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The conference was organized by Y.N. Moschovakis (Los Angeles), H. Schwichten-
berg (Miinchen), and A.S. Troelstra (Amsterdam). It focussed on constructive as-
pects of mathematical logic, in particular on constructive set theory, terin rewriting
and proof theory, intnitionistic logic and type theory, complexity theory, lambda-
calculus, and algorithmic randomness.

There were 15 plenary talks and two lecture series, one on constructive set theory,
given by P. Aczel and M. Rathjen (4 lectures), another on term rewriting and proof
theory, given by A. Weiermann and W. Buchholz (3 lectures). :

The organizer’s strategy, to have less talks in favour of more time for self organized
activities, found an extremely positive echo among the participants. Quite a nuinber
of informal talks and discussions were organized giving roomn for fruitful scientific
and personal exchange.

The list. of abstracts includes those talks which, although of highest quality, had to
be sacrificed to the new strategy.
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Vortragsausziige:

P. Aczel:
Coustructive Set Theory

Lecture 1: What is constructive set theory?

I discuss a conception of generalised predicative constructive mathernatics. | then
explain informally the iterative-combinatorial notion of set that is made precise in
constructive type.theory and leads to an interpretation of the axiom systetn CZF
in a suitable version of constructive type theory.

Lecture 2: Inductive definitions in constructive set theory.
1. Inductive definitions of classes
2. Indnctive definitions of sets
3. A set compactness theorem

4. An example of an inductive recursive definition

J. Avigad:
Proof Theory and Typed Computation

Both ordinal recursion and higher-typed recursion can be used to give natural char-
acterizations of the provably total recursive functions of classical theorics.
dis two results that yield characterizations of the second kind. The first
is a Dialectica-style interpretation of the theories ID,,, in functional theories P,
using predicative polymorphism and Martin-Lof universes. The second is a realiz-
ability iuterpretation that applies directly to classical arithinetic in a Tait caleulus.

U. Berger:
Modelling dependent types and universes using the Kleene-Kreisel func-
tionals '

We will try to argue that it is useful to have a constructive set-theoretic model of

dependent types, and will discuss in some detail one such model generalizing the
Kleene-Kreisel continuous functionals. Using a deusity /co-density theorer it can

he shown that this is isomorphic to (a variant of) Beeson’s realizability model of

type theory. Finally we state some open problemns, among them geuneralizations
of Plotkin’s resp. Normann’s (cf. his talk on Tuesday) theorets on $1-89/1PCF-
computability in the partial resp. total hierarchy.

W. Buchiholz:
Term rewriting and proof theory III: Termination proofs by interpreta-
tion.

We give an interpretation of the Gentzen-Takeuti reduction procedure for finitary
derivations in (Tait style) sequent-calculi of first-order arithmetic and the subsys-
tem N} —CA of second-order arithmetic, respectively. Each finitary derivation d is
interpreted as a certain well-founded infinite derivation d* in such a way that if d
reduces to red(d) by a Gentzen-Takeuti reduction step, then red(d)™ is a proper
sub-derivation of d*°. Hence the procedure red terminates, i.e. there is no infinite
sequence of derivations (d;)icw With digy = red(d;) for all . The main poiut of onr
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approach is that red can actually be derived from infinitary cut-elimination (and
collapsing) procedures.

A. Cichon:
Termination proofs for rewrite systems and their relevance to proof the-

ory

Squational definitions of number-theoretic functions are natural models of certain
kinds of rewrite systems. The interaction of proof theory and term rewriting theory
has given rise to new and interesting results and techniques in both domains. This
talk will survey some of the recent developments in the analysis of termination
proofs for rewrite systeins and their implications for proof theory.

I>. Clote:
Type 2 parallel computable functions

The parallel randoin access wachine, or PRAM, is a parallel computing model
developed at the end of the 1970’s, and is the virtual machine for existent parallel
machines like the Connectiou Machine, Mas Par, and ICE " Greeneyes“ board. The
intuition for programming such SIMD models is to use divide and conquer paradigtn
together with data parallelism. NC is the most important parallel computation class
aud corresponds to polylogaritlunic time with polynomiially niany active processors.

In this paper, we extend PRAM to allow different processors to simultanously mnake
function oracle calls, then define a very natural type 2 function algebra A, and prove
that the type 2 analogue of NC equals A. The full proof is long (60 pages), relies
on extension of techuiques of Cook and Kapron, and is a strong improvement of a
paper of Clote-Ignjatovie-Kapron fromm FOCS 1994.

T. Coquand
Formal topology and inductive definitions

The purpose of this talk is to illustrate how ideas fromn the theory of locale (point-
free topology) can illuminate some facts in proof theory, and suggest appropriate
definitions of inathematical concepts, like well-quasi-ordering or noetherianity in a
framework such as Constructive Set Theory or Intuitionistic Set Theory.

First, we present a siinple exainple in algebra: a special case of Jacobson’s com-
wntativity theorem for rings. In the framework of point-free topology, the usual
representation theoremn of rings as rings of continuous section over a boolean space
have an elementary reading, and Jacobson's proof can be read as an elementary
proof of connnutativity, with no mention of prime ideals. This can be compared
to the analysis by H. Lombardi (Annals of Pure and Applied Logic, 1997) of some
non-constructive arguinents in algebra.

Next, we give a satisfactory definition of well-quasi-orders and noetherian rings in
Iutuitionistic Type Theory (joint work with H. Persson; the inductive definition of
noetherian, that the property w, € (u1,...,un_1) is a bar on finite sequences, was
suggested by P. Martin-L6f). We can prove for instance in this way Hilbert’s basis
theorem. The proof uses a point-free analysis of the Open Induction Principle:

If P(z) is open, and Vz[[(y < z) P(y)] — P(z)] then Yz P(z).

‘This principle can be stated over {0,1], Cantor space or Baire space. The analysis
of this principle over Cantor space uses ID1, and this suggests that the pointwise
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version may not. be conservative over HA. Similarly, the pointwise version over Baire
space should not be provable in usual intuitionistic systemns (of strength 1D1) like
FIM (Kleene) or CS (Kreisel-Troelstra).

R. David:
Traces of some primitive recursive schemata

"This talk is coucerued with primitive recursive algorithrus. I will introduce the trace
(of the computation of a p.r. algorithin on some arguments). The trace is closely
related to the notion of sequential algorithius on concrete data structures (cf Berry
and Curien). | will use this powerful tool to prove some results as

e The ultimate obstination theorem of L. Colson and its extensions to other
situations.

A backtracking property for p.r. algorithius using any kind of first order data
type.

.

The characterisation of the intentional hehavionr of some p.r. algorithins.

e The existence or non existence of (trace preserving) simulations between var-
ious extensions of p.r. algorithis (new recursive schemata, ...).

R.. Dyckholf:
Some contraction-free calenli

We present. two results (joint work with Sara Negri in Helsinki).

First, we give a direct proof of admissibility of the structural rules for the terminat-
ing contraction-free intuitionistic sequent calculus G4ip from [1] (cf [2]). Previous
proofs have all nsed induction in sequent weight or semantics (or both). This new
prool uses only induction on formulae weight and derivation height, and thus ex-
tends to a proof of cotnpleteness for a simnilar first-order calculus G4i {and to several
other related caleuli) and also to a proof of adnusmblllty of the structural rules for
G4ip extended with various positive notions such as “apartness” and “excess”,
thus allowing easier proofs of conservativity for such theories over, for example, the
theory of equality or partial order.

Second, we show the completeness of a termninating contraction-free caleulus for
Duminett’s logic LC; this calculus has the property that all its inference rules
are invertible, with clear advantages for automated proof search and raising an
interesting question about the relationship between invertibility of all rules and the
linearity of the Kripke models. .

[1]. RD, “Contraction-free calculi for intuitionistic logic”, J. Symbolic Logic 1992.

{2] AS. Troelstra & H. Schwichtenberg, “Basic Proof Theory”, Catubridge Univ.
Press 1996.

[8] RD & S. Negri, “Adumissibility of structural rules for contraction-free intuition-
istic sequent calculi™, in preparation, 1998.
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L. Gordeev:
How to rescue Hilbert’s Programme using Integral Calculus

Hilbert’s rejection of the “ignorabitnus” might still inake sense beyond the naive
finitisin. Some reanarkable results about Lukasiewicz’ real valued logic make even
“lopeless” probleins (like Quine’s Con(NF)) computable using basic Rieinann/Le-
besgue lutegral Calculus.

J. R. Hindley: -
Curry's last problem: imitating lamnbda-beta reduction in combinatory

logic

T'he last problem on which Curry worked before he died in 1982 was that of defining
a reduction in combinatory logic to correspond closely to the usual g-reduction
in A-calcutus. Several solutions to this problem have been posed since then, but
despite sowe ingennity in their formulation, none has been really clean and simple
enough to make its development attractive. I believe the task of finding a workable
combinatory fF-reduction is one of the mnain unsolved problems in combinatory logic.
(It is not a “tidy” problem and it promises no beautiful solution, but then, neither
does real life.) "Fhis talk would discuss criteria for acceptability of a S-reduction,
and describe the known candidates and how far they succeed or fail in satisfying

these.

Jondelmaier:
On a “real” tableau calculus for intuitionistic propositional logic

The well known tablean caleulus TK for classical propositional logic has two features
which distinguish it fron usnal tablean caleuli for intuitionistic propositional logic:

A) TK-derivations allow extraction of classical models.
13) TR-rules allow extraction of classical semantics.

Obviously condition B) is much stronger than condition A). For instance condition
B) makes the completeuess proof completely trivial. Now for intuitionistic logic
there are a nnnber of calenli satisfying the analogue of A). In this talk we present
a calenlus TS which i addition also satises B) and thus yields a very perspicuous
cotpleteness proof for intuitionistic logic with respect to Kripke semantics.

. Kohlenbach:
The no-counterexample interpretation and restricted forms of compre-
hension

In the first part of this talk we address the question to what extent the use of higher
types is necessary for a local and modular analysis of proofs and the extraction of
constructive data. Whereas Godel’s functional interpretation or various realizability
interpretations, which use functionals of arbitrary finite types, respect the logical
deduction rules with low complexities involved, this is not true for the so-called
no-counterexamnple interpretation (n.c.i.) of Peano arithmetic PA which only uses
functionals of low (< 2) types.

We deterinine exactly the complexity of the n.c.i. of the inodus ponens rule

1. pointwise for given functionals of fixed complexity satisfying the n.c.i. of
arbitrary preinises in L{PA})

o
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2. uniformly in arbitrary functionals satisfying the n.c.i. of arbitrary premises
in L{(PA).

It turns out that the n.ci. of PA in Gédels’s T (or -equivalently- hy (< €)-
recursive functionals) can be obtained by a local procedure {on the level of the u.c.i.
of the forinulas involved), but that is not possible for the n.c.i. of its fragiients PA,,
(with X, -induction only) in the correspondingly restricted classes of functiouals.

As the main techuical tool we use a detailed analysis of teris which are built up
in a specific way ont. of a weak form of bar recursion and T. This also gives rise
to a new PA-conservative extension A of the system ACA, (arithmetical induction
and comprehension) whose I1}-theores have a n.c.i. in 7 which can be obtained
directly fromn their proofs in A.

I the second part of this talk we deterusine the compitational and proof-theoretic
strength of fragments of A with restricted forns of arithinetical comprehension
aud choice thereby generalizing classical results due to H.Friedman and J.Paris.

R. Matthes:
Lambda Calculi with Monotone Inductive Types

Systems in natural deduction style of terms denoting proofs of second-order propo-
sitional logic including least fixed-points are considered. The B-reduction rules for
those proof terius are giving rise to strongly normalizing and confluent. term rewrite
systews. 1t is well-kuown that iteration may be coded in Girard's Syste
this reason special focus is on full primitive recursion. Which are the re
of building inductive types? Systems with positive inductive types, with wonotone
inductive types (there is a terin whose type expresses monotouicity) and even any in-
ductive type are considered. The last system is in the spirit of Mendler's LICS 1987
systeu. It turns out that there is a reduction-preserving embedding of the sy
of monotone inductive types into the system of (strictly) positive non-interleaved in-
ductive types—strictness being possible in the introduction-based monotone syste
inclnding the (second-order) existential quantifier. An extension of Mendler’s sys-
temn and its dualization are the only systeins for which a direct normalization proof’
hias to be carried out, and they are free from restrictioiss such as monotouicity whicli
in turn allows for very elegant structural proofs. In summa: Monotonicity instead
of positivity does uot even niake the systeins strouger with respect. to reduction.

The open question is if this reduction is also possible in systetus where univer-
sal quantification is left. ont. This seems to be needing the study of permutative
conversions as well as variable elimination reductions for sums and ji-types.

Short talk of < 30 winutes: Two very easy proofs of norinalization of sitply typed
A-calculus using inductive definitions

(A proof of weak normalization by induction on normal formis. A proof of strong
normalization by induction on a set SN.)

1. Moerdijk:
Models for Martin-Lof Type Theory

We discuss the possible interpretation of such type theories in categories of sheaves,
the eventual goal being a better understanding of the relation between topos theory
and type theory (respectively models of 1ZF {1] versus CZF).

[1] Joyal-Moerdijk: Algebraic Set Theory (Cambridge U.P.)
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K.-1I. Niggl:
The p-Measure as a Tool for Classifying Computational Complexity

The two situply typed terin systems PRy and PR3 are considered, both for represent-
ing algoritlins computing primitive recursive functions. PR, is based on primitive
recursiont, and PRy on recursion on notation. .

The pr-measure {Ni95) is employed to detertine the computational complexity of

algorithms in PR; and to uniformly integrate traditional results in subrecursion
theory with resource-free characterisations of sub-elemnentary complexity classes.

To set the stage, p-based modified Heinermann classes R} are defined. Extending
the Schwichtenberg/Miiller characterisation of the Grzegorczyk classes &, for n >

.3, it is shown Ya > 1.6a41 = RY. The proof does not refer to any machine-

hased computation model, unlike the Schwichtenberg and Miller proofs. This is
due to the notion of modified recursion lying on top of each other provided by
the p-measure. By Ritchie’s result, R} characterises the linear-space computable
Mnctions. Accordingly, a short and straightforward proof is presented showing that
R} clraracterises the polytonial time computable functions, thus streamlining the
proof and result of Bellantoni and Cook. Furthermore, the classes Ry and R}
coincide at and above level 2. -

Rounding off the talk, it is outlined how to extend the u-measure to subsystems N,
and A% of Gédel’s T which do not support recursion in all higher types. o

D. Normaun:
Computability over the partial continuous functionals

Let {P(k)}rem be the hierarchy of partial continuous functionals. We show that
every equivaleiice class of total functionals containing a recursive one will also con-
tain one S1-S9-computable, or equivalently, one that is PCF-definable in the sense
of Plotkin. This involves replacing nondeterministic parallellistn in higher types by
deterministic sequentiality.

M. Rathjen:
Counstructive set theory

I gave two lectures following two lectures by Peter Aczel.

Lecture 1: (i} The Regular Extension Aziom (REA). The axiom REA asserts that
any set. is contained in a regular set. The addition of REA to CZF has the effect
that bounded inductive definitions define sets, i.e.their least fixed points. After
explaining the role of REA in the proof of the latter result, 1 put forward several
reasons why REA should be considered the constructive analogue of the Powerset
Axiotn. )

(ii) Constructive Choice Principles. The general axiom of choice is taboo in con-
structive set theory as it imnplies excluded middle. But several mathematically
inuportant forins of choice are legitimate, the strongest being the Presentation Ax-
iom (PA). PA implies the axiom of dependent choices which implies countable
choice.

(iii) Proof-theoretic strengths. CZF has the same proof-theoretical strength as the
classical systemn IDy (theory of non-iterated inductive definitions) or Kripke-Platek
set theory. The latter still holds when Subset Collection is omnitted. The theory
CZF + REA is much stronger. It is proof-theoretically equivalent to a fraginent of
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second order arithretic based on A} comprehension and bar induction.

Lecture I1: (i) | discussed the notions of inaccessibility and Mahlo’s hierarchy of

inaccessibility in CZF.

(i1) Friedman and Scedrov have investigated large set axioms on the basis of IZF,
to the effect that IZF + LSA and ZF + LCA have the saine strength, where LCA
is a large cardinal axiom and LSA its pertinent large set. axiom. The situation is
completely different when the large set axioms are considered in the framework of
CZF. To give an example:

CZF +Vz3y[z € y A yis a Mallo set]

and
KP + Vo3[ < & A & is recursively Mahlo]

are of the same strength. Another example is weak compactness. The pattern seewns
to propagate.

A. Scedrov:
Proof Games, Optimization, and Complexity

Liuear logic proof game is played on linear logic formulas. Its moves are instances of
reverse inference rules of linear logic. There are two players, called proponent anl
opponent, and a separate verifier. Proponent’s goal is to play a sequence of moves
that constitute a formal proof of an input formula. Opponent tries to force the
direction of proponent’s evidence in a way that makes it impossible for proponent
to obtain a formal proof. Several versions of this gatne are discussed, ecach with
a numeric score that reflects the number of certain preferred axiomns used in a
complete or partial forinal proof. The capabilities of the players may differ. While
proponent is always omnipotent, in some versions of the gatne opponent’s decisions
are based ouly on a fair coin toss,

Probabilistic games considered in computational cornplexity theory, such as so-
called interactive protocols, may be represented in the proof game. The polynoniial-
time representations we counsider preserve proponent’s moves, oppouent’s tnoves,
proponent’s strategies, as well as proponent’s optimal strategies. In this way, one
transfers to the linear logic proof game the complexity lower bounds for the ap-
proximation of the expected score when proponent plays alinost optimally. Let us
say that a g-heuristic, 0 j q j 1, is a function from formulas to instances of reverse
inference rules (that is, proponent’s strategy) such that the optiinun score aris-
ing from the use of this inference rule instance is within multiplicative ratio q of
the optimal score. Any polynomial-time g-heuristic for MLLT, propositional nulti-
plicative fragmeunt extended with additive propositional constants, would yield P =
NP. Furthermore, computing any g-heuristic H for the propositional multiplicative-
additive fragment, MALL, would decide membership in any language in PSPACE,
using timme and space at most a polynomial greater than the time and space needed
to compute H. This is joint work with J.C. Mitchell and P.D. Lincoln.

P. Selinger:
Finite lainbda models

It is well-known that a model of the untyped lambda calculus, in the traditional
sense, can never be finite or even recursive. By contrast, we present a notion of finite
models for the lambda calculus. These finite models are models of reduction, rather

o®
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than of conversion, and therefore they are not subject to the usual limitations on
size and complexity. A rmodel of reduction has an underlying set which is partially
ordered, and it satisfies a soundness property of the form

M —p N = [M] < [N].

We work with a definition of syntactical models of reduction that was given by
Plotkin (1994) in the spirit of the familiar syntactical lambda inodels. Models of
reduction are easily constructed, and in fact there exists an abundance of finite ones.
Moreover, we observe that models of reduction satisfy a limited form of soundness
for convertibility: M =g N = [M] < [N], where @ C b ieans that a and b are
compatible, i.e. (3e)a, b < ¢. We exploit this property to give sitnple finitary proofs
of term inequalities. In examples, we show that models with as few as four elements
aresuflicient. to distinguish certain unsolvable terins.

A. Setzer:
Ordinal systews

Ordinal systems are the abstract description of what “good” ordinal notation sys-
teins should be like: new ordinals are defined using smnaller ones and when intro-
duecing a uew ordinal, all ordinals below it are known before the new one. Using

ordinal systetns we can describe in a different, and as we hope more intuitive way-

ordinal notation systems which are usually considered as inipredicative ones. Since
we have a more abstract notion, the well-ordering proofs becorne easier. We hope -
that is of course more a philosophical rather-than a mathematical question - that
they can be regarded as intutively well-ordered, which would justify in a rather
direet. way the consistency of the theories of that strength as well. We will define
ordinal systems up to the level of Malilo.

R. Stirk:
Why the coustant undefined? Logics of partial terms for strict and non-
strict functional programming languages

o
The world of functional programming is split into two parts, the world of strict
evaluation (ML Scheine) and the world of lazy evaluation (Haskell, Miranda).” We
are interested in the logical foundation cominon to both worlds. For this purpose
we introduce the Basic Logic of Partial Terms (BPT). This logic proves properties
of programs which are valid under both strict and lazy evaluation. BPT contains
a definedness predicate but no constant denoting the object 'undefined‘. In this
respect it is siilar to Beeson’s logic of partial terrns. In addition, the system BPT
contains a scheme of induction for least fixed-point recursion. This scheme can
be nsed to prove useful program transformation rules like the reduction of nested
as well as iterated recursion to sitnultaneous recursion (cf. Moschovakis’ Formal
Language of Recursion FLR). Moreover, logics for strict (call-by-value) and lazy
(call-by-name) evaluation can be ohtained from BPT in a very simple way. For
cal)-by-value we add axioms saying that variables are defined; for call-by-name
we require axiomatically that each type contains undefined objects. Since both
extensions are adeguate for the corresponding evaluation strategy, we have a simple
logical explanation of call-by-value and call-by-narne evaluation.

o
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T. Strahm:
Large Mectapredicativity

Metapredicativity is a new general term in proof theory which describes the analysis
and study of formal systeins whose proof-theoretic strength is beyond the Feferman-
Schitte ordinal [y but which are nevertheless amnenable to predicative methods.

I this talk we give a general survey and introduction to metapredicativity. In par-
ticular, we discuss various exatples of metapredicative systerns, including (i) sub-
systetns of second order arithmetic, (i1) first and second order fixed point theorics,
(1ii) extensions of Kripke-Platek set theory without foundation, and (iv) systeis of
explicit mathetatics with universes.

Relevant. keywords for our talk are: arithmetical transfinite recursion and dependent
choice; restricted bar induction; trausfinite hierarchies of fixed points; transfinite
fixed. point. recursion; hyper inaccessibility, Mahloness without foundation and be-
youd; universe operators.

G. Takenti:
Forcing and complexity theory

This is a joiut work with M. Yasumoto.

Let N be a countable model of the true arithinetic Th(IN) where IN is a standard
odel of arithietic. Let 7 € N be a nonstandard element.
Then

M={xe N|z<n# - #nforsomen#- -#n}
is a model of bounded arithmetic So. Let ng ={n| and My = {Jz || 2 € M}
where | @ | is the length of the binary expression of a. Now introduce hoolean
variables po, p1, .. ., Pn,~1 and generate a boolean algebra obtained from polymonial
size circuit fromi po, p1, - .., Pra=1,0, 1. We define MP .= {X € M | 3y € My(.X :
y — B)}. Let { be an ideal of B. [ is said to be Mg-complete if

weEM  Yi<ag(b;€l)— \/ b el
i<an

Since M, B, I are all countable, if ¢ € I then by forcing we can have a generic
uitrafilter G such that GN 1 = 0. Let us denote a morphism made by G by h¢;, and
define M[G] = {ha(X) | X € MP} where for X 1y — B, hg(X):y — {0,1}is
defined by i <y — hg(X)(7) = hg(a) = a.
M) satisties: }

1. Polynoniial time computable functions are defined in M[G].

2. Let o(a) be a sharply bounded formula. Then M |= Vep(z) — M[G] =
Vap(z).

3. If M[G] is not a model of Sy, then P # NP.

We conjecture that most M[G] are not a model of S, since the true definition
[l € B is defined for every sharply bounded formula ¢ by ’

Bz<ltle@)] = Vip)] It Moz <|tlp(z)] = A [o(2)]

<t} =<4

but o] cannot be defined for not sharply bounded forinulas.
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This is the basic theory of forcing. We discuss two specific cases.

1. A subset C of M is a cut in M iff

(i) a€C—a+l1€C
(i) b<a€C—beC

C in M is Myg-inaccessible (Mgg = {}z| | z € Mq}) iff Va € Mgo¥Vf e M :
fra— Mmon. incr. f(0)<C< fla-1)—3Fz€aflz)<C< flz+1)

Theorem: There exists an Mgg-inaccessible cut C in M.
Let G =(V,E) be a graph. S C V is a cligue in G iff

Vo,v' € S(v #v' = {v,v'} € E).
The cligue number of a graph G = (V, E) is k iff

VS aclique |S|<k A 35 a clique |S|=k
The independent number of a graph G = (V, E) is k iff
VS independent set. |S|< & A 3S independent set [S|=k

S is au independent set iff

Vo, o' € S(v £ v = {v,v'} € E)
Let. € be Mog-inaccessible and '

(h<iy<...—C ; h>je>...—C

> 8,y — e > 3k, H my ~ 3y >3, Tk~ e > Sk,
e e t st
i iy iy o Js j2 Ji ™o

Let ng = '“—"%’—') Then we define a function {sy, s} such that
s1# sy; 81,82 < g —— {s1,82} < mno; {81,852} = {s2,51}

Let A:ny — B, A(i) = pi , 1o be the set of vertices. Let [i] = {0,1,...,i—1}.
We define by, b.,...,b1,64, ... by
by = | [fk41) = [ix] has the clique number x4y — i — &~
but [ix41 + 1] = [ie] has no (ig41 + 1) = i — k clique |
bis1 = | [k + 1) = (k41 + 1] has the independent number ji — jr41 — k
but [jx + 1] = [je+1] has no jx + 1 = jiy1 — k independent set |

Conjecture: Let | be the Mo-complete ideal generated by by, b4, ...,b1, 8%, .... Then
1gl. -
‘Theorem: The conjecture implies P £ N P.

2. This titne we introduce Boolean variables p; for every i € M and generate Boolean
algebra B by polynommical size circuit from pi,pa, ..., pi,.... Let ag € My and

o®
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d e M. Define lg : ag — B by ta(i) = pad+i- For d < d’ define bgar = [lar < La].
Let | be an Mp-complete ideal from by 4 (d < d').

Theoremn: 1 ¢ 1.

We discuss the interesting model M[G] obtained from this 1.

S. Terwijn:
Algorithmic Randomness and Lowness II

This is the counterpart of the talk by D. Zambella. We present some joint work
with Antonin Kucera.

We prove that there is a nonrecursive set A that is low for the class R of Martin-
Léf-randomn sets, i.e. A is such that R = RA.

S. Tupailo:
Finitary reductions for local predicativity

Using the concept of notations for infinitary derivations, introduced by Buchholz, we
define finitary reductions corresponding to the method of local predicativity. First.
we consider infinitary system Tg of recursively inaccessible ordinals and define
continuous operators £, of predicative cut elimination, bounding operators Be g,
and collapsing operator D. Their properties are:

o

AT m g (d) g

oc—-w?

T
der,(; = Bclﬁ(d)r%r,c” if Cex! and a<yg

%Tg

)

v

,d%r = D(d) =T

Then we cousider finitary system T3, ,which includes inference symbols

0., C 0
3 GFlBes) Cexn i@

and show how reductions for this system are derived fromn infinitary ones.

Our work explains T.Arai’s reductions for the system T of My-reflecting ordinals.

A. Visser:
The admissible rules of Heyting Arithmetic

We show that the admissible rules in the language of IPC for substitutions in HA
are precisely the same as the admissible rules for substitutions in IPC. The proof
uses a result due to Ghilardi who shows that the exact formulas are precisely the
formulas with the extension property.
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A. Voronkov:

Herbrand’s theorem and equational reasoning

We discuss some decision problems for logic with equality related to Herbrand’s
theorem. Then we explain how results on these decision problems helped us to
classify decidable prenex classes of intuitionistic logic.

A. Weiermann:
Term rewriting and Proof Theory

Iu the first talk we survey recursion- and proof-theoretic analyses of termination
proofs for rewrite systeins. lu particular we analyze terinination orderings in terins
of the slow growing hierarchy. Finally we present some surprising results about.
the growth rate of the slow growing hierarchy. Remarkably the hierarchy (Ga)a<e.
becomes fast growing if its underlying system of fundamental sequences is defined

as follows: (W +A)[z) = w® + Mz + 1]; w[z] = W] W+ 2] = W™ - (2 +1). (Here

we assiine w* + A > A € Lim.)

Iu the second talk we present a constructive termination proof for Godel’s systein®

¢

T which is of lowest possible proof-theoretic comnplexity. Using methods of Howard:

and Schiitte we define a function / : T — w such that (Vs,{ € T)[s reduces to t =

I(s) > I(1)]. Among other things this result yields an optimal derivation lengths -

classification for T and its fragments. o

D. Zambella:
Algorithmic randomness and lowness

Abstract: | shall discuss Martin-Lof and Schorr random sets and sets that are
low for these classes. | will give a recursion theoretic characterization (notably,
not tneutioning teasnre) of being low for Schorr randomn (a result obtained with
S. Terwijn). 1 shall compare this result with one of Kucera and Terwijn on lowness
for Martin-Lof random sets.

Berichterstatter: Ulrich Berger.

-G
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