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Global and Geometrie Theory of Delay Differential Equations

11.01.-17.01.1998

The conference was organized by J. Mallet-Paret (Providence), R.D. Nussbaum (New
Brunswick), and H.O. Walther (Gießen). Thirty-six participants from 11 countries (8
European including Russia; Israel; Canada; USA) took part. It was regretted that due to
severe weather conditions and in other cases, lack of financial support several colleagues
had to cance} their participation shortly before the meeting. Twenty-eight lectures were
presented. One additional evening discussion was organized.
The largest group of lectures (8) focussed on the global dynamies of (ordinary) delay
differential equations (DDEs). The topics included new existence results for periodic
orbits and chaos, the structure of global attractors, singular perturbation, invariant
manifold theory for state-dependent delays, and infinite frequency solutions.
A next group of 6 lectures discussed equations used as models in the life sciences, namely
equations for the dynamics of blood cell populations and blood diseases, for neural
networks, for competing species in a chemostat, and for mating problems.
Four lectures presented results on initial value problems for partial differential equations
with time delays. One lecture discussed elliptic equations with transformed arguments, .
which arise in elasticity and nonlinear optics.
Another group of 4 lectures was devoted to linear DDEs and addressed, among others,
problems of control theory (subtle effects of small delays, hybrid contral) and in number
theory.
In a set of 5 lectures DDEs in neighbouring fields related problems were discussed,
notably stochastic DDEs, shadowing and numerical aspects, evaluating experiments by
means of Conley index methods, and last not least, tbe embedding of given Bows into
center manifolds of parabolic partial differential equations and DDEs.

Tbe meeting brought together a relatively large number of colleagues who had never met
before. The research summaries posted elose to the lecture hall seemed to help consider­
ably to initialize an exchange of ideas.
We are grateful to the staff of tbe institute whos~ friendly and patient assistance con­
tributed much to make the stay at the institute/very pleasant.
The meeting ended on Friday, January 17, at 12:30 p.rn.
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Vortragsauszge

O. ARINO

Slowly oscillating periodic solutions of a state-dependent delay equation
arising from a fishery problem

Joint wark with K.P. Hadeler and My.L. Hbid

A possible motivation: a model describing the dynamics of a population of fish, divided
into several stages, tbe passage from a stage to tbe next one being conditioned by a
threshold mechanism. Simplified assumptions lead to the system e

dx dr
dt = - f(x(t - T(t)), dt = h(x(t), 7"(t» ,

with f : :R ~ R Cl, f(x)x > 0 for x 1= 0,0 < Tl ~ r(t) ~ T2 < +00, h Cl, h(x, 7"1) > 0 for
all x, hex, 7"2) < 0 for a11 x, h(x, r) ~ 1 for a1l x, T. Two special cases lead in the singular
limit to r(t) = r· (pure delay) and r(t) = k2 (x(t» (usual stat~ependent delay). We
adapt tbe ejective fixed point method developed in tbe 70's for the logistic delay equation
and some analogues to determine nontrivial slowly oscillating periodic solutions. We
highlight the main ingredients:
1) the choice of a suitable notion of slowly oscillating solutions; 2) the determination of
a suitable closed convex subset in the space of the (cp, r)'s in which the trivial solution
(r-, O)(h(r" 0) = 0) is ejective.

H.J. DIAMOND

Analysis of a pair of linear difference differential equations

This is areport on work with H. Halberstam and H.-E. Richert on difference differential
equations (DDE's) arising in sieve theory. Sieve theory is a branch of number theory that
estimates the number of elements reJ.Daining in sequences of integers from which certain
residue classes have been removed. Upper and lower bound estimates are expressed
in terms of Cauchy-Euler type delay DDE's of the for~ uf'(u) = af(u) + bl(u - 1).
Solutions are fOllnd with the aid of advanced argument adjoint DDE's. Specific problems
discussed were properties of the AOS function family (DDE: uj'{u) = kj(u) - kj(u -1), k
a parameter) and the coupled system of DDE's for the author's sieve procedure.
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T. FARIA

Stability and bifurcation Cor a delay Lotka-Volterra system without and with
diffusion

A well-known Lotka-Volterra predator-prey system with one delay and a unique positive
equilibrium E· is considered, as well as a corresponding delayed reaction-diffusion system
with Neumann conditions. The latter illustrates the use of the 'adjoint' theory for FDEs
with diffusion when studying stability problems. However, the theory described in [Lin,
So & Wu, Proc. Ray. Soc. Ed., 1992] was improved and addressed here in a more general
framework, in order to include situations where the operator giving the linear terms of
an FDE with diffusion mixes tbe modes of the Laplacian. In fact, this is the case of the
proposed model with diffusion. In this setting, stability results for E· as an equilibrium
of the reaction-diHusion system are deduced from the case without diffusion, already
known. Namely, it is shown that a Hopf bifurcation occurs at E· as the delay T passes
through a critical value TO.

Using the normal form theoJ'Y' for FDEs in [Faria & Magalhäes, JDE, 1995Land for
FDEs witb diffusio.n in [Faria, to appear in Trans. AMS), tbe Hopf bifurcation -occuring
at E·, T = TO is described for a particular example. By eomputing normal forms on
the stable loeal centre-manifold, it is proven that tbe Hopf bifureation is supercrit­
ical and tbat tbe non-trivial solutions are stable, in both cases with and witbout diffusion.

W.E. FITZGIBBON

Periodieity in diffusive epidemie models

Joint work with J.J. Morgan and M.E. Parrott

Dur long range concern is developing a framework for analysing the effects of temporal
variations on the spread of disease througb a dispersing population. In tbe case at hand,
we guarantee the existence of periodic solutions arising in response to periodie forcing.
We assume that tbe population is dispersing by means of random Brownian motion and
that this dispersion is approximated in the standard way using diffusion operators. Tbe
disease features aperiod of latency or incubation ·during whicb the individuals neither
manifest tbe symptoms of tbe disease nor are capable of infecting other individuals.
This period of latency is immediately followed by a fully infected period. Susceptible
individuals contract tbe disease via interaction with fully infected individuals. This
interaction is modelIed by a 'mass action' term whicb is proportional to the product of
the spatial densities of tbe susceptible and the fully infected individua~s which appears
as loss term for tbe susceptible class. The stages of the disease are specified via tbe
introduction of an independent variable la 1 which represents tbe time elapsed since an
individual contracted tbe disease. These considerations produce a distributed parameter
system coupling a semilinear parabolic equation with a diffusive age transport equation.
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We also obtain partial results describing how tbe periodic solutions drive tbe overall
dynamics of the system. .

F. GIANNAKOPOULOS

Generation of epileptiform activity in a neural network

Joint work with H. Luhmann, U. Bihler, eh. Hauptmann

We were interested in modelling tbe generation of experlmentally induced epileptiform
signals in neocortical slices. Experimental data indicate that suppression ofinhibition and e
enhancement of excitation leads to the expression of spontaneous and stimuli-induced
signals. In our model we consider a network with m neurons. For each neuron the
suggested matbematical model consists of tbe net~ork equation and in intrinsic oscillator.
Tbe network equation describes tbe transmission of signals. As intrinsic oscillator we use
tbe FitzHugh-Nagumo system wbicb models the impulse generation at tbe axon-hillock.
Tbe resulting system consists of 3m coupled delay differential equations. Matbematical
analysis and computer simulation indicate that both, intrinsic and synaptic mecbanisms
are involved in generating epileptiform activity.

K.P. HADELER

Delay equations and conservation laws

It is well known that certain hyperbolic systems of partial differential equations can be
'reduced' to systems of ordinary differential equations or delay equations. In the delay
case tbe reduced system is valid onIy after a transient time interval. Although such
reductions have been used frequently, there are several open problems:
i) Wbat is tbe underlying general principle? ii) What is the proper relation between the
state space of the partial differential equation and tbat of the delay equation? iii) If tbe
partial differential equations preserves positivity, in wbat sense does the reduced system ..
preserve positivity? To some of these questions preliminary answers can be given. The _
main applications are structured population models. In particular, an interpretation is
given for population models in tbe form of neutral differential equations.
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U. AN DER HEIDEN

Bifurcations and chaos in cPx(t)dt2 + x(t) = f(x(t - 'T)) with non-smooth f

Substantial analysis of tbe above non-linear differential-delay equation can be done if the
nonlinearity f is assumed to be piecewise constant. Applications may be found in control
systems with discrete control (e.g. machine, current, or light either 'on' or 'off'; or either
'paying attention' or 'not paying attention'). Trajectories of tbe associated system

dx(t)/dt = y(t), dy(t)/dt = f(x(t - 'T» - x(t)

can then be represented in the x-y-plane by continuous curves t ~ (x(t), y(t) whicb are
piecewise composed of arcs of circles. The circles have centers at (c, 0), f discontinuous
at c.
In case of negative feedback, where (without loss of generality) f«(.) = 1/2 for { :5
8, f({) = -1/2 for { > 8, e some constant, the following theorems can be proyed:
Theorem 1 Let e E [0,1[2]: For each Ti E lN and fOT each 'T E (O,2n7r) there" exists a
periodic orbit with minimal period 'T/n. '.
Theorem 2 Let e E [0,1/2], For each n E N, n odd, and for each r E (n7r,2n7r] there
exist periodic orbits with minimal period 2r/n.
Proofs of these results may be found in tbe paper of Wolf Bayer and Uwe an der Heiden,
Oscillation typea and bi/urcations of a nonlinear second order differential-difference equa­
tion, appearing 1998 in the J. Dynamics (; Differential Eqs.. There it is also shown how
the solutions of these theorems bifurcate from each öther and how they exhibit multista­
bility.
Together with Wolf Bayer a praof was also obtained for the existence of chaos in case
that the feedback-function f has two discontinuities:
Theorem 3 Let 8 be a positive constant. Let f((.) = 1/2 for ~ E [0,8], f«(.) = -1/2
otherwise. Then there is an open set in the r - 8-parameter space such that .fOT each
element in this set System (*) has infinitely (countably) many periodic orbits o/!'different
minimal period and uncountably many asymptotically aperiodic orbits such that fOT any
two 01 these aperiodie solutions (Xl, Yl) and (X2, Y2),

tli~ sup Il(Xl(t), Yl(t» - (X2(t), Y2(t»fl > o.
The proof relles on constructing a Poincare-map on a one--dimensional Bubset of the

state space and reducing the result to a snap back repeller-property of a certain difference
equation.
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A.V.M. HERZ

Global theory of pulse-coupled oscillators without and with delays

Pulse-coupled oscillators exhibit a wide varlety of collective non-equilibrium phenomena.
Global synchronization with temporal periodicity is beautifully seen in the pulsed light
patterns generated by colonies of flashing fireflies. More complex phenomena include
periodic oseillations without global synchrony, spatial synchronization without temporal
periodicity, aod intermittent loeking proeesses whieh in some models are accompanied
by self-organized eriticality.
Although the approach to a stationary state is slow in many of these systems, approx­
imately periodic oscillations are often aehieved within a few cycles of activity. This
phenomenon might be important for rapid information processing in neural systems. e
For a class of idealized models with zero pulse width aod 00 signal delays, it is proved
that strictly periodic solutions are reached as soon as every element has been active
onee. For systems with delays aod/or oonzero pulse width, a Lyapunov funetional shows
that periodic solutions are reached asymptotically. If there are discrete delays only,
application of the same functional proves that transients have finite duration.

w. HUANG

Heteroclinic orbits of delay differential equations and applications to the
singular perturbation problem

The existence of heteroclioic orbits of delay differential equations has long been a very
interesting problem in the area of the functional differential equations. One of the im­
portant applications of heteroclinic orbits arises from the investigation of the existenee
of the square-wave-like periodic solution for a class of singularly perturbed delay differ­
ential equations that oeeur as models for some noolioear optical problems aod biological
problems, where heteroclinic orbits serve as the transition layers for this type of periodic
solutions.
In this report, we present a general existence aod uniqueness result of heteroclinic orbits
for a class of systems of delay differential equations. Dur main approach is the homotopy .­
method of [Chow, Lin and Mallet-Paret, 1989]. Monotone iteration and properties of _
positive operators in Banach space have been used to obtain detailed information about
the heteroclinic orbits and the spectral properties of its linearization. The system under
investigation takes the form

x(t) = F(x(t), x(t - T))

where the time delay r > 0 is a constant and the nonlinear function F = (F1, ••• , Fn ) :

Sl x n~ m.n(O ~ Rn) is assumed to satisfy the following type of monotonicity property:
For x = (x}, ... ,xn) E n and Y = (Yb ... , Yn) E 0,
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8Fi(Z,y) <_ 0
8zj ,

8Fi(Z,y) 5 0
Byj

A.F. IVANOV

for i 1= i, i,i
for i,j

1,2, ,n,
1,2, ,n.

On the discretization of a delay differential equation

A delay difference equation (1) of the form

tl[ßxn + aßxn-N] = -Xz+I + f(xn-N)

where JJ > 0, ßXn := Xn+l + Xn, f : R -+- R is a continuous function, is considered.
Equation (1) can be looked upon as a discrete analogue of ~0!

€[x(t) + a.x(t - 1)] = -x(t) + f(x(t - 1»;

it also appears as an Euler discretization of the latter (in a slightly different form). A
relationship between dynamics of solutions of eq. (1) and that defined by the "limiting
case E = 0, the interval map /, is established. It is shown in particular that hyperbolic
attracting cycles of the map f give rise to asymptotically stahle periodic solutions of
equation (1) for sufficiently small tl.

P. KLOEDEN

Bishadowing in neutral delay equations

Bishado,ving combines direct shadowing, where every pseudo-trajectory is shado\ved by
a true trajectory, with indirect shadowing, where every true trajectory is shadowed by a
pseudo-trajectory - but here the pseudo-trajectories are true trajectories of a family of
functions, e.g. continuous functions. Hyperbolicity implies bishadowing, but so does a
weaker version called semi-hyperbolicity in which the maps need ooly be Lipschitz, the
tangent space splitting is not continuous or invariant, nor is the set under consideration
invariant, e.g. consider an open set containing a saddle point. Both concepts were
introduced and explored by P. Diamond, P. Kloeden, V. Kozyakin and A. Pokrovskii.
Here work of A. A.-Nayef, Kloeden and Pokrovskii is reported - bishadowing results
are applied to nonsmooth nonlinear perturbations of a linear neutral delay differential
equation, where locally condensing mappings are used as the family of comparison
mappings in bishadowing, which is applied to the respective shift operators in C1([-h, 0]).
These results have been published in the Journal of Differential Equations, July 1997.
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H.P. KRlSHNAN.

Aphase space formulation for an equation with a state-depende~t delay

We provide a complete phase-space description for tbe equation (1) x(t)
f(x(t), x(t - r)), r = r(x(t)). In particular, for any cp E Wl,OO([-r" 0]), where
r· = sup( r({), we show that there exists a > 0, dependent on IIcpW)O hut otherwise
independent of C{), such that Xt (cp, .) exists and is unique on [0, a]. We then sho'Y that the
semiflow T(t) : W1,OO([-r+, 0]) -+ Wl,OO([-r·, 0]) is not smooth in cp by direct analysis. It
is, however, possible to differentiate T in cp relative to certain manifolds. In particular,
near the point 0, we consider the linear equation (2) x(t) = /%(0, O)x(t)+ f1/(O, O)x(t-r(O».
If 0 is hyperbolic, we show that the unstable subspace U associated with (2) is locally
diffeomorphic to the unstable set of (1). We conclude by establishing Lyapunov-type e
stability criteria for the equation (1) and as a specific example, prove that all solutions
to tbe equation (3) x(t) = -ax(t) - ßx(t - r), r = r(x(t», are ultimately uniformly
bounded whenever r+r_ < 'b. Here r + = liIIl(-+oo r({) and r - = lilIl(-+oo r({].

T. KRISZTIN, J. WU

The structure of an attracting set defined by delayed and monotone positive
feedback 1-11

Joint wark with H. O. Walther

Tbe delay differential equation

x(t) = -p.x(t) + f(x(t - 1»
with J.t ~ 0 and areal function I satisfying 1(0) = O· and /' > 0 models a system
governed by delayed positive feedback with respect to the rest state given by { = 0,
and instantaneous damping. Applications arise in neural networks. For certain J.t and
I unbounded solutions exclude a compact global attractor of tbe semißow defined by
the equation on the phase space C of continuous real functions on the initial interval
[-1, 0]. Under mild additional assumptions we study tbe simplest nontrivial substitute _
of a compact global attractor, which is the closure of the forward extension W of a 3- •
dimensional C1-submanifold of tbe Iocal unstable manüold at tbe stationary point 0 E C.
Among others we prove tbat W is a smooth solid spindIe for JJ > 0, and a smooth solid
cylinder for JJ = o. A smooth disk bordered by a periodic orbit separates W into halves
formed by solutions which converge to one of the tips of tbe spindIe in case jJ > 0, and to
00 or -00 if J1. = o.
In case JJ > 0 and f bounded the semißow has aglobaI attractor A, and W C A. We
conjecture that under certain conditions on J.t > 0 and I, W = A. Tbe proof of W = A
requires, among others, a new uniqueness result for periodic solutions. We present such
a result for odd nonlinearities I.
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Some of tbe aforementioned results have been recently extended, in joint work with Y.
ehen, to the system

x(t) = -JU(t) + f{y(t - 1», y(t) = -J.'y(t) + f(x(t - 1»
with special emphasis on the existence and attractivity of a phase-Iocked oscillations.

E. LITSYN

Stabilizatioo of lioear differential systems via hybrid feedback controls

We study so-called 'hybrid feedback stabilizers' for an arbitrary general system of
linear differential equations. We prove that nnder assnmptions of controllability and
observability there exist a hybrid feedback output control which makes th~~ system
asymptotically stable. The control is designed by making use of a discrete automaton
implanted into the system's dynamics. In general, the automaton has infinitely many
locations, but it gives rise to a 'uniform' (in some sense) feedback contra!. The approach
we propose goes back to tbe classical feedback control tecbnique combined witb some
ideas used in the stability theory for equations with time-delay.

Y. LIU

Functional differential equations with proportional delays

Functional differential equations with proportional delays arise in applications such as
collection of current by the pantograph head of an electric locomotive, wave propagation
problems, probability theory on algebraic structures, absorption of light by interstellar
matter, spectral theory of the Schrdinger operator, coherent states of the deformed oscil­
lator algebra in quantum mechanics, and many others.
In general, initial value problems for neutral functional differential equations with a single
proportional delay can be written as

y'(t) = I{t, y(t), y{qt), y'(t)), t ~ 0, y(O) = Yo, y'(O) = Yb

where 1 is a continuous function, q E (0,1) is a rescaling parameter, and Yo, Yt E.R are
given initial values that satisfy the consistence condition Yl = 1(0, Yo, Uo, Yd. In order to
guarantee the existence and uniqueness of a differentiable solution, it is often assumed,
amongothers, that the Lipschitz constant of f(t, y, z,·) is less than one in a neighbourhood
of (0, Vo, Vo, Yl) (see, e.g. Nussbaum (1972)). Arecent result of Feldstein and Liu (1989)
shows that tbe following initial value problem

y'(t) =ay(t) + by(qt) + cy'(qt) , t ~ 0, y(O) = Va
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has infinitely many linearly independent solutions if Ici > 1.
Equations witb proportional delays ean differ vastly from equations with eonstant delays.
For instanee, Iserles and Liu (1997) proved that if E~llc;1 < 1, Re a:5 0 and a =F 0 then
tbe asymptotic bebaviour of the solution of

M

y'(t) = ay(t) + E[biy(qit) + c;y'(pit)], t > 0, y(O) = Yo,
i=l

depends mainly on tbe distribution of zeros of the algebraic equation a + Et;l bjql
0, z E (C. Tbe neutral terms (or the eoefficients Cl, •.• , CM) bave little infiuenee on the
stability of tbe trivial solution.
There are many open problems related to equations with proportional delays. For in-
stance, it is conjectured by Morris, Feldstein, and Bowen (1972) that _

n~ tn+lltn ="l/q,

\vhere q E (0,1) is a parameter, 0 < t l < t2 < ... are zeros of the entire funetion
L:~=o(_t)nqn(n-I)/2 In!, the only continuous solution of (t). One ofthe conjectures made in
the preprint On a functional Riccati equation, Cambridge University Tech. Rep. DAMTP,
1996/NAI9, states tbat if JJ > 0 then tbe solution of tbe functional-Riccati equation

obeys

!im y(t) = ./J.t/(1 - q2) if Yo > -'p,/(l - q2),
t~oo V V

t2!~o y(t) = -00 for some T > 0 if Yo < -JJJI(l - q2).

M.MACKEY

Delay equations and the contral of cell replication

Dynamic hematological diseases in wbich circulating numbers of white blood ceIls, red
blood ceIls, and/or platelets show a periodic variation in time offer an ideal situation in
which to study tbe dynamics of cellular replication. Cellular replication and its control
involve significant delays due to cell cycle and maturation times typically on tbe order of
days. Cyclical neutropenia (cn) is a periodic disease in wbich all three major celltypes
display periodicities of abour 19-25 days in humans and 9-14 days in tbe grey collie. A
model study framed as a nonlinear integro--differential equation demonstrates tbat this
disease cannot be due to a lass of stability in tbe control of neutropbil production and
release. Rather, it is shown that an elevation of cellular death rates in the HSC (which
provides differentiating cells from all three cell types) is sufficient to explain tbe major
characteristics of cn including the difference in periods between humans and tbe grey
collies, and the response of both to treatment with granuIocyte colany ·stimulating factor.
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J. MAHAFFY

A mathematical model far erythropoiesis

An age-structured model for erythropoiesis is developed and compared to data fol­
lowing a blood donation. Tbe model examines the negative feedback of the hormone
erythropoietin on production of new erythrocytes. The age-structured model for the
erytbrocytes includes aprecursor population and a mature population. Tbe latter are
actively destroyed, which results in a moving boundary condition. A plasma function is
included to simulate blood loss, and the resulting system is compared to experimental
data following a phlebotomy. Certain assumptions allow the model to be reduced to a
state-dependent delay system, for which a bifurcation analysis is performed.

K. MISCHAIKOW

From time series to symbolic dynamies

A new approach to constructing a dynamical systems model from experimental time
series is presented. Using the ideas of delay reconstruetion a multivalued dynamieal
system is constructed. Tbe multivalued approach is taken to aeeount for bounded
experimental error. Tbis constructed system is then analysed and algebraic invariants
based on the Conley Index theory are computed. These invariants can be lifted back to
the unknown physical system and have implications conceming the dynamics which must
oceur, e.g. symbolic dynamics. It is also argued that these methods lend themselves to
potentially rigoious numerical analysis of high dimensional dynamical systems such as
delayequations.

H. PETZELKOVA

Compactness and long time behaviour of solutions to conservation laws with
memory

Compactness of a set of bounded entropy solutions to the equation

alt n 8u
8t -00 K(t - s)u(s)ds +~ a;(u) 8Xi = 0

is discussed for tbe following choices of K:
(i) K = do - standard conservation law
(ii) K = Jo + k, k E LI, nonincreasing - conservation law with memory
(iii) K f"V t-a at 0,0 < 0 < 1 - fractional conservation law
A nondegeneracy condition introduced by Lions, Perthame and Tadmov for (i) gives
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compactness also for the case (ii) and the compact set depends on Loo-bounds for
solutions and Ll-bounds for k only. This condition ean be weakened in the case (iii).
Compactness of bounded solutions is used in the proof of convergenee of spatially periodic
solutions to mean values of their initial data. Tbe same result bolds for the linear case
(~ eonstant) when tbe memory effect comes into play (i.e. in (ii) and (iii)) provided tbat
tbe coefficients are rationally independent).

s. RUAN

Periodic solutions of planar systems with two delays

Consider a planar system with two delays

XI(t) = aOxl(t) + alFl(xl(t - 7"1),X2(t - 7"2))
X2(t) = -bOX2(t) + blF2(Xl (t - 7".), X2(t - 7"2))

where ao > 0, bo > 0,7"1 > 0,7"2 > 0, al and b1 are constants; Fl and F2 satisfy

3( 2) 8Fj . { } 8Ft ) "8F2 (Fj E eR, Fj(O, 0) =0, -8(0, 0) =0 for J E 1, 2 '-8 (O'0:F 0, -8 0,0) # 0,
Xj X2· Xl

X2 Fl (XI, X2) -:f; 0 for X2 =F 0, Xl F2 (X., X2) #: 0 for XI:f: 0

When ao = bo = 1, al = b1 = Q, Tl = 7"2 = 1, the global existenee of periodic solütions
to tbe system has been studied by Taboas (Proe. Royal Soc. Edinburgh, 1990) and
Baptistini and Taboas (J. Diff. Eqns., 1996). The method used by Taboas came from
a well-known idea due to Jones (J. Math. Anal. Appl., 1962) together with a theorem
of Nussbaum (Ann. Math. Pura Appl., 1974) on the ejectivity of fixed points. Another
approach of studying the global existence of periodic s6lutions to delay systems is the
degree theory method, c.f., Chow and Mallet~Paret (J. Diff. Eqns., 1978) and Erbe et al
(J. Diff. Eqns., 1992). . .
We first earry out the loeal Hopf bifureation analysis of the abave system. By ehoosing
one of the coeflieients as' parameter, the loeal stability domain is found and Hopf
bifureation values are determined. Then by using a global Hopf bifurcation theorem of ..
Wu (1996), we show that the system has global nonconstant periodie solutio·ns. FinaIly, ­
as an example, we analyze a neural netwo~k model with two delays.
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W.M. RUESS

Linearized stability for partial delay differential equations

The object of the talk is a principle of linearized stability for partial functional differential
equations with delay of the form

(FDE) {
x(t) + Bx(9 =F(Xt), t 2: 0
xII = ep E E,

I·
J

with B a generator of a strongly continuous semigroup in a Banach (state) space X,
and, for given I = [-r, 0], r > 0 (finite delay), or I = n- (infinite delay), and, for
t ~ 0, Xt : I:~ X, Xt(s) = x(t + s), sEI, the history of x up to t, and ep : I --+ X a given
initial history out of a suhset E of aspace E of functions from I to X.
While in previous works tbe results were restricted to .
(a) the history-responsive operator F to be (globally defined and) continuously Frechet­
differentiable with
(b) locally Lipschitzian derivatives,
we shall remove these restrietions and sho\v that tbe corresponding results hold in tbe
general context of
(c) B possibly nonlinear and F allowed to be defined on ethin' subsets Eof initial histories
(adapted to the respective problem - such as nonnegative functions for population and
biochemical models), and
(d) Frechet-differentiability for both Band F required only at the equilibrium point.
Applications of the general princlple to reaction-diffusion equations with memory and
age-dependent population dynamics will be given.

K. RYBAKOWSKI

Chaotic dynamics of parabolic PDEs and delay equations

We prove the following
Theorem (Prizzi & Rybakowski, JDE, to appear) Suppose N ~ 2. Let n c RN be
a bounded domain with smooth boundary. There is an analytic function a : ]RN -t lR
satisfying the following property: For every mEIN there is an cm > 0 such that whenever
u : R N+1 ~ R N+1 is a vector field 0/ class Cr with

luler' < Em

then u can be realized on the center mani/old of the reaction-dijJusion-convection equation

{

atU =Au + a(x)u + fex, u, Vu), x E n
u(x, t) = 0 , x E an

for an appropriate choice 0/ the nonlinearity / :n x R x RN --+ R 0/ dass Cm .

This result generalizes (ta arbitrary domains) an earlier result of Rybakowski (JDE, 1994)
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and Polcicik & Rybakowski (Annali Scuola Norm. Sup. Pisa, 1995) proved for some special
domains, like n = BI (0) c lRN. We also report on some recent vector field realization
result for scalar delay-equations.
Theorem (Rybakowski, JDE, 1994) Let C := C([-r, 0], lR) and L : C ~ R· be linear and
bounded. Suppose that the linear FDE

has exactly N eigenvalues (counting multiplicity) with real part zero. Then for 1 : C -+ R.
with f(O) =0 and IDI1 globally small there exists a center-manijold embedding

1\ = 1\/ : lRN
--t C

such that the FDE

iJ = LYt + I(Yt)

restricted to the center manifold M = A(RN
) takes the form

2'1 = Z2, ... ·, ZN-l = Zn, ZN = -alZl - ... - aNzN + I(Af(z», Z E RN

The function v(z) = 1(l\f(z», Z E lRN
1 is arbitrary1 in some sense: For every v : ]RN --t

R sufficiently smooth and small there exists f : C --+ ]R 01 the form

I(rp) = g(cp(O), cp( -Tl), ..., cp(-rN-t}), cp E C

such that
f(Af(Z» = v(z), Z E ]RN.

Here, the constants al, ... , aN E Rand the delays 0< rl < ... < TN-I < r depend only on
the linear map L.
This vector field realization result strengthens a previous jet realization result of HaIe
(Proc. Roy. Soc. &linb., 1985). An analogous result can also be proved for 'systems,
strengthening a jet realization resuit of Faria & Magalhäes (Proc. Roy. Soc. Edinb.,
1995).

M. SCHEUTZOW

Stability properties of stochastic delay differential equations

We discuss a number of different stability eoneepts for various kinds of stochastic
functional differential equations (SFDE's). For equations which possess a constant
solution, say 0, stability ean be defined as loeal or global almost sure asymptotic stability
or in terms of stability of moments. For equations subjected to additive white noise ­
whieh can never have a eonstant solution - it seems reasonable to define stability in terms
of the existence of a stationary solution. If an SFDE admits a eontinuous stoehastic
solution semiBow (which not all SFDE's do) and if the equation has a stationary solution,
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then one can call that solution 'stahle' if the top Lyapunov exponent of the linearization
of the semißow around the stationary solution is negative. Finally we discuss the stahility
of the model equation dX(t) = u . X(t - 1) . dW(t), where W(t), t ~ 0 is Brownian
motion. It turns out that the zero solution is almost surely globally exponentially stahle
for small u and unstable for large u. Most of the results are joint work with Salah E.
I\1ohammed (SIU).

E. SHUSTIN

Infinite frequency oscillations in a discontinuous dynamical system with time
delay

Joint wirk with R.D. Nussbaum

We study the equation

x(t) = - sign x(t - 1) + F(x(t)), t ~ 0,

with a continuous function F : R -+ R satisfying IF(x)1 :::; p < 1, which is a model
of an autonomous system with a retarded relay control element. The Cauchy problem
x(t) = cp(t), t E [-1,0], has a unique continuous solution xr.p for any cp E C[-I,O]. All
these solutions oscillate around the zero level, and the frequency function

lIr.p(t) = card (X;l(Q) n (t· - 1, t·)), t· = max{r :::; t : xr.p(r) = O} ..

is non-increasing. Hence there always exists th~ limit frequency

In particular, onee tbe frequency becomes finite, it will be finite further.
Properties of solutions witb a finite limit frequency are basically known. We answer the
question on the existence of solutions with infinite limit frequency, and on a possible
lenght of tbe interval with infinite frequency of oscillations.
Theorem 1 There are no solution.s with infinite limit frequency, except lor the case
F(O) = O,x(t) == 0, t ~ O.
Theorem 2 For any c > 0 there exists TE > 0 (depending on F) such that

as far as
max{length(I) : I E ?ro([-I, 0] \ cp-l(Q)} ~ c.

11, in addition, F(O) = 0 and F is differentiable at zero, then
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~-------------------------- - ._- ---

with arbitmry positive fJ and C(6) depending only on fJ and F.

A.L. SKUBACHEVSKII

Global properties of elliptic functional differential equations

We consider boundary value problems for stronlgy elliptic differential-difference equa­
tions. An equation is said to be stronlgy elliptic if it satisfies the Gärding inequality. It
were obtained tbe necessary and sufficient conditions for strong ellipticity in algebraic
form. Unlike elliptic differential equations, smoothness of generalized solutions of elliptic ..
differential-difference equations can be broken inside a domain Q C Rn and preserves ..
only in some subdomains Qr(Ur Qr = Q). It were stated results on the smootbness of
generalized solutions near the boundaries of subdomains Qr and in the neighborbood of

. angular points of tbe baundaries 8Qr' We obtain the asymptotics formula for eigenvalues
of tbe corresponding strongly elliptic differential-difference operator.

S. VERDUYN LUNEL

Effects of small delays on stability and control

Joint work with J.K. HaIe

Stabilization and control of partial differential equations through the application of
forces on the boundary turns out to be very iinportant. \Vhen tbe boundary forces
are applied with na delays there is a rather complete theory. In applica"tions, however,
it is very likely that time delays will occur when applying the boundary forces. So it
is of vital importance to understand the sensitivity with respect to small delays. We
shall present a unifying framework and \ve shall explain tbe mechanism bebind tbe phe­
nomena observed in the literature. To illustrate tbe results we shall present four examples.

G. WOLKOWICZ

Joint work with H. Xia, S. Ruan, J. Wu

Delayed response in growth in models of the chemostat

The predictions of various models of competition in the chemostat tbat involve time
delay (discrete or distributed) to model the lag in the conversion of nutrient to biomass
were discussed. All of the models considered predict tbat the principle of competitive
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exclusion holds and that it is possible to predict which population avoids extinction based
on the relative values of a parameter that represents a generalization of the break-even
concentration of tbe ODE model, hut that is a function of parameters describing the
delay and that neglecting delay can lead to incorrect predictions. Including the delay
may also help to explain some of the discrepancies between experimental data (e.g.
Hansen and Hubbell 1980) and tbe simulations of tbe ODE model. In particular, in work
in progress with H. Xia, considering tbe single species discrete delay model, althougb
the unique positive equilibrium is globally attracting with respeet to positive initial
data, using loeal and global Hopf bifurcation theorems, it follows that unstable (rapidly
oscillating) periodic solutions that bifurcate from unstable nonnegative equilibria are
possible. Although these periodie solutions change sign, their existence may help to
explain the transient oscillations seen in experiments, hut not in simulations of the ODE
model.

Berichterstatter: H.O. Walther (Gießen)
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