to ahorno­
~

morphism 4>L : f k ~ G, which induces f/J. : Hl(G, 7l/2Z) ~ HI(G, 7l/271) = H1(k, Z/2Z).
The image of x E Hl(G, 7l/271) is denoted by XL : XL = tPL(X)')'

vVe have the following results: Let ks be a separable closure of k, r k = Gal(ks/k).
Theorem [E.B.-J.-P. Serre]: Suppose that cdL(fk) ~ 1. Let Land L' be t"ro G-Galois
algebras. Tben

qL ~ Qu <==> XL = XL' for all X E H 1(G,71/271).

Theorem [E.B.-l\1. l\1onsurre]: Suppose that cdL(rk) ::; 2. Let Land L' be t}VO G-Galois
algebras. Then -

2 C8; qL ~ 2 ® qu <==> XL . (-1) = Xu . (-1) for all X E H1(G, Z/2Z),

where . denotes cup product.

P. Debes: On the Beckmann-Black problem

S. Beckmann and E. Black proved in two different ways that if K is a number field and
E / K is a Galois extension ,vith abelian group G, then E / K is the specialization of a
Galois branched cover of pI defined over K with group G. vVe sho,ved that. this result
cao in fact bc extended to any field K. E. Black conjectures the same holas even for
non-abeliail groups G. \Ve have t,vo further results about her conjecture. The first one is
that it implies a positive ans,ver to the Regular Inverse Galois Problem. The second one
is a :mere' form of the conjecture over ample fields. In this mere form, the realizing Galois
cover is required to be defined over K only as mere cover; a field K is called ample if each
smooth K-variety defined over K has infinitely many K-rational points provided there is
at least one.

D. Haran: Regular embedding problems and patching of fields

vVe give an elementary proof, based on aur method of 'patching of fields,' to the following
theorem of Pop:

Theorem: Let K be an ample field, let x be transcendental aver K, and let E be a
finite separable extension of K(x). Let F/E be a finite Galois extension and assume that
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G(FjE) acts on a finite group H. Then the corresponding split embedding problem has a
regular solution. Le., there exists a Galois extension FjE such that F is regular over the
algebraie closure i< of K in Fand there is an isomorphism (): H )d G(FjE) ---7 G(FjE)
such that res 0 () = pr, \vhere res: G(F/ E) ---7 G(FjE) and pr: H)d G(F/E) ---7 G(FjE).

Our proof essentially reduces the problem to the ease E = K(x), F = K(x), \vith some
special eonditions.

(A joint \vork \vith M. Jarden.)

D. Harbater: Formal patching and embedding problems in finite characteristic

Patching in formal or rigid geometry has been used to obtain information about funda­
mental groups of curves X in characteristic p - e.g. the set 1fA (X) of finite quotients of
7TI, and the solvability of embedding problems. This includes the solution of Abhyankar's
Conjecture, the geometrie case of the Shafarevich conjecture, .and results on 11'"1 of pro­
jeetive curves of genus g. In formal geometry, the key result is Grothendieck's Existence
Theorem, hut sometimes eonstructions require ;smaller open sets' to be patched - e.g.
Spee of eomplete loeal rings at points on elosed fibres. Recent work \vith Kate Stevenson
allo,ys reducible k-curves to be thickened to curves over k[[t]], and G-covers of re,dueible
curves to be thickened to covers overk[[t]], by giving the local behavior near the singular
points. This leads to simpler proofs of results relating to Abhyankar's Conjecture for the
affine line, and to information about 1rl of projective curves.

Concerning the latter, \ye kno",· by SGA.l that each G E 1fA(X) has the form G =
(al, bl , ... , ag , bg ) such that Il(ai, bi ] = 1, in arbitrary characteristic. The full converse is
false' in eharacteristic p, but our patching methods yield a partial converse. For example,
a group G of this form wiIllie in 1fA(X) provided that H = (al, ... , ag ) <JG and that either
pt I H I or Out(H) = 1; pt o(ai) Vi.

The above methods can be used as weIl to obtain a simpler proof of Pop's result that
quasi-p embedding problems have solutions~ over affine cun!es in characteristic p. This also
uses the p-embedding property, that over an affine variety X, any embedding problem \vith
p-group kernel can be solved, and moreover can extend any given solution over a closed
subset X' c X. A. proof of Pop's result then proceeds by thickening the affine cun'e X over
k[[t]]; blo\ving up a point ~ to get an exceptional divisor E; and using the p-embedding
property to obtain an extension of the given cover whose behavior, over the generic point
{O of the thickening ( of ~, agrees \vith that of a quasi-p cover of Al near 00. The resulting
cover is then patched to this quasi-p cover of Al to obtain the desired conclusion. Moreover,
a similar strategy can be used to show the analogous result in higher dimension.

M. Jarden: Large-small normal algebraic fields

Let K be a number field. Denote the absolute Galois group of K by G(K). For each
(J E G(K) let k «(1) be tbe fixed field of a in k. Denote the maximal Galois extension of K
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\vhich is contained in K(a) by K[a]. No,,~ choose a E G(K) at random and let N = K[a].
Then N has some properties of large algebraic fields:

• (la) N is P.~C;

• (Ib) G(N) ~ Fw '

On the other hand N has some properties of small algebraic fields (i.e., of nurober
fields). They are related to elliptic curves E without complex multiplication \vhich are
defined over N. Ta this end let l range over the set of prime numbers and let E, (resp.,
E,~) be the group of points of E annihilated by l (resp., a po,ver of l). Then the following
statements hold:

• (2a) g(N(E,~)/N) is an open subgroup of GL(2, Z,);

• (2b) For almost aHZ, SL(2, Z,) ~ 9(N(E,~ )/N};

• (2c) E has only finitely many cyclic isogenies \vhich are defined over N_;~

• (2d) Analog of Tate's Conjecture: There is a natural isomorphism r~

EndN(E) ® Z, ~ Endz,(G(K)]71(E).

• (2e) Isogeny theorem: Let E' be another elliptic curve Qver N without complex
multiplication. If E, ~G(K) E; for a set of prime numbers I of a positive Dirichlet
density, then E and E' are isogenous.

Property (2) is proved in a joint ,vork ,vith Gerhard Frey.

G. Kemper: Invariant fields of finite irreducible reflection groups

We prove the following
Theorem: If G is a finite irreducible reflection group defined over a field "li;' then the
invariant field k(\l)G of G is purely transeendental over k.

If char(k) does not divide IG J, then already the invariant ring k[V]G is isomorphie to
a polynomial ring. Hence we only have to consider the modular case.
The main ingredients of the praof are:

• The classification of the finite irreducible reßection groups by Kantor, Wagner, Za­
lesskiI and Sereikin

• The following proposition: Let f}, ... , In E k[V}G be homogeneous and algebraic
over k(ft, ... , In} and

nndeg(fi) < 2 IGI·
i=t

Then k(V)G = k(fl' ... In)'

(Joint work with Gunter Malle)
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Question: Is the above theorem still true if the irreducibility hypothesis is dropped?

M. Matignon: Order p automorphisms of p-adic open discs

This lecture is areport on a common ,vork ",-ith B. Green (Stellenbosch) and based on two
preprints:

• On Liftings of Galois covers of Curves, to appear in Compositio

• Order p automorphisms of the open disc of a p-adic field~ Laboratoire de Mathema­
tiques Pures de Bordeaux, series preprint.

Let R be a complete discrete valuation ring (char(R) = 0), 1f a uniformising parameter
with k := R/1fR assumed to be algebraically closed ( char(k) = p > 0 ). vVe are interested
in the description of finite order R-automorphisms of R[Z] and more particularly those of
order p (the residue characteristic). In the sequel a is an order p automorphism \vith at
least one fixed point. Denote by Fu := {Zo, . .. , Zm E Kalg: 1Zi I < I} thc set of fix points
whieh ,ve assume K-rational (Le. Zi E 1fR.) Denote by (DO, Fu ) the marked open disc
(DO := SpecR[[Z]] ) we can define the minimal semi-stable model 'D0 which spreads the
specialization of Fu to smooth distinct points; a is an R-automorphism of 'D0

• We describe
the geometry of the special fiber V~ and in particular one shows that Fu specializes to only
terminal components. In doing so we prove .
Theorem 1: If m = 0 then a is linearizable i.e. after change of a parameter a(Z) = (Z
for ( a suitable primitive p-th root of unity.
Theorem 2: If m < p, then 'D~ has only one component which is a projective line: Le.
the fixed points Fq are equidistant.
Theorem 3: If m < p, there are only a finite number of conjugacy classes in AutR(R[[z]])
of order p automorphisms \vith no inertia at (1f) (i.e. the order of Cf mod 1r is p ) and such
that 1Fu 1= m+ 1. tdoreover: \ve give a set of representatives which are induced by p-cyclic
covers of]PI \vhich have good reduction.

Note: \Ve proved Theorem 2 for m = 2,3,4 and ~1. Raynaud indicated the general case
in a letter to the authors.

M. Matsumoto: Topological methods in studying Galois actions

Let V be a geometrically connected variety defined over a number field K c C. Then \ve
have an outer representation

Pv : Gal(K/ K) ~ Qutnl (V).

Belyi proved that this is injective for V being a projective line minus three points. It is
generalized in [~1, ereIle, 96] to any affine curve X with non abelian fundamental group.
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The proof goes as follo'vs.

1. Consider tbe configuration space of n points on X. CaU it V.

2. Construct n - 1 (tangential) morpbisms from projective line minus tbree points to
V.

3. Construct a (tangential) morphism from X to V.

4. The pullback of these morphisms becomes a Q-rational point, ,vhich serves as a
(tangential) base point.

5. Use areal two-O topological relation between the image of 1Tt (X) and the image of the
fundamental groups of projective lines minus three points, to sho,v that if an element
of the Galois group acts triviallyon 1Tt (X), so does on the fundamental,group of the
projective line minus three points, t'~::'~

It seems that the varieties \vhose outer representation extends to a Grothendieck-Teichmüller
group action are special. The ahove V seems to be a mixture of such a special variety and
a general cun:,e X.

s. Moehizuki: The ~abelian geometry of eurves over Ioeal fields

Let K be a field of characteristic zero. Let K be an algebraic closure of K. \tVrite r K ~
Gal(K/ K). Next, let X be a variety over K, and fix a prime number p. Then we introduce
notation as follo,vs:

II~r ~ 1Tt (X) (for some choice of base-point)

~~r ~ 1Tt (X ®K K)

ßx d~ the maximal pro-p quotient of Ll~f,

Since the kernel of the quotient L\~f -i' ßx is normal not only in ~~f, hut also in n~rf,

we may form the quotient IIx of rr~r by this kernel. Then ,ve get an exact sequence of
topological groups

Of course, it follows from the construction of this exact sequence that this exact se­
quence is determined by the K -variety X. On the other hand, the anabelian philosophy 0/
Grothendieck leads one to conjecture that, /or certain (ttanabelian") X and certain types 0/
K, the converse also holds, Le., that X is determined as a K-variety by this exact sequence.
This anabelian philosophy is partially realized by the follo,ving result:
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Theorem. Let p be a prime number. Let K be a subfield 01 a finitely generated field
extension of Qp' Let X K be a smooth variety over K, and YK be a hyperbolic curve over

K. Write Hom~m(XK,YK ) for the set 0/ dominant K-morphisms Irom Xx to YK , and
Hom~~n(IIx,Ily ) for the set 0/ open, continuous gro'Up homomorphisms IIx -+ lly over
r K, considered up to composition with an inner automorphism arising from ßy. Then the
natural map

is bijective.

The proof of this Theorem may be regarded as an application of the p-adic Hodge theory
of Faltings and the theory of the p-adic exponential map due to Bloch-Kato and builds on
techniques introduced by Tamaga\va over finite fields. .

P. Müller: Finiteness results for Hilbert's Irreducibility Theorem

Let f(X, t) E Q[X, t] be an irreducible polynomial. Set 'R := {to E ZI f(X f to) is reducible
}. It is weIl kno\vn that I'R n [-n, n]l < Cn1/2 \vith C depending on f. In vie\v of
I(X, t) = X 2 - t, this bound is optimal \vithout further assumptions on f.

vVe use a Galois theoretic translation to a question about finite permutation groups in
order to show that I'R.I < 00 under various assumptions on the Galois group of f(X, t) over
Q(t). i\ simple sampie result is

Theorem: Let f(X, t) E Q[X, t] be an irreducible polynomial 0/ prime degree.
Assume that the curve given b'y f = 0 has positive genus. Then n is finite.

Stronger versions of this theorem for non-prime degree and analogs over number fields
require the classification of the finite simple groups. 'Vork on this is in progress.

H. Nakamura: Galois representations in Teichmüller modular groups

The Galois representation in 1Tl (Pl_ {O, 1,00}) gives a parametrization of GQ = Gal(Q/Q)
by a standard parameter / : GQ -+ F2 (0- H f(7(x, y)) valued in the, free profinite group
\vith free generators x, y together with the cyclotomic character X : GQ -7 ZX.

Th.l: Let Ba be the profinite braid group generated by Tl, 72 with the braid relation
T172Tl = 72TI T2. Then the follo\ving relation holds:

(IV): 1(7(71,7:) = T:P2 (cr) fq(T?, Ti)7:P2(cr) (71 T2)-6P2 (cr)

Here, P2 : GQ -7 Z(I) is the Kummer l-cocycle w.r.t. the roots of 2.

B

(0' E GQ).
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Tbe geometrie fundamental group of the moduli stack of I-pointed projective smooth
curves of genus 9 is called the (profinite) Teichmüller modular group t 9,1, It is generated by
a standard system of Dehn-Lickorish-Humphries t,,~ist generators al, ... ,a2g, d satisf)ing
certain braid-relations, (ala2a3)4 == dd' and the lantern relation.

Th.2: There exists a suitable tangential base point on the moduli stack which gives the
Galois action GQ ~ ..4utr9,1 such that

a(ai) == fl7(wi' a~)-la~(u) fl7(wi: a~), a(d) == a.x(u).

where Wj == (al" ·ai_di.
Using Th.I, one can rewrite the Galois action of Th.2 in a more compatible \vay with

pants-decomposition of the Riemann surface r leading also to a :half' of Drinfeld's pentagon
relation for tbe Grothendieck-Teichmüller group. (Cf. also talk by L.Schneps).

M. Jarden: Large-small normal algebraic fields

Let K be a number field. Denote the absolute Galois group of K by G(K). For each
a E G(K) let f< (a) be the fixed field of a in i<. Denote the maximal Galois ex'tension of K
,,~hich is contained in i«a) by i<[a]. Now choose (J E G(K) at random and let N == K[al.
Then lV has some properties of large algebraic fields:

• (la) N is PAC;

• (lb) G(JV) ~ Fu.'.

On the other hand N has same properties of small algebraic fields (i.e., of number
fields). They are related to elliptic curves E ,vithout complex multiplication \vhich are
defined over N. To this end let I range over the set of prime numbers and let E, (resp.,
E, XI ) be the group of points of E annihilated by 1 (resp., apower of I). Then the follo\ving
statements hold:

• (2a) Q{lV(EI:ro )IN) is an open subgroup of GL(2, Z,);

• (2b) For almost alll, SL(2, Z,) ~ Q(N(E,Xl)/N);

e · (2c) E has only finitely many cyclic isogenies which are defined over Ni

• (2d) Analog of Tate's Conjecture: There is a natural isomorphism

EndN(E) @ Z, ~ Endz,[G(K)]ll(E).

• (2e) Isogeny theorem: Let E' be another elliptic curve ovoer N without complex
multiplication. If E, ~G(K) E; for a set of prime numbers l of a positive Dirichlet
density, then E and E' are' isogenous.

Property (2) is proved in a joint work with Gerhard Frey.
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F .Pop: Recent and new results in anabelian geometry

After presenting the philosophy of the so called ~anabelian geometry', the following results
,vere discussed:
A) Birational type results: For a field k, and rational prime number l t= char(k), let k' be
the maximal abelian pro-l-extension of k[J.too]' Set further kJl = (k')' and G~ = Gal(k" /k).
Theorem [Pop]:

1. Global type results: Let K be a finitely generated field of absolute transcendence
degree ~ 2. Then K is functorially encoded in G'J<.

2. Local type results: Let k be a locally compact field, and Klk a function field of e
transcendence degree ~ 1. Then K is functorially encoded in G'K -t G'{

B) Anabelian curves:
Theorem [Tamaga:wa]: Every affine, hyperbolic curve X over a finitely generated field k
is functorially encoded in 1T.(X) up to pure inseparable covers.

For very recent and very strang results by Mochizuki see these proceedings.
Finally, the section conjecture ,vas mentioned, and same possible consequences for the
arithmetic of rational points 'Vere discussed.

M. Raynaud: Covers of curves and moduli

Let P be the projective liue over a field k. Pick four rational points ai, i = 1, ... l4. Let
G = As be the alternate group acting on 5 elements.

How many cunres of P, Galois ,vith group G, are there ,vith signature (3,3,3, 3)?
When k has char 0, we can count them - there are 9 solutions.
No,v suppose, char(k) = 5. Let E be the elliptic curve ,vhich is the double cover of P
ramified at the ai- If E is ordinary, there are 4 solutions. If E is supersingular, there are
3 solutions. Those numbers are obtained by a elose study of bad reduetion from char °to
char 5.

s. Reiter: GAR-Realizations of classical groups of Lie type

We call a tripie (A, B, C), A, B, C E GLn(q), ABC = id, rk(A - id) = 1 with (A, B, C) :$
GLn(q) irreducible a Belyi-triple.
Theorem: For all f,g E lFq[X] monic, deg(f) = deg(g) = n, /(O)g(O) :I 0, (/,g) = 1, exits
up to conjugation in GLn (q) one Belyi-triple s.t.

minpol(B) =: JB = / and fAB = g.

(This ,vas independently proved by H. Völklein.)

10
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Using classification theorems ('~Tagner, Kantor and others) (see Kemper:s talk) we can
determine the group generated by a Bel)'i-triple. (E.g. let A be a transvection, JB =
(X - l)ffl(X - i)ffl: JAB = (X + l)ffl(X + i)m E IFp[X] for p == 5 mod 8, order(i) = 4. Then
GIZ(G) ~ PCSP2m(P) for pf m.)

Using the rigidity criterion (Belyi, lvIatzat, Thompson) ,ve find GA/GAR-realizations
of elassical groups of Lie-type (linear, unitary, orthogonal and symplectic groups) G(p), p
a prime: over Q under same conditions on the defining characteristie of these groups. (E.g:
PSP2m(P) possesses GAR-realizations over Q for (m,p) = 1 and P~ ±1 mod 24.)

(The results for the linear groups have "been already proved by Folkers and ~1alle.)

M. Saldi: p-rank and semi-stable reduction of curves

Let R be a discrete complete valuation ring, ,vith fraction field K, and algebraically closed
residue field k of·charaeteristie p > O. Consider a germ X := Spec Ox of astahle R-curve
at closed point x. Let Y ~ X be a finite Galois cover of group G, a p-group, such that
YK ~ X K = X XR K is etaie...t\.ssume that Y admits a semi-stable moder~': Y ---7 Y
over R. If the point x is smooth: Raynaud proved that the p-rank of the fibr~~~·of a closed
point of Y in Y equals zero. "Ve consider the case where x is an ordinary double point. If
the inertia subgroup H at a elosed point y of Y is cyclic, we compute the p-rank of the
fibre of y in .Y, in particular it is less than I H I -1.

A. Sehmidt: Extensions of number fields with prescribed Ioeal behaviour

"Ve investigate the existenee of extensions of number fields ,vhich are are unramified outside
a finite given set of primes Sand with preseribed Ioeal behaviour at one or several primes
in S. vVe resurne several older and newer results: eonjectures and counterexamples. Then
,ve investigate the following situation: .

A.ssume that K is a number field, S a finite set of places of K containing a11 archimedian
primes and a1l primes dividing a given prime number p. 'VVe denote the maximal extension
of K, ,vhieh is unramified outside S, by K s.
Theorem: The loeal fields (Ks)p associated to primes p of K s lying over a prime pES
are p-closed loeal fields.
Theorem: If S contains all primes dividing p then Gs(K) = Gal(KslK) is a profinite
duality group at p of dimension 2.

L. Schneps: The new version of the Grothendieck-Teiehmüller group

~ introduced a certain subgroup Ir of tbe we11-known Grothendieek-Teichmüller group
GT defined by Drinfeld. Ir is obtained by adding two new relations to
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the definition of GT. It is kno\vn that GT acts on the (algebraie) fundamental groups of
moduli spaees of genus 0 eurves \vith n marked points, respeeting some natural homomor­
phisms behveen these groups. Furthermore, tbe absolute Galois group is ineluded in GT
and its natural action on the fundamental groups of moduli spaces is compatible \vith this
inclusion. Our purpose ,vas to generalize these results to higher genus. Indeed, \ve ean
show tbat Ir an automorphism group of the (algebraic) fundamental groups of a11 moduli
spaces of genus 9 curves \vith n marked points, and that tbe natural homomorphisms be­
t,veen these fundamental groups are respected by the action of Ir; furthermore we again
have an inclusion of tbe absolute Galois group into Ir.
J-P. Serre: The Euler-Poincare distribution of a profinite group e
Let G be a profinite group and let p be a prime number. Let Ce be the eategory of finite
dimensional lFp-veetor spaces ,vith continuous action of G. l\1ake tbe follo,ving finiteness
assumptions:

• dimHi(G, A) < 00 for every ..4 E ob(Cc ) and every i E Z.

• cdp(G) < 00.

Then, for every A E ob(Ce ), the E-P eharacteristic e(G, A) of A is defined by:

e(G,.4) = E(-l)idimIr(G,A).

Let t/>A be the Brauer eharacter of A. It is a locally constant map

4>A : Greg ~ Zp,

,,,here Greg is the subspaee of G made up of the elements of (profinite) order prime to p.
The main result of the leeture is:

Theorem: There is a unique Qp-valued 'distribution' Pe on Greg such that:

1. For every A E ob(Ce ), one has e(G, A) = (tPA, PG)'

2. J.le is invariant by conjugation aod by s I---t sp.

If one defines JHri = lim H~(U, Qp), where U runs through the open subgroups of G, aod H~
~ 1

is 'continuous cohomology', each IHr is in a natural way an admissible linear representation _
of G. Let Jli denote the distribution-eharacter of Bi (which is a distribution on G). Then: ­
Theorem: Pe = E(-l)ipi .

Various examples can be given, in \vhich the J.ti, and hence J.tG, are computed explicitly:

• G = Gal(f</ K), K finite extension of Qp. One finds that /-LG = -d· &1, where
d = [K : Qp] and &1 = Dirac at 1.

• G is a p-adic Lie group without p-torsion. One finds /-LG = FPHaar' ,,,,here F(s) =
det(l - Ad(s-l)).
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K. Stevenson: Fundamental groups of projective curves

Let D be a projective curve over a field k = k of characteristic p > O. 'VVe would like to
detennine 11"1 (D), the algebraic fundamental group: or at least its set
1I"A(D) of finite quotients. Currently neither trI (D) nor 1I"A(D) is known \vhen the genus 9
of D is greater than or equal to 2. ~10reover, there are no conjectures (even for a ~generic'
curve D). We discuss the following t\VO necessary conditions for a finite group G to He intrA(D) :

e 1. (Grothendieck) G = (al, bl , ... , ag , bg ) s. t. 1r[a;, b;) =1

2. the p-rank of the maximal abelian p-quotient :5 9

For a prime to p group H, (1) is actually also sufficient, and for a p-group P, (2) issufficient as long as D is a 'generic' curve of genus g. We consider groups öf=the form
G = P >3 H to sho\v that (1) + (2) are not sufficient in general. Then \ve show that in thecase that H can be generated by 9 elements, there is a necessary and sufficient condition forG to He in 7rA of a generic D. This condition involves comparing the H-module structure
of P with that of HO(C, Kc) where C -+ D is an H- Galois cover. 1t is equivalent (in thiscase) to a condition of Nakaj ima (1984).

J. Swallow: Reduction of field of definition of Quaternion algebras and embed-ding problems "

Let K be a field of characteristic not 2 and let 1 --* C2 -+ H --* G = Gal(L/K) -+ 1be a Galois embedding problem. We consider the relationship of thc subgroup e~beddingproblems 1 -+ C2 ~ M' -+ M = Gal(L/KAI) ~ 1 and the full group embedding"problem.
r-,.·fore specifically, we examine the relationship between the class in Br2(K) which is thcobstruction to the full embedding problem and the class of the obstruction to a subgroup
embedding problem in Br2(K(Vd »).

vVe review results of Schneps and Kiming and outline a method for deterrnining condi­tions over K for a Quaternion "algebra aver K(va )to be split. If the analogous problem
for a tensor product of Quaternion algebras over K(va }could be solved, one \vould have
a method for 'descent' of obstructions to embedding problems of 2-groups. We announce
the result that, for a, X t y, d, r E F, x2 + y2 = d, A = (a, rd + ryVd)F(Vd) is split if and only
iE, first, (a, d)F is split, and if a == c2 - d modulo squares in F for c E F then additionally(a, r(d - cy»(d, r)F is split for some r E F. The latter condition that a == Cl - d mod F*2roust occur if ais not already a square in F.
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A. Tamagawa: The fundamental groups of algebraic curves in characteristic
>0

• k : algebraically closed field of characteristic p > 0

• U : (smooth, connected) curve over k

• X : compactification of U, 9 = genus(X), n = ~(X - U)

Theorem: (g, n) is recovered group-theoretically from 'Irl (U).
(i.e. 1rdU) ~ 'TrI (U') => (g, n) = (g', n')) ..

Theorem: Assume 9 = 0 and either k = IFp or n ::; 4. Then the isomorphism class of •
the profinite group 'TrI (U) determines completely the isomorphism class of the scheme (not
k-scheme) U.

(i.e. for such curves U, U', 'TrI (U) ~ 1f1 (U' ) <=} U ~ U' )

H. Tsunogai: The stable derivation algebra associated with genus one braid
group

Let C be a onee punctured elliptic curve over Q dand C = C xQ Q. We want

to determine the image of GQ = Gal(Q/Q) under the representation <pgro-l : Go. ~
OUt1rl (C)pro-l and its Lie algebraization Lieepgro-l. For this purpose ,ve consider the
configuration spaee C x C \ ß of t'\vo points on C and its fundamental group, that is, the
braid group '1rl(C x C \ ß) of two strings on C. We have a natural homomorphism f :
Out7TI(C x C\ß)pro-l -+ Out1rl(C)pro-l, ,vhich commutes with the Galois representations

cpgro-l and <P~~~~6' By explicit Lie calculus about the Lie algebraization of f, '\ve obtained
the follo'\ving:

Theorem: The homomorphism f is NOT surjective.

Since the image of GQ under <pgro-l is contained in the image of f, this theorem gives
a new constraint for the Galois image. Using this constraint, we determined the Galois e
image under Lieepgro-l in degree :5 12 for a generic elliptic curve. This is the first step to
the stability in the case of genus one.
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N. Vila: Arithmetical-geometrical constructions of Galois groups

In this talk ~·e consider constructions of Galois groups arising from Galois action of GQ
on some arithmetical-geometrical objects. I present joint ,vork with A. Reverter. First, we
summarize results concerning images of mod p Galois representations attached to elliptic
curves. Dur main concern is to compute the image of mod p Galois representation for each
elliptic curve E /Q with conductor N :5 200 and for each prime p. The images of mod p
Galois representations attached to the product of two K-isogenous elliptic curves a.re also
detennined. Concerning Galois groups arising from mod p Galois representations attached
to modular form we have obtained, using cusp farms oflevell, that the groups PSL2(pr), r
eveo, PGL2 (pr), r odd, 2 :5 r ~ 10, are Galois groups over Q, for infinitely many primes p.
Explicit conditions on P are obtained. Using modular fonns of level 23,29,31 and ,veight
2 eigenvector of the Hecke operators, and previous results ,ve obtain that PSL2 (lFp2) are
Galois groups over Q, for all p ::; 2069.

H. Völklein: Cases of abelian braid group action and associated Hurwitz spaces

The rigidity criterion in the ease of 3 branch points has been used extensively by Belyi,
Thompson, ~1atzat's school and others to realize various classes of almost simple groups
over Q. The largest body of simple groups - those of classical Lie type- admit a quite
natural class of rigid generators, the Belyi triples. They ,vere used to obtain realizations
over Q for various classical groups G(p),p a prime, by ~dalle, Häfner, Folkers, Reiter and

·others.
Last year I introduced the Thompson tuples, ,vhich yield rigid generating systems of

length n + 1 of the groups PGLn(q) and PUn(q). This can be used to realize these groups
over Q for n even, n ~ q. The Thompson tuples yield the only kno,vn rigid generating
systems of length > 3 of any almost simple group.

In joint ,vork ,vith J. Thompson we found related generating systems of SPn (q) of length
n/2 + 2 ,vhich are not quite rigid, hut veryelose: The pure braid group induces an abelian
permutation group on inner classes of these tupIes. The associated Hurwitz spaces are
unirational over Q in may cases. This yields realizations of PSPn(q) over Q for q odd,
n ~ 4q2 and q a square. The latter condition cau be replaced by various congruence
conditions on q, toD.

M. Zieve: The classification of non-affine exceptional polynomials

I discussed joint work with Bob Guralnick. For the first result , let f be a univariate
polynomial over a perfect field k; we say that f is indecomposable
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over k if it is not the (functional) composition of two lower-degree polynomials over k.
vVe examined ,vhen it eould happen that f is indeeomposable over k hut decomposesover
the algebraic elosure of k. Building on ,vork of Guralnick and Saxl, we sbo,ved this eould
only happen if tbe degree of f is eitber a po,ver of char(k), or is 21 or 55. The latter t,vo
possibilities da oeeur, over fields of ebaracteristie 7 and 11 respeetively, and we classified
a11 examples of these hvo degrees.

The bulk of the proof is tbe group-theoretic eontribution of Guralnick and Saxl, but to
classify the sporadic examples ,ve needed a result sho,ving that certain Galois extensions
,vere determined by their ramifieation data. vVe also applied this latter result to anöther
problem, namely the classifieation of non-affine indecomposable exceptional polynomials.
These are indecomposable polynomials f(x) E k[x] for which (f(x) - f(y))/{x - y) has no e
absolutely irredueible faetors in k[x, y], and such that Gal(f(x) - t, k(t)) is not a group of
affine permutations. Following work of Fried, Guralnick, and Saxl, such polynomials can
only exist if k has characteristie 2 or 3; examples \vere produced by ~1ueller, Cohen and
I\1atthe,vs, and Lenstra and me. \Ve have no"r exhibited further examples and sho,vn that
\ve have the eomplete list.
Berichterstattung: S. Reiter

The author of tbe report thanks a11 of the speakers for sending a I9'IEXversion of their
talk resp. revising their talk.
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