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'['he present n1eeting is the latest of aseries of conferences on group ac­
1.iOllS. St.a.rting froIn the 1967 meeting on Transformation. Groups at Tulane,
t.herc have been silnilar conferences in the last three decades under perhaps
slightly different headings such as "Transformation GI~OUpS" 01' "Group Ac­
tions on l\1anifolds" ~ hut always within the same theme. For example, at
Oherwolfach in the 80's there was a meeting organized by tom Dieck, Hans­
pf't.er Kraft, and Ted Petrie on "Algebraic Group Actions".

SOlne 26 lectures were delivered 00 topics of current ioterest: differentiable
Cl.lld topological group actions, geometrie structures on manifolds, symplectic,
aJgebraic anel hololnorphic actions. Clearly progress has been made on many
fronts. For exalnple, surgery theory has bypassed the formidable restrietion
on "Ga.p Hypothesis" and has made effective use of control topology tech­
Iliques as in the talks by Connolly, Schultz, Pawalowski, and Pedersen. In
addit.ion there is also the renewed interest in the Seifert manifold construc­
tiOll which is evident in the work of F. Raymond, K.B. Lee, P. Igodt, W.
lVla.Ifait, P. !\1azaud, and others.

Sören IlJolan
Ronnie Lee
Fra.nk Raymond

(Orga.nizcrs of the conference)
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Seifert fiberings
(Frank Raymond)

Seifert fiberings are a generalization of the classical Seifert 3-dimensional
fiberings .f : 1\113 --+ B, B a surfaee, where I- l (b) = 8 1

, für every bEB.

Locally .f is the orbit mapping

/-1 (N(b)) = (51, SI xZ
n

D 2) --+ N(b),

where N(b) is a disk neighborhood of b. The generalization replaces S· with e
a. connected Lie group G modulo a lattice r in G, (i.e., 8 1 = R/7l t--t c;/r).
7r.{ 1\1) is replaced by a discrete group 7r acting properly on a principal Gf_
huodle P over aspace W. The group 1r normalizes the left translationaJ action
€(e:) on .P, anel contains r as anormal subgroup. There is indueed a Q action.
((2 = rr Ir) on vf! which we assume to be proper. These assuolptions inlply
that the projection P --+ W defines a map f : P/1r --+ W/Q. The C; fibers
of P descend to "fibers" of the map f. Each fiber f-l(b) is the quotient of
C;Ir by the action of a finite group acting affinely (in a natural way) on C;Ir.
"Vhen the finite group is trivial, f-1(b) is called a typical fiber, otherwise a
singular fiber. The entire construction is called a Seifert Constrllction.

Theorenl (P. Conner, K.B. Lee, Y. Kamishima, D. Wigner, F. Ra.YlTIOnd).
Let 1 --+ r --t 7r --+ Q --+ 1 be any extension whe1'e r is a lattice i'n a connec­
fed co·tnpletely solvable Lie group G or a lattice in a semi-si7nple Lie group
without norntal conlpaet or 3-dimensional faetors. Suppose Q aetH properly
on a reasonable space W. Then we can construct a p1~oper action of 7r on
Gf x ,,1/ which normalizes the left translations 01 G on G x W. The ind'llced

'tnap
f : (G x W)/1r --+ W/Q

is a SeifeTt fibering. Furthermore) the construction) called an injective SeifeTt
C:onst1'1tction, satisfies a strong uniqueness and rigidity properties.

SOlne typical applications developed by P. Conner, K.B. Lee anel F. Ray­

nl0nd are:

1. a) All infra-nilmanifolds are obtained this way (f a lattiee in C;, vv a

point, and 1r torsion free).

b) Any two infra-nilmanifolds with isomorphie fundamental groups are affi­
nely diffeomorphic.
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2. (,tcnn/.eITie 'realization of group actions: Let !vI be an infra G-mauifold
wherf' (; i::; cotnpletely solvable. Suppose 'ljJ : F --t Out(7rt(M)) is a hOIllO­

1l1orphisll1. Then there exists a lift ;j, : F -4 Aff( M) such that 'ljJ is the
cOlllposit.e F -4 Aff(M) --t Out(1rt(M)) if and only if there is an extension
I ~ rrd A'/) -+ E -4 F ~ 1, which realizes the abstract kernel t/,.

3. Restric.ting p : Q -4 TOP( W) to more geometrically defined subgroups
of TOPP,V) still yields injective Seifert Constructions. But now (G x ltV)/7r
iJlhe!'its sorne of the geolnetry from the subgroup of TOP(ltV). For exanlple, if
fJ defi Ilf'S a. Sillooth a.ction on a smooth W, then the construction can be done
srlloot.hly anel the theorenl holds in the smooth category. Various versions
also pxist. for thc R.ienlannian anel holomorphic categories.

Affille structures on nilmanifolds
(Dietrich Hurde)

111 ..his talk we gave a.n overview of the questions and problems in the
t.lwol'y of a.ffinely anel projectively flat Inanifolds and affine crystallographic
grollpS. 111 pa.rticular we discussed questions of J. Milnor anel L. Auslander on
flllldainental groups of c0l11plete affine manifolds. We started with examples
01" a.ffine nlanifolds and thc question of existence of affine structllres. We
disClrssed sonle weil known conjectures, anlong them the following oues:

Chern-Conjecture (19.55) The Eulel' characleristic of a closed affine 1na­
nifold vanishes.

Markus-Conjecture (1962) A con!pact affine n!anifold is compleie if and
only 'if it. i8 uuiJrlodular.

A uslander-Conjecture (1964) The fundanl.ental group of a complele com­
pud. (J~ßi-nF;. 'Inanifold is virlually polycyclic.

All coujectures are open, including Gromov's question on the L2-Betti
Illll11bers, except for a few special cases. In 1977 Milnor asked the following
question:

Milnor 's Question (1977) Does evel'y solvable Lie group Gt admit a complete
lefl-i1Jva·,'innl affine struclure?

ff yes, t.hen c:/r with r discrete would be a complete affine manifold with
fllndanlcntal group r. The question became a fatnous conjecture. It had a

3

                                   
                                                                                                       ©



very interesting history with many "proofs". Finally, Benoist gave a counter­
exalnple, as weIl as Grunewald and lnyself. There are filifornl nilpotent Lie
groups without any left-invariant affine structure. The only known exanlples
a.re 01" dilnension 10 a.nd 11. This implies that there are niltnanifolds with 110

aJfine 01' projective structures.

Thc counterexarnples rely on the fact that a sharper version of Ado 's
1.Iworellt does not hold: there are nilpotent Lie aJgebras g whic1. da Bot ho.ve

Cl.uy fa.it.hful g-nlodule of dimension dirn g + 1. A positive result holds for
classes ·of filifonn nilnlanifolds of dilnension 11. ~ 12 which corresponds to
("crta.ill irreducible cOlnponents of the variety of nilpotent. Lie a.lgcbr~.s. 'fhf.'
a.ffine st.ructure in this case is induced by a certain extension propr.·rt.y. Ld, g
hc-' tohe Lie algebra of the filifonl1 nilpotent Lie group (;. Ir there is a. cp.llt.ra.)

extension 0 ~ J( ~) ~ ~ ~ 9 -t 0 with a higher-dilnensional filifornl Lic
a'gebra fJ~ then Gl/r is an affine nihnanifold. The extensiolJ exists ifr t.herf> is
Cl. 2"cocycle w E IJ'2(g, C) which is nonzero on J(g) /\ g.

Equivariallt CIIOW rings of SL(2)-enlbeddillgs
(Lucy Moser-Jauslin)

'rite equivariant Chow ring was introduced by Edidin a.nel Graharn as
an aJgebl'aic analogue of the equivariant cohomology ring. More speicifically,
cOllsider a.n algebraic sl1100th complex variety }{ endowed with an action
01' Cl. r~ductive grotlp Ci. Oue can study the equiviariant cohonlology of .\' ~

hut this ca.u be difficult, since it is not necessarily generatecl by algebraically
defincd objects. The equivariant Chow ring is generated by classes of closed
subvarieties of an a,lgebraic variety, and it is therefore aJgebraically defined.
In this ta.lk, I discuss two cases in which the two rings are isolllorphic: (1)
s1l1oot.h cOlllpact toric varieties, and (2) smooth compact L(2, C)-elnbeddings. _
I discu::;s SOll1e general results about Chow groups for torus actions due to •
lVI. Brion. Then for the 2 cases above, I discuss how the equivariant Chow
ring can be calculated.
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Rigidity and classification of actions of semisilllpie Lie
groups and their lattices

(Ralf Spatzier)

'rltis is a survey of recent progress on actions of a semisiluple Lie group G
withollt. conlpact factors and its lattices r c G on compact manifolds. While
g(,ll(-~ra.l actions of such groups are ilnpossible to classify, such actions seenl
1.0 be ra.re uuder faidy weak additional topologieal, geolnetrie 01' dynamical
<t."istlillpt.ions.

Luw dimensions: Conjecturally, a11 actions of lattices in low diluensions
a.re via. finite groll ps. Wit.te for the circle, Farb-Shalen for real analytic actions
Oll t.lH~ circle~ surfaces and 3-manifolds and Weinberger for actions of SL(n, Z)
Oll t.ori Ita.ve partial results. '''~..

VoIUll1e preserving actions: Zinlnler shows that such actions always ad­
lllit. 1l1CaSlll'ahie framings which essentia.lly transfofln according to a linear
repn>:.;entation for the alnbient group. Katok-Lewis and later Benveniste con­
st.rl1c1. cXeunples which are not affine algebraic, are Gromov rigid and admit
defo 1'111at iuns.

Topological obstructions: For engaging actions, Lubotzky and Zimlner
show t.hat. t.he i Ina.ge of the fundalnental group of the manifold under a linear
rcpn-'s0n1.at.ion is s-aritlunet.ic.

LocaJ rigiclity: Mal'gulis and Qian show that the affine algebraic actions
<-He locally rigid provided the linear part of the action does not sHlit off
t.he t.rivial representation as a factar. Kanai and Katok-Spatzier prove Ioeal
rigidit.y of t.he projective actions of uniform lattices. Cartan actions: Goetze
alld Spat.zier show that they are always affine algebraic.

Affine stl'l1ctures: Zinlmer, Feres and Zeghib show that alllow dinlensional
affine actions are affine algebraic. For complete affine connections on compact
COIlIlf'ct.ed lnanifolds~ Szaro shows tha.t a non-trivial affine 8L(2, IR) action
Ca.IlIlO1. fix a point.
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A cOlltrolled end theorem for stratified spaces
(Frank ConnoIly)

Let .r be a locally compact ANR, finitely filtered by dosed sets

Let. A be a. closed set in }(, which is tanle (in a stra.tified sense). ASS11lne

lha.!. .\. - A is a Inanifold-stratified space in the sense of F. Quinn (essentially
this aSSlllnes that each stratum Xk := ~\,"k - ..Xk

- 1 is a k-diluensiona.l Illani­
fold, allel that strata fit together neatly). Then A adnlits a. stratified Inap­

ping eylillder neighbourhood in ~Y iff a singleobstruction I.(~\",A) va.nishes.
,.(.\", A) = L~l 1'iC'-', A) and li (.)(, A) lies in a localization 01' thp. cOHtrolled
./{o-group, KO(.\'"i-l UA i ,p)(Ai), where p : Holink( ..l[i, .\-z"-1 U Ai) -4 .\-i-l U Ai
is projection.

An ahnost in1111ediate corollary of this result is Cl. good t.heory of open
regula.r neighbourhoods inmanifold stratified spaces.

Hololllorphic actions of compact Lie groups Oll <cu
(Frank Kutzschebauch)

Tlic t.alk was centered around the following probleIn:

HololTIOrphic Linearization Problem: Let J< ~ Aut(cn) be a. cOlnpa.ct
subgroup of the hololuorphic automorphism group of cn. Ca.n one c.onju­
ga.te this subgroup by a single automorphism into the genera.l linca,r group
C.,'Ln(C) C Aut(C~L i.e., is every hoiomorphic action of a C0111pact grou)) on
<cu linearizable?

Besides Cl. short introduction about holomorphic autoITIorphislllS of <C7t anel
_a.n overview aver the positive results concerning holomophic linearization I
sketched the n1ain idea for the proof of the following theorem which is a joint
work with Harm Derksen.

TheorelU. Let ]( be a compact Lie group (not the trivial group). Thcn lhere
f.:l:ists an lV such thai for all n ~ N thel'e is a nonlinearizable effectivc n.chon
0/ /{ on <en by holo1no1'phic transformations.

6

                                   
                                                                                                       ©



-'

Torus bundles over lens spaces
(Jim Davis)

'rhis is joint work with W. Lück. Let T ~ E ~ L be a torus bundle
ov~r Cl. leus space, so that Irrl LI is an odd prin1e and rr has a section. (For
pxalnple. given an action of Zp on .zn, let E := Tn xZ

p
Bk.) We cIassify

0.]] dosed Jnanifolds in the hOluotopy type of E, assuluing the isomorphisßl
('onject.llre of Farrell-Jones. We cIassify h-cobordisms with fundamental group
r = 7ft E and stable ison10rphism cIasses of finitely generated projective Zf­
1l1odules. \"ie prove thc stable positive curvature conjecture for manifolds
with fundanlental grou)) r.

POIYIIOlllial structures fot polycyclic-by-finite groups
(Karel Dekimpe and Paul Igodt)

A grollp C; has a. polynonlial structure if it adlnits a faithful representation
(l : (; ~ P(IRU) l11aking it acting properly discontinuously and with compact
quotiPllt G\lR 71

• P(lR U
) stands for the group of all polynomial diffeomorphisms

01" IR". \\Te prove thc following theorems:

Theorenl 1 (!\train Cohomology Vanishing Theorem). Let r be polycyclic­
by-.findc and p : r ~ P(RK ) a polynomial structure, which is compatible to
(/ .'/;'11("'11 lor8ion-frec filtration f o = 1 C f 1 c r2 C ... c rc c r c+1 = r 01
('ha'l'ac!r'ri8Iü' $llbgroups such that rj/rj_1 ~ Zk, (1 :::; i :::; c) and ~/rc is
jil1il.r (1\" = Li=1 k;). Then, fOT every 1norphism ifJ : r ~ Gl(k,Z), dfi=d, fOT
all j ~ I.

lf~xp(r,P(IRK
, IR k

)) = O.

(P(IRK.IRk
) isl.he vectorspace ofpolyno1nial1nappingsIR/\ ~ IRk and bec01nes

fl I'-nloduif by: V;c Er: V).. E P(IR h-, IRk ) :x ).. = lj>(;x) 0 A 0 p(x )-1.)

Corollary. Evcry polycyclic-by-finite group admits a polynomial structure,
I.(/k;ng i/8 ünage in a blocked Joncquiere group J.

Definition. F01' fixed n-tuples 0/ positive integers, K = (k}, , kn ) and
!A.' = (~'l." ','wn ), wc define the (K,w)-weight of a mon01nial x~.lil X~.lk:J ...
••• ;I":~~~.l ••• :Z;~:k=n as Li=1 L7~1 WjO'i,j. The (K.,w)-weight 0/ a polynomial is
I.hc 'lna.xin1-1l1n 0/ Ihr weights 0/ its mono1nials.
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Theoren12. Fi:r,,: == (k1 , ••• ,kn ) andw == (Wl"."Wn ). Let P Ii •W bc t.he

8'llbsd 0/ J, cortsi.5ling 0/ fhe diffeo111,orphiS'lns 01 IR.kl+·..+kn bring 01 the form

Pn(Xl,l, ,Xn,kn )

]Jn-l (:rl,1, X n -l,kn _ 1 )

1J2(Xl,l, , :C2,k2 )

P1 (;r.1 ,1, ,Xl,k1 )

w-ith !t· E GI(ki , Z) and qi 01 (""w)-weight ::; Wi· Then, P/,\.vJ is fl jiUl:t.r: ,li­
·In('.",8i.O'llO'/ Lic-81lbgroup 0/ J.

Theorenl 3. For cvery jinüely generated s'llbgro'lljJ r 0/ ablocker! .]oucquie.rc
yroujJ .J 0/ type (1.: 1 , ... ,Itn ) there e:rist w = (w], .. . ,u..'n) such that r 1~8 CO'll.­

tainul ·in Ph.W' Thi.5 hnplies thai r is 0/ bounded deg·rce.

Corollary. Every ]Jolycyclic-by-finite group r admits a bouTI,ded dfgree. po/y­
uon/ia/ st.r'llct.ure p : r ~ p ~,W, for some f\. and w.

Now that it is known that polycyclic-by-finite groups do not always acllnit
an affine struct.ure (a probleIn originally posed by.John l\1ilnor in 1977 (Adv.
ß1ath.), a.llel 1'01' which even nilpotent counter-exarnples have been fOHnd in
1.h<:' early 90's), this PK,w-setting states the best general type positive answer
so rar for this problen1.

\Vf.' present several elelnents giving evidence for the fact that the grollps
P fi.W (night be good alternatives for the group of affine transforn1ations.
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Group actiollS, genus illequalities alld 4-dimensional
surgery

(Dariusz Wilczynski)

A gell11s inequality, such as the acljunction inequality for exanlple, provi­
des il. lower bound for the genus of an eOlbeddecl surface in CL 4-dimensional
Inanifold. In this t.alk, we discllssed certain generalized Rokhlin inequalities
Cl.lld rela.ted thenl to t.he topological surgery problem in dimension 4. The
1a.t.1.f'1' ösks if the topological surgery sequence is exact for a (compact) 4­
1l1allifold with any (finitely presented) fundanlental group.

Dillleilsioll theory over finite von Neunlallil algebras
and applications

(Wolfgang Lück)

\,V(' deHne für arbitrary 1110dules over a. finite von Neumann algebra A a
dillH'llsion t.aking values in [0,00] which extends the classical nation of von
NC'lllnann dinlcnsion for finit.ely generated projective A-modules and inherits
all its useflll properties such as Additivity, Cofinality and Continuity. This
allows 1,0 d~fine J}-Bett.i nunlbers for arbitrary topological spaces with an
iutioll of Cl. discrcte group r extending the well-known definition for regular
covf'rings of conlpact Inanifolds. We show for an anlenable group r that the
p-th 1.1 -Betti nUJllber depends only on the Cr-Inodule given by the p-th sin­
gular hOlnology. Using t,he generalized dimension function we detect elements
in (,'o(Cr), provided that r is amenable. We investigate the class of groups
for ",hieh t,he zero-th and first L2-Betti numbers resp. all L2-Betti numbers
vanish. \,\fe study L1_ Euler characteristics and introduce for a discrete group
r it.s Burllside group extending the classical notions of Burnside ring and
lJul'llside ring congruences for finite r.

Illvariallt llleasure and the Euler characteristic of
projectively Bat manifolds
(Kyeonghee Jo and Hyuk Kim)

Let A1 be a projectively Rat manifold. Then it has a developing pair
which is an equivariant Inap from its universal covering with fundamental
grollp action into IRpn with the corresponding holonomy action. Suppose
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tha.t. Lhere is a. probability measure A on IRpn which is inva.riant under the
holononlY a.ction. Then we can show that a Ineasure I.l is induced on lvI frOlll
..\ by the holonol11Y invariance of A, and the following theorenl holels:

Theorenl. Let 1'\1 be an eve'!'t dirnen,sional closcd projeclively f"af. IItan.ifalrl
ftnd A be a holonolny invariant· finitely additive probability Bore! UlCnS'Ilr(: on
IR 1")11. Tlten the Eu/er characteristic 0/ M is equal 10 It( A1), 'whcl'c It if:i thf'
m,('(L.;;;urc on lvI induced fronl A.

Dur study has been n10tivated from the effort t.o reso]vp. ehern 's conjec- _
ture: ~'Closed affinely Hat nlanifolds have vanishing Euler characterist.ic." As a. •
corollary of the theoreITI we show that the conjecture is true if the holonolny
grOll}) 01" the affinily Bat manifold has an invariant probability 111eaSurc. 1'hi5
gellcra.lizes the earlier resltlts for the amenablc case and thc radiant case.

Fixed point sets of snlooth actiolls of finite Oliver
groups on spheres

(Krzysztof Pawalowski, joint work with Masaharu Morillloto)

A finite group C; is called an Oliver group if there is no sequence of nonnal
subgroups P ~ H ~ C; such that P is a p-group, H / P is cyclic, and C;/1/
is Cl q-group for two primes p and q. A finite nilpotent group is aB Olive]'
group if a.nd only if G has three or more noncyclic Sylow subgroups. Evcry
finite llonsolvable (in particular, nontrivial perfect) group is an Oliver grou)).
Für a. finite group G" let P(G) denote the family of all prilne power order
sn bgroupl:i of C;.

Theorenl A. Let Cf be a finite nilpotent Olive1' grottp. Let IvI be fl closed
snloot.h 'm.nniJold. Then there exists a smooth action oI G' on a 81Jhe',.c S' s'lteh
I/ud S'G = NI and sP # M f01~ each P E P( C;) ij and only i/ A1 is stably
camplex, if (md only il there exists a smooth action 01 G on a disk D snt:h e
I/ud [JG = IvI.

Theorenl B. Let. G be (L finite nontrivial peljeet gl'O'Up. Let Ivl be (l Cl08f:d
8'171,00111 'Inanifold. Then there exists a S'lnooth action 0/ C; 0'11. a sphe.re 5' s·uch.
Ihnt 8(; = 1\4 and sP # M f01' euch P E P(G) i/ and only il thcTe e:risls fl

8111.00th action 0/ (; on a disk D such that D G = M.

The question of which smooth manifolds' occur as the G'-fixed point sets
for Sl1100th actions of G on disks has been answered cOlllpletely by Bob Oliver
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['ropology 35 (1996), pp. 583-615] in the case where C; is a finite group not of

prill1e power order. In the case where C; is of prinle power order, the answer
goes back to LowellJones [Ann. ~1ath. 94 (1971), pp. 52-68].

HOl11eOl110rphic representations
(Erik Peclersen, joint work with lan Han1bleton)

L<,t C' :== (.',. be a cyclic group of order 11. alld consider 2 C;-representations
writ.t.en as \/i f!7 H/1 and "2 EB I,V2 thal are equivariantly hOlneonl0rphic. It is
df'IlH:'Iüary t.hat we then have Vi EB '"'VI .......+ V2 EB W I , and the problelll can be
t.rallslated t.o a. problen1 in bounded surgery. VVe da get S(Vi)/G ~ S(V2 )/G
so t.his deterIllines an elenlent 0' E J(S( V2 )/G). Consider the diagraf!l;~.~

[S(V2 )/G, F/Top]

1

where the lower seql1cnce is the bounded Sl1rgery exact sequence due
to FPIT'y~ Peclersen and Hanlbleton. This shows that if the transfer on L­
groups is 0 we get a silnilarity. Using this technique we recover and sometimes
corrf'et, all known facts on homeomorphic representations in the literature..
Tile 111t.inlaü:, result wc obtain is t.hat honleomorphislllS of representations of
fillite cyclic groups are determined by the Reidemeister Torsion. .....

Topological 1110dels and collomology of Galois groups
(Alejandro Adern)

\Ale conlpute the cohomology of certain Galois groups which are deter­
1l1ined by the \-\Titt ring of a field F of characteristic =I 2. Properties and
explicit. COll1putations were discussed. This is joint work with J. Minac and
D. I~aragueuzjan.
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Multiplicity-free Hamiltonian actions and spherical
varieties

(Dominique Luna)

Let G be a complex reductive grotlp anel J( a nlaxinlal conlpact subgroup.
. 1 tried to explain the relations which exist between Hamiltonian actions of 1\#
ancl algebraic actions of G (in particular between multiplicity-free Halnilto­
nian actions and spherical varieties). I mentioned briefly the definition (anel
role) of wonderful varieties.

See also: "Toute variete magnifique est. spherique ''', Transfonnation
Groups, Val. 1, no 4 (1996)

Manifolds with little SYIUmetry
(Volker Puppe)

The relation - obtained from P. A. Smith theory - between the n1lllti­
plicative structure of the cohomology of a manifolcl anel the possible fixed
point sets of Z/p-actions on it can be used to show the existence of elosed
~ilnply connected manifolds, which do not admit effective orientation preser­
ving actions of finite groups. Furthermore, for a certain class of 6-dinlcnsionaJ
Inanifolds (i.e. closed simply connected spin-manifolds with H 3

( -) = 0) it
is shown that the subset consisting of those lllanifolds which adlllit effective
Z/p-actions for infinitely many primes p, has density zero (with respect to
a certain density function). Similar arguments can be applied to prove that.
~lnost' Z2-cohomology types of closed 3-dimensional manifolds are represen­
ted by manifolds, which do not admit any non trivial involution.

The further ainl is to get analogous results for higher dinlensionallnani­
folds. One might expect that the following holds. Let M 2k be the dass of
rational coholTIology types of closed simply connected 2k-dimensional nlani­
folds, such that Heven( -; '0), as an algebra, is generated by H 2

(_; Q). Then
for 'lnost ' elements in M 2k a representing manifold does admit an effective
Z/p-action for at most finitely many primes p; in particular, it does not adlnit
an effective SI-action. Certain steps in this direction are done.
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Expallding InapS Oll homogeneous infra-nilmanifolds
(HyunKoo Lee and Kyung Bai Lee)

Let, A4 be a compact differentiable olanifold. A C1-endomorphisol f
Al -+ A-1 is expanding if for some Riemannian metrie on Ai there exist c > 0,
..\ >I such that IIDfmvll ~ c).m /lvII for all v E TM and all integers 111 > O.
It. is known [GroolOV] that any expanding endomorphisnl of an arbitrary
cOlnpact. Inanifold is topologieally conjugate to an expanding endonl0rphism
01" an infranilmanifold.

Vv'p are c.oneerned with the converse. It is known that every flat manifold
(lchnits an expancling endolTIorphism. There are counter exalnples of nilpo­
teilt. Lif> algebras which do not admit an expanding endomorphism, showing
that. t.he existence of expanding endonl0rphisms does not hold for general
(i 1I fra) nil [nall ifolds.

\Vp say t.hat ..c is a /1'ee Lie algebra 0/ rank r if there exist r elements
'\-1 ~ .\"l~ ... ~ .\·r E ~ whieh generate ..c as algebra,and which elljoy the follo­
Willg llllivf'rsa.llllapping property: any funetion from the set {)[l, .\2,"', .~r}

1.0 a.ny a.lgebra ~ extends to a unique algebra homonl0rphisol ..c --+ (8.

O('fine t.he ideal ..ci, i = 1, 2, ... of .e as folIows:

('I _ (l,.""", -AwJ.,

All idea.l J of ~ is hOl1~ogcneolls if thc veetor space Jis isomorphie to the
dir('ct. Stlll) of (J n ~i)/(J n ,ei+l), i = 1,2, .. '. We shall say that a Lie algebra
~ ;8 lunnogenCOllS if Q) is isomorphie to r,/J with ,e free and J homoge~~ous.

A nilpotent Lie a.lgebra is called /ree if J = .er for some r; this is, it ~is of
thf' fornl 12/J2". A nilpotent Lie group is homogeneous if its Lie algebra is
hOl nogeneous.

All infra-nillnanifold is the quotient of a conneeted, simply eonnected
nilpotp.lü Lie group C,' by a discrete cocompact subgroup rr of G xe, where
(' is a. Illft.xill1al C0l11pact subgroup of Aut(C;). It is known that a Riemannian
1l1a.nifold Ivl is almost flat if and only if it is homeomorphic to an infra­
nillnallifold.

An infra-nilmanifold rr\C; is 0/ hom.ogeneous type if G is of homogene­
ous type. It is known that: any honlogeneous Lie algebra adlnits expanding
illltolllorphisl11S. We generalize this to infra-homogeneous spaces.

Theoreln. (1) Every 2-stq) infrn-nilnl.ani/old ad1nits an expandüJ,9 'lnap.
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(:2) E'lJf'ry infnz-nihnanifold 0/ hontogeneolls type, with fl'cdy ge'nenllcd la I.l ,,: Cf: ,

whosr holortoHlY gro'llp has prilne orde'l' greate'" than the nilpotencYI adm,its
a.n crpandiu.'] 'Inap.

Spill(4)-actiollS Oll 8-diluensional nlallifolds
(Philippe Mazaud)

\JVe study sn10oth~ effective Spin( 4)-actions on elosed, orient.able, 8­
ditnensional Inanifolds. We further assulne that the principal orbits a.re free .
....J}i.n(;) )-lnanifolds Inake-up a rich dass.of spaces, that a.re paranletrizf'd by
orbit data aver a surface.

Equivarialltly, one distinguishes between three general1;ituatiotl~.(I) 'l'he
actioll is principal; these bundles are trivial, so theü the interest.iJlp; situations
are t.lle following two. (2) "Seifert-like Inanifolds~' over dosed sllrfaccs: tltc
actioll i1; free away from exceptional orbits (E =f 0). (:J) cornprisf~s all t.hc?
casf'S \V here singular orbits are present. The quotient spa,cc A:/ - is a surfacc
wit,lJ honndary. The singular orbits occur over this boundary. The isotropy
struet.ure detennines a partition of each connected C0I11pOnCllL of Ud( ,H-)
illt.o vertices a.llel edges, and must satisfy fairly strict loeal conditions. The
illterior of 1\1[* consists entirely of free orbits~ anel possibly Cl. finite lllHllber of

E orhits.

\>\le ohtain the following equivariant elassification of 8p'in( 4 )-act.iolls: ir
S'}Jin( 4) a.ct~ on M according to the conditions given above~ a.llel E = 0~

then, Hp ta equivalence, the action is eompletely characterized by: (a) t.he
hOIneal110rphislll type of the orbit space M*, (b) the i50tropy weights, and
(c) An eleillent 0 E Z~, where b is the number of boundary COlTl(.>onents of
1\1*. (;iven SOIne fixed ordering of the components of the boundary, t.o the jth
boundary circle is associated an element in Z2, and thi5 is the jth C"oordinatf'
or o.

The inva.riant 0 is directly interpreted as an obstruction to tbc ,~ llnifor­
111ization" of aglobaI section to the action (section that is shown to a.l ways
exists). vVe discuss the question pertaining to whether the invariant also f'll­

codes topological information, or whether it is strictly equivariant.
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Catesian products of 3-111allifolds
(Slawomir Kwasik)

rrhe following problem of S. Ulam was discussed

Problenl. Let A and B be topological spaces such that A2 .- A x A and
8 2 := B x B al~e hOlneomorphic. Are A and B homeomorphic?

rrhe ca...c:;e of3-luanifolds was eonsidered. For closed, eonnected irreducibJe
:J-Iuanifolcls which are geometrie the equation Mn = f\r~ for SOlne n ~ 2 was
~oJvcd c.oI11pletelY. It turns out that the above equation in general eau have
llla.ny soJutions, however all these solutions cau be classifie.d.

HOlllologically trivial group actiollS on 4-111allifolds
L

(Allan Edmonds)

This ta.lk outlined a prüaf üf the following theorem: lf a finite group Ci
aets pseudofreely, locally linearly, anel hornologically triviallyon a closed,
sirnply counected 4-tnanifold X, with b2 CX) ~ :3, then Gf is cyclic a.nd the
act.ion is selnifree.

This contrasts with the rieh fatnilies of synlmetries of snlaller 4-nlanifolds,
such as 5'4, S2 X S2, and CP2.

The proof involves group eohomology and the integral spectral sequence
of t.hf.' Borel fibering ~\ -+ X G -----+ BG. One first deals with special cases where
C/ is an elelnentary abelian p-group or a llonabelian metacyclie group. 'fhe
a.rgulnent. then proceeds by induction on the order of the group.

Circle actions in symplectic geometry alld
Lusternik..Schnirelmanll category

(John Oprea)

R.f'cently, the tnethods of homotopy theory have found use in SYln plec­
t.ic geonletry. In particlllar, the theory of Hanliltonian actions has proven
{~spec.ially amenable to this approach. Furthermore, recent work by Rudyak
aJl<! lludya.k-Oprea shows that honlotopy theory also has a place in studying
Jllore analytic symplectic probleIns such as the Arnold Conjeeture. This talk
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disclIsses the relation of homotopy nlethods to Hamiltonian actiolls anel the
Arnolcl Conjecture. More specifically, the following results are discussed in
this frarnework.

Theorenl (Lupton-Oprea). FOT a symplectic 1nanifold (M 2n,w).. i:f cdAl) =
'I' . u': with l' > 0.. then every symplectic SI-action on M is Hautiltonian.

Theorem (Rudyak-Oprea). FOT a symplectic 1nanifold (M2n,w), ifwl1T2{rH) =
O. 111(:'11. ca.t( JltJ) = dinl(M)" where cat(M) denotes the Lusternik- Schnh'cl­
I/HlU'Il (.'a/'cgory 0/ At.

'rogether with powerful results of Rudyak, the latter theorelTI proves the
original conjecture of Arnold that the number of fixed points of a Hanliltoni­
all diffeornorphism is at least as great as the number of critica.l points of any
srnooth funct.ion on M for manifolds satisfying W/ 1r2 (M) = 0 == cdA1)11T'2(A1)
(i .('. Floer's original hypothesis). The second theorem also shows that 111ani­
folds sa.t.isfying WI 1r2(A1) = 0 cannot give positive solutions to the

Contractible Orbit Problem (McDuff-Salamon). Does thp-re e:risf a !re(:
''''~ij'ln p/r.·(:fir eh-eIe action on a symplectic 1nanifold M such that aU orbits are
('oulrflct.iblr:: in 1\1?

'rbus, positive solutions cannot be obtained from Halniltonian actions
(('.g. At{ sirnply connected), since such actions have fixed points 01' fron1 n011­

sirnply connected 111anifolds with WI 7r2 (M) = O. In fact, a positive solutiqn
ca.nnot be obtained for any symplectic manifold having cat( M) == dinl( Ai{).

N orlllal sllrfaces and G-equivariant minimal Seifert
surfaces of links

(Jeffrey L. Tollefson)

Let L be an oriented polyhedral link in a homology 3-sphere E where
1\1 L = ~ - int(N) has a triangulation T. Suppose that G is a finite grou))
of silnplicial homeomorphisms of ML such that the set Fix(G) = {:rlg(x) =
:1' for SOHle nontrivial 9 E G} is a subcomplex. Oue can find aleast weight,
t.a.ut nornlal surface S such that [5] represents tJle homology dass of a Seifert
surface for L.

TheorelU. Let Q E H2(A1L , 8ML; Z) be a hom.ology class such that g(ev) =
±et lor all 9 E C'. If S' is a lw-taut nonnal sU1jace re]J1'esenting 0' theu cvcry
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i11.tel'section curve between images 0/ 5 is regulal' and the geometT'ic S1.t11l.

LgEG 9(5) is a disjoint union o/lw.taut G-equivariant norntal sUlfaces 8g

such that 5g is homologous to g(5).

Corollary. Let L be an oriented link in a triangulated hom.ology 3-sphe're E.
Lcf G' be a finite group 0/ simplicial homeomorphisms 0/ E such that fix( C)
i... n. subc01nplex and for ea~h element 9 E Geither 9(L) = L or g(L) = -L.
1'h(~'n thel'e exists an equivariant minimal Seifert surface for L.

A link L in a homology 3-sphere E has period n if there is a PL rotation
g of order n about an axis A disjoint from L which leaves the link invariant.
lJsing the existence of equivariant minimal Seifert surfaces one can find a
bound AlL on the period for any nontrivial oriented link by applying t.he
RienlcUll1-Hurwitz fonTIula (as is done by A. Edmonds for knots). This g\\res
i\.nother proof of J. Hillman 's result that only trivial links can have infinitely
lBa.ny periods. ",-'

Stabilized fixed point neighbourhoods ill 4-111anifolds
(Reinhard Schultz)

Abasic question abo~t group actions is the classification of neighbour­
1100<1 gernls of fixed points. For orientation preserving involutions on 4­
tnanifolds, results froln thc 1980s answer this question in the case of isolated
fixed points, and for nonisolated fixed points recent work of S. Kwasik and
1l1yself desc.ribes the stabilized germs obtained by taking products with sui­
t.abl€' linear representations. Analogous results and problems for actions of
larger finite groups and SI on 4-manifoldsare considered in the present work.
[n particular, one has the following results:

Theorem 1. G1:ven a semifree 5 1-action on a 4-manifold M, its product with
the sta.,~dard SI-action on <C is locally linea.".

Theorenl 2. Given an isolated fixed point 01 an SI-action on a 4-'Tnanifold
f:iuch that the nearly isotropy subgroups are {I}, Z /2 and 8 1 , /0." each odd
'infe9f:'I' 11l > 1, the neighbourhood germ for the l'estriction 01 the action to
Z /111. has a weakly conelike structure (i. e. the formal collaring obstruction on
h:u(Z[Z/m]) is zero).

The prüofs rely on thc classification. of neighbourhood germs in homo­
t.opy stratified sets (in Quinn's sense) due to Hughes, Taylor, Williams and
Weinberger. Thc preceding is joint work with Slawomir Kwasik.
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Tlle classification of radiant affine 3-111allifolds
(Suhyoung Choi)

'f'his t.alk has two parts:

I. \,Ve try to uoderstand the geo1l1etric properties of n-1l1cUlifolds wit.h
g(~olnt'loric sLrucloure o10deled on (IRpn, PC;L(n + 1, IR)), i.e. rea.l projective
/I-lllallil'olds. Given areal projective n-n1anifold M, we show that t.hc failurc
01" (11. - I )-collvexity of Alf ilnplies an existence of a particular type 01' rea.l
proj(~ct.i~re sllblna.nifolds in Nt. vVe give a decolnposition of A1 int.o sinlpler real
projeet.ivf' ll1a.nifolds, SOlne of which are (11. - 1)-convex and others are affine.
\Ve g('t, a. COllscquence for Lie-groups with left-invariant affine strllcLure.

1. A l.opologist's definition of an affine olanifold is a tnanifold with an atlas
01' chart.s 1.0 t.hc a.ffine space with transition functions which are affine I1H\.pS. A
radia,nt. affine Inanifold is an affine Inanifold with holonomy consisting of affine
t.ransfol'lnatiolls fixing a COlnmon point. We decolnpose an orientable closed
radiant. affine :J-lnanifold into radiant 2-convex affine manifolds anel radiant
cOIJCa,v(-' a.ffinc :1-1nanifolds along lnutua.lly disjoint totally geodesi<, tori 01"

hl('ill boUI(,s lIsing the (n - l)-decolnposition of real projective n-Inanifolels
developed earlier. Then we decompose a 2-convex radiant affine 111anifold int.o
conv(-'x radiant affine Hlanifolds and concave-cone affine Inanifolds. To do this.
\Vp will show lohe existence of certain nice geolnetric objects in the projectivp
cornpletion 01' holonolny cover. The equivariance and locaJ finiteness property
01' t.he collection of such objects will show that their union covers a cornpact
SlIb1l1a.llifold of codimension zero, the complement of which is convex. Final1y~

IIsing t.he results 01' Barbot, we will show that a closed radiant affine 3­
Illa.nifold adrnits a total cross section, confirming a conjectllre of Carriel"e~

allel hence every radiant affine 3-manifold is homeomorphic to a Seifert fibrecl
space wit.h trivial Euler l1tunber, Of a virtua.l bundle over a eireI<:' with fiber
ltoIlleOJll0rphic to a torus.

SYlllllletry of model aspherical mallifolds
(Wim Malfait)

~IIodel aspherical nlanifolds are those aspherical manifolds M arising fronl
a Seifert fiber space construction. "Ve think of symmetry of such a Inanifold
1\4 in tenns of finite groups of fiber preserving homeomorphisms acting ef­
fectively on lvI. In [3], we describe a subclass of model aspherical Inanifolds

18
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1\1 for which the realization of a finite abstract kernel tf;: G ~ Out(Jr.(i\1»),
as a group of fiber preserving homeomorphisms acting effectively on 1\1, is
equi valent to realizing 'tjJ as the abstract kernel of an achnissible group exten­
sion of Jrl(M) by G. This approach allows to convert the study of synlmetry
of 1\4 into a pure group-theoretical problem (partially solved in {2]).

An interesting subtopic is the study of Inodel aspherical Inanifolds with
llO periodic nlaps. A theorem of Borel ([1]) states that if the fundamental
groll p of an aspherical manifold M is centerJess and Out( Jr} (M)) is torsion­
ffee, l,hell 111 adlnits no finite effective actions. In {4J, we investigate to what
<:,xt.ent. the converse of this result holds for model aspherical nlanifolds. In
particular, if there is a total lack of symmetry on a Hat Riemannian manifold,
on a.n infra-nihnanifold 01' on an infra-solvmanifold of type (R.), theI1.,its
funda.lnental group is centerIess and there are 00 outer autolll0rphisnls.:<of
finite order. "Ve pose the problem of finding exaluples of such nlanifolds \yith
uo periodic lnaps. .

Refpn'JICes:

(11 (:onller P. E. and Raymond F., Munifolds with lew periodic hOl1leOl1!Orphisms.
Leet.. Not.es in Math. 299., Proc. of the Second Conference on Conlpact Transfor­
ma.tion Groups, Springer- Verlag, 1971, pp. 1-75.
[2] rvlaHai .. W., Algebmic criteria to decide if a finite group aets effectively on a
1I1odd (/8pherical 7nanifo/d. Journal of Algebra, 1996, to appeal'.
[:~] !\1a.lfait. \V., Nielsen~s theorem for model aspherical munifoids. 1.1anuscripta
rvlath .. 1996, 90, pp. 63-83.
[~l] t\1a.lfa.it W., Atloelei aspherical1uanifolds with HO periodic 1l1aps. Proc. Amer.
ivlath. Soc., 1997, to appear.

COlll1terexamples of equivariant s-cobordism theorems
and Lefschetz rings

(Katsuo Kawakubo)

A Jot of people are concerned with a sort of equivariant s-cobordisn1
theorelTIs.They mainly dealt with isovariant case and finite group actions.
On the other hand, we got equivariant s-cobordism theorems for any conlpact
Lie grou}) actions under"gap hypothesis. Here we da not consider orbit space
a.nel stratification. Instead we handle G-mahifolds themselves and n1ake use
of the technics of decolnposition of Ci-manifolds which I exploited in studying
Jr;(.\). On the contral'Y, we get the following theorenl.

19

                                   
                                                                                                       ©



Theorenl. Let G' be an arbitrary non trivial conlpact Lie gl'OUp. Thcn tlu;rf
F:;1'J~sl.s a (/- .... -cobord'is1n (ltV; ~1;, y") such thaI. ...Y" is not C;-honteorno,,.phic 1.0 Y.
lu jJf/..,.li("II.1(l'l'~ H/ is not C;-honleo',norphic to .\" x I.

The second pa.rt of the talk is a joint work with the late E. Laitineil.
\IVC introduce induct.ion and restrietion homomorphislTIs in Lefschelz rings,
alld show that Frobenius reciprocity and Mackey property fOrIl1ulae hold.
Id(·111j.>otents and prinle ideals of Lefschetz rings are also discussed.

Represelltation spheres and stably linear hOlllotopy
representations

(Gesa Ott)

For a. COll1pact Lie group G, the notion of a G-hor:notopy representatioll
(givell by tOln Dieck and Petrie in 1982) summarizes the nlost important ho­
Inotopy theoretica.l properties of the uoit spheres SV of (finite-dimensional)
ort.hogona.l C','-representations V: Essentially, a G-homotopy representation
is a hOlllotopy sphere }{ wi th G acting on it s. t. the fixed point set .\H of
allY H C C' is a. hOlTIotopy sphere sn(H) of topological dimension n( H).

In gcneraJ~ the dinlension function dinlG)( : H ........ n(H) + 1 eIoes not.
classify sufficiently the C;-hornotopy type of ){. If )[ is sta.bly linear, we de­
scribe how t.o get. further invariants by mean,s of equivariant Ar-theory: If
.\" is stably cornplex linear, !(a(CX, X) is a free R(G)-nlodule of rank on~.
Using this analogon to the Bott periodicity, we define certain dass func­
Lions "\(.\")/1 : Ni/IH ~ C ·which help to describe the C;-horl1otopy type
sllfficiently. R,enla.rkably, if G is a p-group (p :I 2), this description can be
silnplihed (t.OIl1 Dieck 1987): SlV and SV are oriented equivalent iff the quo­
t.ieut. ,.\( \l) I I A( ltV)l is a.n element of R( G)*. (For p = 2, probably the salne i5
trtle. )

Ir C,' is finite, using results of Tornehave and I<Oa-theory, a silnilal' des­
criptioll for stably linear G-homotopy representations can be obtained.
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RelatiollS anlong characteristic classes and fixed POillt
sets

(Arthur G. Wasserman)

The first exanlple of a relation between characteristic dasses and fixed
point sets of group actions is Hopf's theorem relating the zeroes of a vector
field Oll a Inanifold (fixed points of an action of IR) to the Euler characteristic
of the lnanifold. Residue theorems or Iocalization theorems relate a global
inva.riant of a manifold to loeal invariants of the fixed point sets. A rnore
general a.pproach to characteristic classes helps to explain such relations.

Definition. A '/lahn'al cLass in dinl.ension k is a function z thaI. a.ss·ign8 to
('ach (; -"m,aniJold M a coho1nology class z( M) E Hk (A1 ~ Z2) such th.al

(1,) if A 'i8 diffeontorphic to an open submanifold 0/ B, i ; A C B, then
;-(=(11)) = .:(.4) and

b) ':(j\l) x IR) = z(Nf) E H*(M) = H*(M x 1R), i.e., nalul'al classes are stable.

Fixed point sets of an action give rise to such classes. Let Fixed( NI, Jl, p)
deHote the union oE the components of the fixed point set having 110r­
,na,] representation p. Note that the codimension of any component of
Fixed{1\.1, H, p) is just the dimension oE p and hence~ D(Fixed(M, H, p)) E
fl k( IH, 'll2) is defined where k =dimension of p. I then prove a recocnition
theorenl for finding relations among natural classes of G'-nlanifolds for GI abe­
lian. I illustrate the use of the theorem by exhibiting same relations an10ng
llCltliral c:lasses for :3~Inanifolds with involution. For example, Wt Pt = F2 a.nd
u..'f PI + Fj1 = F3 where Fi denotes the Poincare dual oE the cOlnponent üf the
fixed point set of codimension i and the w's are the StiefeI-Whitney cIasses
of the Inanifold.

Siegel lllodular varieties of degree two
(Steven H. Weintraub, joint work with J. W. Hoffman)

Let Sd denote Siegel space of degree d, Sd := {rlr is a d-by-d conlplex
sYJ1ul1etric n1atrix, T = ..X" + iY, .X', Y· real and Y· positive definite}. Let
Sp(2d, IR) be the syn1plectic group

Sp(2d,lR) = {M = (~ g) IMYM = J},
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where .J is the 2(1-by-2d matrix (~l ~). Note that Sp(2d, IR) acts on Sc/

by
M(r) := (Ar + B)(Ci +D)-l.

Fol' a.n a.ritillnetic subgroup r of Sp(2d, R), set

AIr i~ a qn<tsi-projective variety of complex dimension d( d+1)/2". We let A1"F

(jc'note a. sui la.ble conlpactification.

These varieties are natural to consider as they arise as 1l1oduli spaces

of d-dilllensional abelian varieties. vVhen d = 1 they are Rietnalll1 surfaces

(note S, 1S the usual upper half plane). and their topology was understood

in t.hC' ninetcenth century. The situation for d = 2 is only beginning to be

tludcrstood.

Let r == r(:J) be the principal congruence subgroup of level:J in Sp(4. IR).

Lf't Ill:~ := r\52 • Ai;; its Igusa compactification.

Theorenl. a) H i (l\1;) 1:5 free of rank 1,0,61,0,61,0,1 for 1: = 0, ... ,6.

r) Jj 1.1 is spanned by fundamental classes of boundary component8 nud HU'm"­

!Je"," :~nufacc$,

I
""',

d) Jli(r(:~). Q) has di1nension 1,0,21,139,81 fOT i

-i > 4.

0, ... , <1 and i8 0 fo.,.

In fact, (1' == PSp(4, IF3 ) (the group of even automorphisms of the confi­

guration of 27 lines on the cubic surface) acts on M1 anel 1\.1;, anel we can

(kscri be all of these cohomology groups as representation spaces 01' G.
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