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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 24/1997

Mathematical Continuum Mechanies

22.06. - 28.06.1997

The meeting was organized by J.M. Ball (Oxford), R.D. James (Minneapolis), and
A. Mielke (Hannover). The guiding topic was the mathematical analysis of problems in
continuum mechanics, mainly in the field of elastic deformations of Bolids. However, the
area was wide enough to include new developments from material science on the one side
and from abstract partial differential equations on the other side. A focus was set on the
development of microstructure in the deformations of Crystals and their analysis using,
for instance, Young measures or convex integration.

Eachmorning session combined two to four talks under one special topic and in­
cluded an extended discussion in the plenum. The topics were 'Fracture and cavitation',
'Microstructure', 'Time-dependent problems', 'New mechanical theories', and 'Lower­
dimensional theories'.

Abstracts

Stuart Antman
Quasilinear problems 0/ nonlinear viscoelasticity

We study the quasilinear initial-boundary-value problems governing the motion in space
of nonHnearly viscoelastic rads (of strain-rate type). We desribe reasonable constitutive
restrietions that ensure that these problems have globally defined classical solutions. (Our
methods are applicable to the study of the motion of any nonlinearly viscoelastic bodies of
strain-rate type that are governed by quasilinear initial-boundary-value problems with one
independent spatial variable.) We devote special attention to tbe characteristic technical
difficulties of rod theories that follow from the underlying geometrical significanee of
the governing equations, and from the consequent dependence on space and time of the
natural basis for a11 geometrical and mechanical vector-valued functions. These difficulties
prevent our analysis from being a routine application of available techniques.

We employ very general models for rads that ean suffer flexure, extension, torsion
and shear. In these models the contact forces and couples depend on strains measuring
these effects and on the time derivatives of these strains. We ensure that there is a strong
mechanism of interna! friction by requiring that the mapping taking the strain rates to
the contact forces and couples be uniformly monotone..'The governing equations form
an eighteenth-order quasilinear system of parabolic-hyperbolic partial differential equa­
tions in one space variable. This system is singular in the sense that certain eonstitutive
functions appearing in the principal part of the differential operator blow up if the strain
variables He on a surface corresponding to a "total compression". The existenee theory
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for this system or even for its restricted version governing planar motions has never been
studied. The heart of our paper is the introduction of reasonable constitutive hypotheses
that enable us to obtain an apriori bound preventing a total compression and apriori
bounds on the strains aod strain rates. These bounds on the arguments of our constitutive
functioris allow us to replace the original singular problem with an equivalent regular prob­
lem, which we analyze by using the Faedo-Galerkin method, with a key convergence proof
relying on tbe monotonicity of the contact forces and couples with respect to the strain
rates. Most of our effort is devoted exploiting the structure of the governing equations,
which reflects the geometrieal, mechanical and constitutive behavior of the rods.

Andrea Braides
Non-monotone stress-strain relations and sur/ace energies
(This is a joint work with G. Dal Maso and A. Garroni) .

In a discrete model let an elastic bar be identified with a system of n equally spe
material points interacting through an array of non-linear springs connecting neighbouring
points. We suppose that the force due to each spring depends on its relative elongation
c following a law (J = 'l/Jn(c), We assume that there exist 0 < Cn < E:~ such that tPn
is increasing on (-00, E:n ], 'l/Jn is decreasing on [En , E:~], and vanishes on [E:~, +00). This
means that each spring has a (nonlinear) elastic behaviour up to the critical value Cn of the
relative elongation, and that a softening phenomenon occurs between this value and the
fracture threshold E:~. In addition we assume as uaual that 'l/Jn(O) = 0, and 'l/Jn(e) -+ -00

as e -+ -00.

Let xi, i = 0, ... ,n, denote tbe loeations of the material points in the reference
configuration, and let ui denote the corresponding displacements. If ~n = 1/n is the
distance of two neighbouring points, the energy of the system is

(1)

where wn is the primitive of 'l/Jn vanishing at O. The displacement un = (ui) corresponding
to an equilibrium configuration in this discrete model is a stationary point for cn with
appropriate boundary conditions.

In order to derive acontinuum model consider the variationallimit of the functionals
(1) as n tends to +00. The critical strains Cn and the maximum stresses (Jn = 'l/Jn(en)
are assumed to be equibounded. Let In be any increasing funetion coinciding with 'l/Jn on
( -00, €nJ, and let 9n be the rescaled function e

9n(t) = tPn (;n + €n) , t ~ O.

As these functions are monotonie it is not restrictive to assume that they converge, up
to a subsequence, pointwise to two functions I and g, respectively. Let Fand G be their
primitives vanishing\at 0, and define & on SBV(O, l) as

E(u) =f F(u(x)) dx + L G ([u)(x)) ,
o zESu
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where Su is the set ofdiscontinuity points of u. The functionals En converge in a variational
sense to the funetional E; moreover the loeal minima and stationary points of E can be
eompletely charaeterized. Under natural equi-coerciveness conditions, we also obtain
that the minimum values of En for a given total elongation tSl eonverge to the minimum
value of E with tbe same elongation, and (a suitable interpolation of) tbe eorresponding
displaeements eonverge (np to a snbsequence) to a displacement which minimizes c.

This approximation property provides a first justification of the ehoiee of an energy E of
the form (2) for a eontinuum model allowing for damage and fraeture t and a eompactness
argument shows that such funetionals are the ooly ones that can be obtained by a limiting
procedure starting from a disrete model with non-linear springs with qualitative properties
deseribed above.

Oscar Bruno
Energetics in Martensites

The behavior of shape-memory alloys is governed by a shape-deforming phase transition
between a high-temperature, low-strain phase (austenite) and a low-temperature, high­
strain phase (martensite). The eonserved and dissipated energies in martel!§.itie transfor­
mations are macroscopic material properties which can be determined fro~"'experiment
and which, together with the properties of heat release aod exchange, deter~~ite the form
in which these phase transitions take plaee. .

In this talk I will discuss this principle in connection with pure crystals as< weIl as poly­
crystalline martensites, and I will present a number of associated mathematical results.
Finally, I will compare our predictions with corresponding experimental results.

Carsten Carstensen
Numerical analysis 01 the relaxed double weIl problem

Motivated by applications in microstructures of material science, in micromagnetics, or
in optimal design problems, the double weH potential is the most prominent example of.
a non-convex energy density. The sealar variant

(for distinct given F., F2 ) is under question where F denotes the gradient of the displace­
ment u : n 4- lR.

A direet minimization of related variational problems is a hard task since there may be
no (elassical) solution in the continnous case and a cluster of loeal minimizers in a discrete
case. Ir the main interest is on the macroscopic displacement field (Le. the weak limit
of a minimizing sequence), on the Young measure (generated by minimizing sequences),
then a simple minimization of the relaxed problem (replacing W by its lower eonvex
envelope W**) is shown to be sufficient and ean be performed utilizing standard software.
Apriori and aposteriori error estimates for the stress field and parts of the strain and
Young measure are shown. This justifies the numerical experiments and allows the design
of efficient self-adaptive mesh-refinement algorithms. Partial regularity of solutions as
absolute errar contro} (involving explicit estimates far a11 arising constants) for a reliable
computation are indicated.
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Sophia Demoulini
Young measure solutions tor systems 0/ mixed type and the recovery 0/ distributional
solutions

The method ofimplieit time diseretisation (Lt.d.) ean be used to eonstruct measure-valued
solutions of the evolutionary problems whieh are associated with a non-eonvex potential
and admit a variational formulation. I foeus the analysis partlyon such constructions
and partlyon the validity of the Lt.d. as a method to construct regularisations for
conservation laws. As a model problem I construct solutions to the anti-plane shear
problem Wt = Vv, Vt = V.a(w) on an open bounded set in n dimensions, with a = V4J
and ifJ non-convex. Non-convexity renders tbe problem hyperbolic-elliptic and to solve
it I discretise in time tbe equivalent quasilinear wave equation Utt = V.a(Vu). The key
observation here is that the energy non-increase must be used to obtain estimates for the
approximate solutions. By exactly the same observation the Lt.d.. yields weak solutionsJii
the equation ofviscoelasticity Utt = V.a(Vu)+ßUt. It is useful to compare with the V•.
measure solution eonstructed by Kinderlehrer and Pedregal for the forward-backward he"at
equation Ut = V.er(Vu). I show that this solution is unique within the elass of measure­
valued solutions whieh satisfy an independence property, namely tbat (1 and the identity
are independent variables with respect to the measure. Regarding the admissibility of the
metbod of Lt.d. I show that in tbe parabolic case one ean recover classical weak solutions
in the case of a strictly convex potential. I also discuss results in joint studies with Stuart
and Tzavaras eurrently underway: i) the Lt.d. gives regularisations for conservation laws
which satisfy generalised entropy-entropy Bux inequalities (Lax entropies averaged by
the Young measure) as introduced by Tartar and used by DiPerna ii) the method can
be used to construet entropy satisfying distributional solutions for the equations of I-cl
elastodynamics.

Georg Dolzmann
Existence 0/ minimizers tor a variational problem in magneto-elasticity

We prove existenee of energy minimizing configurations for a tw~dimensional, variational
model of magnetoelastic materials capable of large deformations. Tbe model is based on
an energy functional which is tbe surn of the nonlocal self-energy and the loeal anisotropie
energy. Sinee tbe functional fails to be weakly lower semicontinuous the direct method
in the calculus of variation cannot be applied. Existence is obtained by rewriting the
minimization problem as a partial differential relation and using recent existenee theorems
for Lipschitz solutions. .

Irene Fonseca
Optimal design results tor elastic membranes

The first part of this talk concerns joint works with Gilles Francfort. Here we seareh
to characterize the effective, or relaxed, energy of a mixture of two materials when the
thickness of the sampIe approaches zero. The underlying mathematical model ia also
relevant to tbe study of brittle damage, and for this ease we are able to fuUy identify the
damage evolution, induced by amin min principle, while for the former optimal design
problem the question remains open, as we are unable to tackle the corresponding max
min problem associated to the minimization of the compliance.
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now becomes

Precisely, with OE := W X(-E, e), w C JR.2 open, bounded domain, and with u : OE -t R3
adeformation of the sampie, following earlier work by Ciarlet, Le Dret and Raoult, and
others. Let n := w x (-1,1), Yl = Xl, Y2 = X2, Ya = e-lXa, VE := UE(Yb Y2, EYa), so that
an energy

(0:=1,2)

In W(Dovlc1D3v) dy.

Here, W(F, {a) := W(F) where F is a 3 x 3 matrix whose first 2 coIumns are the columnes
of F and the third column is ~a. Assuming that Wb W2 grow at infinity as J{IP, p > 1,
and that Wi({"I{a) = Wi(el - ~3} for i = 1,2 and for all 3 x 3 matrix «(, ~3), we can show
that

with J... (8,v) = 2LW(8, Dv)dxo

for all (Jo E [0,1], v E W1tP(w, JR3) and 8 E Loo(w, [0, 1]). We have the follomng charac­
terizations

J(9o,v) .-

Jw (80 'v) .-

Ie(X, v) .-

W(Oo,() .-

inf{ limI.(x.. v.) : t x. = 80, v. -+ v in LP},
inf{ limI.(x.. v.) : X. ~ 80, v. -+ v in LJ'},
In [xWl(Dole-lD3v) + (1- x)W2 (Dov/e-1D3v)] dx

inf{ f [XWl(t + Da4J) + (1- X)W2 (( + Daq»] dXa : 1 X= 00
1(0,1)2 }(Otl)2

tP E WJoP( (0,1)2, JR3) }

with Wi ({) := inf{ Wi«(I{a) : e3 E IR.3 l, and where we onIy consider cylindrical mixtures,
Le. XE are characteristic functions independent of X3'

On the second part of the talk, and in joint work with Emilio Acerbi and Nicola Fusco,
we consider particular "bulk" energy densities for membranes

where ~ = ({t, {2) is a d x 2 matrix, and 1I({) := {11\~2 Er. Here 0 ~ J(t) :5 c(! + Itl) is
a Cl function, not necessarily convex. We show that loeal minimizers U E W I ,2(W, JRd) of

with lI(v) := Dlv 1\ D2v, are COt7 for all 0 < '"( < 1. This is obtained using the lj,7

regularity theory, as weIl as, following similar ideas by Baumann, Phillips, and Dougherty,
higher integrability of A := IDIUI-;ID2UI2, B := Dlu - D2u.
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This regularity result, in turn, provides existence of "classical" solutions for disconti­
nuity problems that appear in fracture mechanics.

Gilles Francfort
Fracture mechanics as seen /rom an energy minimization standpoint
(This is a joint work with J. J. Marigo)

Griffith's theory of brittle fracture is somewhat at a loss when trying to predict crack
initiation in an uncracked elastic sampIe; it also finds it difficult to determine the crack
path; finally, it is restricted to smooth evolutions ofthe crack length, even along predefined
crack paths.

We propose a model which does away with the previously meotioned obstacles. Of
course it does so at a price, at least for the time beiog: the only permissible "loads" are
boundary displacements. . _

A surface energy of Griffith type is introduced for aoy crack r (closed subset) of n _
being the N -dimensional domain occupied by the sampIe), namely,

where k is the fracture toughness of the material. The bulk energy is characterized by an
elastic energy density W. Then, for aoy crack-state r, and aoy displacement "load" U,
the bulk energy is

In a time-discretized evolution correspooding to a sequence of loads U1, • •• ,Un ,. .. the
crack-states f j are then such that

for a11 r with r j - l C r.
A corresponding time-continuous evolution is presented in the case of monotonica11y

increasing one-parameter family of "loads" .
We show that the formulation produces crack initiation in finite time, as weH as a

complete determination of the crack growth along a predefined path. Also embedded in
our model is the determination of a (or the) optimal crack path.

The formulation lends itself to numerical computations in complex loading and g.
metric situations. A few numerical resuts are presented. •

Jens Frehse
Some regularity for nonlinear mixed boundary problems

Elliptic equations or systems

(1)

with linear growth of Ei, are coosidered in a domain of Rn with convex corners. Dirichlet
and Neumann boundary may touch in a smooth line or in corners. (1) is supposed to be an
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Euler equation of a variational problem. A simple trick yields weighted H3/2,2-estimates
for the solution.

F\irther considerations yield, for n =- 3, Vu E L3+6 in corners, Vu E L 10/ 3+6 if
the separating line between Dirichlet and Neumann is smooth. For n = 3 the second
derivatives are in L6/S-6 (which is probahly not optimal). The reader may think of tbe
equation 6 u = /, however, the theory is very general and applies in many nonlinear
situations, also for Navier-Stokes or 66.

Bernd Kirchheim
Microstructures with finite sur/ace energy: The 9-well problem

Let K C MfJx3 be the 3 cubic-tü-tetragonal weHs, Le. K = U~=l SO(3)Di where

n 1 = diag{..\-2,..\, ..\), D 2 = diag(A, A-2, A) and D 3 = diag(..\, A, ..\-2).

We prove that any Lipschitz u : n c ]R3 --t JR3 which satisfies

i) Vu(x) E K for almost every x E n.

ii) each set Ei = {x; Vu(x) E 80(3)Di} is of finite perimeter.

isa loeal laminate. This means for each x E n there is a radius R > 0 such that UIB(x,R)

is affine either on tbe whole ball or on both halfballs determined by a plane through x.
The proof is based on a careful analysis of the geom~tryof the phase boundaries Uj 8. Ei .
This together with the Liouville theorem for sets of finite perimeters from work by Dolz­
mann and Müller about the 2-well problem enables us to overcome difficulties due to the
noncommutativity of 80(3r We derive suffieiently easy to handle algebraic eonstraints
Ieading to the nonexistence of nonlaminatial mierostructure whenever ..\ i= 1. Although
we essentially use special symmetries of K, our approach should also exclude the exis­
tence of nonlaminatial zero-energy states for more general weHs (aod generic choices of
the parameters of the weHs).

Jan Kristensen
Nonlocality 01 quasicon.vexity

In this talk I present an example of a smooth function defined on n x m matrices (n ~

3, m ~ 2), which equals a quasiconvex function on any ball of radius 117, but which is
not itself quasiconvex. As a consequence we deduce that in dimensions n ~ 3, m 2:: 2
there is no "Ioeal condition" which for smooth functions is equivalent to quasiconvexity.
In particular it follows that there can be 00 eondition involving ooly the function and a
finite number of its derivatives, which is both necessary and sufficient for quasicoovexity.

Herve Le Dret
Nonlinear lower dimensional theories: asymptotics and the projection method
(This is a joint work with Annie Raoult)

The presentation is in two parts. First, we reeall our derivation of nonlinear membrane
theory from three-dimensional nonlinear elasticity via r -convergence arguments. Starting
from a three-dimensional cylinder of thickness 2c, made of a nonlinearly elastic material
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with stored energy function W : M3 -t lR, we show that when € -+ 0 energy minimizing
deformations eonverge (in an appropriate sense) toward deformations ~ from w C IR2

into ]R3 that minimize an energy of the form Iw QWo(Vifi) dx+ force terms, where QWo
is eonstructed from Wasfollows: Set Wo(F) = infzEIR3 W(Flz), Le., minimize W with
respect to the third eolumn veetor, and let QWo be the quasi-convex envelope of Wo.
Various properties of the membrane energy are discussed: frame indifference, isotropy
and degeneraey under eompression. The case of the Saint Venant-Kirchhoff material is
entirely computecl.

In the second part of the talk, we consider the same kind of Questions when kinematic
assumptions of Cosserat type are made at the onset. Typically, 3D deformations are
assumed to be of the form 4J(x) = ifi(Xl' X2) +X3d(Xl' X2), aod dis a director field. It is thus
a mix of the projection method aod the asymptotic method in the nonlinear case. We show
that the unconstrained Cosserat hypothesis leads to the right limit nonlinear membrane
behavior described above, while such constrained director assumptions as Idl = 1 do no_
and are thus inappropriate in the membrane regime. In order to describe the asymptotic
behavior of the director field, we are led to introduce necessary and suflicient conditions
for weak lower semi-continuity and relaxation results for functionals of the calculus of
variations on Wl,p x V. These conditions generalize the classical notions of convexity
and quasi-convexity.

logo Müller:
Rational Extended Theromdynamics

Extended Thermodynamics uses balance equations and IDeal constitutive equations as
field equations for the field u

pA(U)IA = TI(u).

Every solution is a thermodynamic process. The entropy inequality hA(U)lu = E(u) ~ 0
is used to find restrietions on the constitutive funetions which appear in the form of
integrability conditions for the entropy density and the entropy flux hQ (0 = 1,2,3).

The instructive application of extended thermodynamics lies in the field on mon­
atomic gases where the moments of the particle distribution function may be chosen as
variables.

At high pressures the light scattering properties of such gases are governed by the
phenomological relations of Navier-Stokes-Fourier, the constitutive relations of ordinary
thermodynamics. But at low pressures the list of variables has to be extended (sie!) to
include hundreds, or even thousands of moments.

The interesting field of applieation of extended thermodynamies occurs with shoa
waves. The shock structure problem, Le. the dependence of the width of the shock on thP
Mach number, is a promising field. It seems now that the proper description will again
require the use of very many moments.

Michael Ortiz
Nonconvex energy minimization and dislocation structures in ductile single crystals
(This is a joint work with E. A. Repetto)

Plastically deformed crystals are often observed to develop intricate dislocation patterns
such as labyrinth, mosaic, fence and carpet structures. In this paper, such dislocation
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structures are given an energetic interpretation witb tbe aid of direct metbods of tbe cal­
culus of variations. We formulate tbe theory in terms of deformation fields and regard the
dislocations as manifestations of the incompatibility of the plastic deformation gradient
field. Witbin tbis framework, we show that the incremental displacements of inelastic
solids folIowas minimizers of a suitably defined pseudoelastic energy function. In crystals
exhibiting latent hardening, the energy function is nonconvex and has wells corresponding
to single-slip deformations. This favors microstructures consisting locally of single slip.
Deformation microstructures constructed in accordance with tbis prescription are shown
to be in correspondence with several commonly observerd dislocation structures. Finally,
we show that a characteristic length scale can be buHt into the theory by taking ioto
aceount tbe self energy of the dislocations. The extended theory leads to scaling laws
which appear to be in good qualitative agreement with observation.

Felix Otto
Domain branching in uniaxial fefTOmagnets
(This is a joint work with R..Choksi and B. Kohn)

Consider a ferromagnet with a single preffered axis ("easy axis") for tbe m~gnetization

(mathematically speacking a three-dimensional vector field of unit length) in absence of
an applied magnetie field. It is observed that there are domains where the magnetization
varies smoothly ("Bloch domains" ), separated by discontinuity surfaces ("Bloch walls").
It is further observed that the size of these domains strongly deereases when approach~ng

a boundary plane of the sampie whIch is perpendieular to the easy axis ("basal plane"),
a phenomenon called domain branching.

We show that this phenomenon can be understood as coming from tbe minimization of
the micromagnetic energy. The micromagnetic energy, a functional of all vector fields of
unit length, is the sum of three contributions: The exchange energy (which penalizes the
Bloch walls), tbe anisotropy energy (which penalizes magnetizations not parallel to the
easy axis) and the magnetostatic energy (which can be seen as penalizing the divergence
of the vector field, including its singular contribution at the boundary of tbe sampie).

This non convex variational problem is not explicitely solvable; it even seems difficult to
make use of tbe corresponding Euler-Lagrange equations. Instead, we turn to estimating
the minimial energy direct1y. More precisely, our analysis is based on rigorously deriving
the scaling of the minimal energy in the pbysical parameters. This approach has been
introduced by Bob Kahn and Stefan Müller.

We compare the minimal energy among all vector fields whieh do not refine towards
the basal plane (vector fields which are constant in the direction of the easy axis) with
the minimal energy among all vector fields. We find that the latter one is smaller in the
regime of interest because it seales differently in the physical parameters.

The analysis consists of two parts: Establishing an upper bound by a special con­
struction and proving a lower bound by some interpolation arguments. The construction
yielding the upper bound is a modification of a construction by Privorotskii. The lower
bound can be reduced to tbe fact that a certsin interpolation of the three spaces BV, Loo
and H-l imbeds into L2• This imbedding has enough flexibility to allow us to derive the
scaling (in the pbysical parameters) of the typical size of Bloch domains away from the
basal plane.
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Robert Rogers
Phase transition in quartz

At about 547 oe, quartz undergoes a phase transition from a high temperature/high sym­
metry (point group 622) hexagonal phase to a lower temperature/lower symmetry (point
group 32) trigonal phase. The transition, usually called ß-o. transition, is accomponied
by a reduction in volume.

The kinematicsof quartz in a neighborhood of the transition is described by changes
in its crystallographic dimensions, hut also by atomie "shufHe" within the unit ceI!. These
shufßes can he described by a scalar order parameter, that can be identified physically and
measured experimentally. One of the most interesting features of the transitions is that
in a narrow range of temperatures near the critical point, the order parameter exhibits a
fine triangular microstructure.

In this talk, I discuss how one can use IDeal bifurcation theory to analyze the triangulaa
microstructure. To do this I apply results from singularity theory (developed by Golubi~
sky and several collaborators) describing solution branches for problems with hexagonal
symmetry. I use these results to analyze a discrete model problem in detail and give sorne
indications as to how one can apply the results to existing continuum models for quartz.

Piotr Rybka
Asymtotics for equations related to martensitic phase transitions
(This is a joint work with Karl-Heinz Hoffmann)

We study asymptotic behavior of

PUtt = diva(Vu) + ßUt - {,2fj,?u, (1)

where u : n c lR2 -* R, o(~) = DW(~) and W has several Ioeal minima, and p = 0 or
p = 1. Für p = 1 equation (1) is the equation of the viscoelasticity with capillarity. The
case of p = 0 corresponds to neglecting the inertial effects. Both equations arise in the
studies of van der Waals fluids and phase transitions in solids.

We adopt special boundary conditions, such that the influence of the boundary on the
overall behavior is little. We set n= [0, w] x [0, L] and

'U is anti-periodic in Xl.

We define the energy functional to be

[

. (,2

E(u) = In W (Vu(x» + "2 Ißu(xW] dx,

where W(Ft, F2 ) = tP(F1 ) + ~Fi, and tP E COO(IR) is such that, ~(t) ~ 0, tI>(t) = 0 iff
Itl = 1 and tP(t) = tI> (-t).

We note that because of the anti-periodic condition we have circles of equilibria. More- .
over, global minimizers have particularIy simple structure, i.e. they do not depend on X2.

We prove that if u is a unique solution of (1) for p = 0 then it converges to a unique point
on the manifold of global minimizers of E provided that E (u(', 0)) is sufficiently smalI.
We conjecture a similar result holds in the case p = 1.
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We point out that the right-hand-side of (1) linearized at any global minimizer has a
two-dimensianal kernel. Thus, standard taols of the theory of dynamical systems are not
applicable here. So, we resort to methods based on analyticity of W.

Ekhard Salje
Strain as the dominant interaction mechanism in /efTOelastic and co-elastic materials

The concepts of ferroelastic (rv ferroelastic hysteresis) and co-elastic (rv elastic degrees of
freedom relevant for effective Hamiltonion) material behavior involve longranging correla­
tions which have direct implication on tbe formation of microstructures. Tbe correlation
between the atomic interaction models (e.g. ~T/J model) and the macroscopic Gibbs free
energy including dispersion effects (VVu)2, (ßßU)2 were discussed. Results from com­
puter simulation on systems with more than 106 interacting particles were used to classify
microstructures aod their (slow)time evolution (walls, junctions, needles, etc.). Pattern·
formation of the type Qt = -Q +Q3 + Qxx - "YQx:u;:z:(+8Q:z::z:x:z:xx) are diseussed in the "(-6
phase diagramme.

Friedemann Schuricht
Obstacle problems in elasticity and finer nonsmooth methods

Obstacle problems in elasticity are usually deseribed by variational inequalities. This
approach works for simplifiedmodels where the set of admissible deformations is convex
in some function space. In general nonlinear elasticity this is, however, not the case.
Furthermore variational inequalities, which can be understood as one of the roughest
nonsmooth tool, do not have enough structure to provide a detailed desciiption of the
forces exerted by obstacles. Thus finer nonsmooth methods are necessary to handle such
problems efficiently. On the basis of the very general Cosserat theory describing planar
deformations of shearable nonlinearly elastic rods it is demonstrated how this can be
done. Using Clarke's calculus of generalized gradients, instead of a variational inequality
the Euler-Lagrange equations can be derived for very general obstacle problems. This
way we obtain a very natural representation of the contact reaction which finally serves
as basis for further regularity res~lts. In particular an interesting qualitative difference in
regularity between shearable and unshearable material ean be observed.

Jey Sivaloganathan
On the loeation 0/ singularities arising in Nonlinear Elasticity
(This is a joint work with Scott SpectoT)

Consider an isotropie, hyperelastie material occupying the unit ball in ]R3 in its referenee
state. Next subject the boundary of the material to a radial displacement and minimize
the total energy stored in tbe ball in tbe class if radially symmetrie deformations. It is
known from tbe work of J. M. Ball that for some materials a diseontinuity may form in
the minimizer for this variational problem (the phenomenon of cavitation).

We suggest an approach to predicting the most energetically favorable point at which
to form a hole (as the boundary of the ball is displaced radially outwards) with assump­
tions of symmetry on the admissible deformations.
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Dur results yield same interesting and elegant formulae and suggest intimate links
between cavitation and classical engineering approaches to modelling defects resp. fracture
using singular solutions of linear elasticity.

Scott Spector:
Critical Cavitation Loads in Elastic Bolids
(This is a joint work with Stefan Müller and Jey Sivaloganathan)

Consider the model stored energy density

W(F) = IFIP + h(det F),

where h is convex, nonnegative, and becomes infinite as its argument goes to zero or
infinity. Here det F is the determinant of the 3 x 3 matrix F. Let 83 denote the unique
minimizer of h. If 1 ~ p < 3 then John Ball has shown that ther is a Äradial > () such that e
for all A > Aradial the linear map AX is not aglobai minimizer of total energy

E(u) := Lw (Vu(x» dx,

among those functions u in the Sobolev space W1,p(B, JR3) that are one-to-one a.e. aod
satisfy u(x) = AX on aB, where B is the unit ball centered at the origin in IR3. Moreover,
for such values of A there exists a singular deformation that minimizes E in the class of
radial maps. This radial minimizer creates a new cavity at the center of B.

In this talk I will present same joint work with S. Müller and J. Sivaloganathan, which
shows that for 2 < p < 3 there is a AO E (0, Aradial) such that for a11 0 < A < Ao the
linear map AX is indeed aglobai minimizer of E among those maps u E W1,P(B, lR) that
satisfy u(x) = AX on aB, and whose extension to all of]R3 (as the linear deformation AX)
satisfies condition (INV). Thus, in particular, no holes (radial or nonradial) can form in
the material at such values of A.

Roughly speaking, condition (INV) is the requirement that the deformation u be
monotone in the sense of Lebesgue and that holes in one part of B are not filled by
material from another part of B. The condition det Vu > 0 a.e. together with condition
(INV) prohibits interpenetration of matter, that is, these conditions together imply that
u is one-to-one almost everywhere.

The heart of our praof is an estimate on the difference of two Jacobians; for every
p > 2 there is a constant a = a(p) > 0 such that for every A> 0 and every bounded open
region n c ]R3 e

o~ .!n[det)..J - det Vu(x)] dx ~ aÄ3
-p .!nIVu(x) - )..JI

P
dx

for all deformations u E W1,P(O, JR3) that satisfy u(x) = AX on an, det Vu > 0 a.e., and
whose extension to all of JR3 (as the linear deformation AX) satisfies condition (INV). If
p ;::: 3 this estimate is clear since the first integral is zero due to the fact that the Jacobian
is a null Lagrangian. For 2 < p < 3 one can express this integral in terms of the singular
part of the distributional Jacobian of u, which is aRadon measure under our Hypotheses.
This singular measure is then estimated locally via isopermetric inequality and a standard
covering argument finishes the proof.
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Pius Sprenger
Stability, quasiconvexity at the boundary and null Lagmngians

A basic problem in elastostatics is to minimize energy functionals of the type

leu) = In W(Vu(x» dx +Ir g(x) . u(x) da,

where W is the stored energy function of a hyperelastic material and 9 denotes the surface
force on the free boundary part r. Ball and Marsden proved that for adeformation Uo to
be a strong local minimizer of the functional I at every free boundary point Xo E r the
stored energy function has to be quasiconvex at the boundary in (Vuo(xo), v(xo)), where
v(xo) denotes the outer normal at r in Xo. This condition is not local and therefore it
may be rather difficult or impossible to verify it.

With the aid of null Lagrangians we give a new pointwise condition, called polyconvex­
ity at the boundary, which is an extension of convexity and is stronger than quasiconvexity
at the boundary. It is shown that in nonlinear elasticity theory the assumption of poly­
convexity at the boundary is compatible with physical properties of the stored energy
function.

Moreover, an equilibrium satisfying polyconvexity at the boundary in (Vu(xo), v(xo)),
with Xo E r, is a spatially localized minimum of I at Xo.

Florian Theil
Lang-time dynamics for Young measure solutions of nonlinear PDEs

We study two different model equations for phaBe transitions:

pü = u(ux)x + ßüxx - au
pü = u(ux)x + ßüxx

(V)
(M)

with a nonmonotonous stress-strain relation u. Equation (V) is refered to as "viscoelas­
tically regularized wave equation" and has been studied by several authors; equation (M)
has been proposed by V. Levitas as a model for microkinetic fluctuations during phase
transitions. We will explain that both equations admit Young-measure solutions which
we construct with a method inspired by transport theory. .~

It is interesting that their long-time behaviours differ strongly. No solution of model
(V) can develop additional microstructure even if Young-measure solutions are admitted,
instead they decay to a stationary state. This contrasts with the long-time behaviour
of solutions of (M). Here, solutions can indeed develop fine sturcture and converge to a
genuine Young measure even if only classical initial conditions are admitted.

Matthias Winter
Microstructure and sur/ace energy, analytical results

We present an example of microstructure arising from a potential of the gradient with
incompatible minima. We show that the Young measure is homogeneous and unique. In­
cluding surface energy we show that for the infinite sequentially laminated microstructure
the energy scales like exp(-uv1ogc-i), 0 < u,j2Iog 2 in the limit of c -4 0 (c being the
factor of the surface energy part) at least in the upper bound.
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