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‘The present meeting is the latest of a series of conferences on group ac-
tions. Starting from the 1967 meeting on Transformation Groups at Tulane,
there have been similar conferences in the last three decades under perhaps
slightly different headings such as "Transformation Groups” or "Group Ac-
tions on Manifolds”, but always within the same theme. For example, at
Oberwolfach in the 80’s there was a meeting organized by tom Dieck, Hans-
peter Kraft, and Ted Petrie on ” Algebraic Group Actions”.

Some 26 lectures were delivered on topics of current interest: differentiable
and topological group actions, geometric structures on manifolds, symplectic,
algebraic and holomorphic actions. Clearly progress has been made on many
fronts. For example, surgery theory has bypassed the formidable restriction
on "Gap Hypothesis” and has made effective use of control topology tech-
niques as in the talks by Connolly, Schultz, Pawalowski, and Pedersen. In
addition there is also the renewed interest in the Seifert manifold construc-
tion which is evident in the work of F. Raymond, K.B. Lee, P. Igodt, W.
Malfait, P. Mazaud, and others.

‘, Séren 1llman
Ronnie Lee
Frank Raymond

(Organizers of the conference)

}
The following abstracts are in chronological order.
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Seifert fiberings
(Frank Raymond)

Seifert fiberings are a generalization of the classical Seifert 3-dimensional
fiberings f : M® — B, B a surface, where f~(b) = S, for every b € B.
Locally f is the orbit mapping

fTHN(b)) = (8, 8" xz, D*) — N(b),

where N(b) is a disk neighborhood of b. The generalization replaces S' with
a connected Lie group G modulo a lattice T in G, (i.e,, §' = R/Z « G/T).
m (M) is replaced by a discrete group 7 acting properly on a principal G-
bundle P over a space W. The group 7 normalizes the left translational action

#((?) on P, and contains I as a normal subgroup. There is induced a Q action

(Q = m/T') on W which we assume to be proper. These assumptions imply
that the projection P — W defines a map f : P/x — W/Q. The G fibers
of P descend to “fibers” of the map f. Each fiber f~'(b) is the quotient of
G/T by the action of a finite group acting affinely (in a natural way) on G//T.
When the finite group is trivial, f~!(b) is called a typical fiber, otherwise a
siugular fiber. The entire construction is called a Seifert Construction.

Theorem (P. Conner, K.B. Lee, Y. Kamishima, D. Wigner, F. Raymond).
Let 1l = T — 1 — Q — 1 be any extension where I is a lattice in a connec-
ted completely solvable Lie group G or a lattice in a semi-simple Lie group
without normal compact or 3-dimensional factors. Suppose Q acts properly
on a reasonable space W. Then we can construct a proper action of m on
G x W which normalizes the left translations of G on G x W. The induced
map

f(GxW)[r—W/[Q

is a Seifert fibering. Furthermore, the construction, called an injective Seifert
Construction, satisfies a strong uniqueness and rigidity properties.

Some typical applications developed by P. Conner, K.B. Lee and F. Ray-
mond are:

1. a) All infra-nilmanifolds are obtained this way (I' a lattice in G, W a
point, and 7 torsion free).

b) Any two infra-nilmanifolds with isomorphic fundamental groups are affi-
nely diffeomorphic.

(8]
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2. Geometric realization of group actions: Let M be an infra G-manifold
where & is completely solvable. Suppose ¢ : F' — Out(m(M)) is a homo-
morphism. Then there exists a lift ¢ : F' — Aff(M) such that ¢ is the
composite FF — Aff(M) — Out(m(M)) if and only if there is an extension
| - 7 (M) = £ — F — 1, which realizes the abstract kernel 1.

3. Restricting p : @ — TOP(W) to more geometrically defined subgroups
of TOP(W) still yields injective Seifert Constructions. But now (G x W)/=
inlierits some of the geometry from the subgroup of TOP(W). For example, if
p defines a smooth action on a smooth W, then the construction can be done
smoothly and the theorem holds in the smooth category. Various versions
also exist for the Riemannian and holomorphic categories.

Affine structures on nilmanifolds
(Dietrich Burde)

In this talk we gave an overview of the questions and problems in the
theory of affinely and projectively flat manifolds and affine crystallographic
groups. I particular we discussed questions of J. Milnor and L. Auslander on
fundamental groups of complete affine manifolds. We started with examples
of affine manifolds and the question of existence of affine structures. We
discussed some well known conjectures, among them the following ones:

Chern-Conjecture (1955) The Euler characteristic of a closed affine ma-
nifold vanishes. -

Markus-Conjecture (1962) A compact affine manifold is complete if and
only if it is unimodular.

Auslander-Conjecture (1964) The fundamental group of a complete com-
pact affine manifold is virtually polycyclic.

All conjectures are open, including Gromov’s question on the L,-Betti
numbers, except for a few special cases. In 1977 Milnor asked the following
question:

Milnor’s Question (1977) Does every solvable Lie group G admit a complete
left-invariant affine structure?

If yes, then G/T" with T discrete would be a complete affine manifold with
fundamental group T'. The question became a famous conjecture. It had a
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very interesting history with many ”proofs”. Finally, Benoist gave a counter-
example, as well as Grunewald and myself. There are filiform nilpotent Lie
groups without any left-invariant affine structure. The only known examples
are of dimension 10 and 11. This implies that there are nilmanifolds with no
alfine or projective structures.

The counterexamples rely on the fact that a sharper version of Ado’s
theorem does not hold: there are nilpotent Lie algebras g which do not have
any faithful g-module of dimension dimg + 1. A positive result holds for
classes of filiform nilmanifolds of dimension n > 12 which corresponds to
certain irreducible components of the variety of nilpotent Lie algebras. The
alfine structure in this case is induced by a certain extension property. Let g
he the Lie algebra of the filiform nilpotent Lie group . If there is a central
extension 0 — 3(h) > h 5 g — 0 with a higher-diimensional filiform Lie
algebra B, then (/T is an affine nilmanifold. The extension exists iff there is
a 2-cocycle w € H*(g,C) which is nonzero on 3{g) A g.

Equivariant Chow rings of SL(2)-embeddings
(Lucy Moser-Jauslin)

The equivariant Chow ring was introduced by Edidin and Graham as
an algebraic analogue of the equivariant cohomology ring. More speicifically,
consider an algebraic smooth complex variety X endowed with an action
ol a reductive group G. One can study the equiviariant cohomology of X',
but this can be difficult, since it is not necessarily generated by algebraically
defined objects. The equivariant Chow ring is generated by classes of closed
subvarieties of an algebraic variety, and it is therefore algebraically defined.
Iu this talk, I discuss two cases in which the two rings are isomorphic: (1)
simooth compact toric varieties, and (2) smooth compact L(2, C)-embeddings.
I discuss some general results about Chow groups for torus actions due to
M. Brion. Then for the 2 cases above, I discuss how the equivariant Chow
ring can be calculated.
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Rigidity and classification of actions of semisimple Lie
groups and their lattices

(Ralf Spatzier)

This is a survey of recent progress on actions of a semisimple Lie group G
without compact factors and its lattices I' C G on compact manifolds. While
general actions of such groups are impossible to classify, such actions seem
to be rare under fairly weak additional topological, geometric or dynamical
assumptions.

Low dimensions: Conjecturally, all actions of lattices in low dimensions
are via finite groups. Witte for the circle, Farb-Shalen for real analytic actions
on the circle, surfaces and 3-manifolds and Weinberger for actions of qL(n Z)
on tori have partial results.

Volume preserving actions: Zimmer shows that such actions always ad-
it measurable framings which essentially transform according to a linear
representation for the ambient group. Katok-Lewis and later Benveniste con-
struct examples which are not affine algebraic, are Gromov rigid and admit
deformations.

‘Topological obstructions: For engaging actions, Lubotzky and Zimmer
show that the image of the fundamental group of the manifold under a linear
representation is s-arithmetic.

Local rigidity: Margulis and Qian show that the affine algebraic actions
are locally rigid provided the linear part of the action does not split off
the trivial representation as a factor. Kanai and Katok-Spatzier prove local
rigidity of the projective actions of uniform lattices. Cartan actions: Goetze
and Spatzier show that they are always affine algebraic.

Afline structures: Zimmer, Feres and Zeghib show that all low dimensional
affine actions are affine algebraic. For complete affine connections on compact
connected manifolds, Szaro shows that a non-trivial affine SL(2,R) action
cannot. fix a point.
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A controlled end theorem for stratified spaces
(Frank Connolly)

Let X' be a locally compact ANR, finitely filtered by closed sets
X=X">...0X°>Xx'=9.

Let A be a closed set in X, which is tame (in a stratified sense). Assume

that X — A is a manifold-stratified space in the sense of F. Quinn (essentially

this assumes that each stratum X := X* — X*~1 is a k-dimensional mani- .
fold, and that strata fit together neatly). Then A admits a stratified map-

ping cylinder neighbourhood in X iff a single obstruction v.(X, A) vanishes.

7-(X,A) = T (X, A) and %,( X, A) lies in a localization of the controlled

Ny-group, i\ro(.\'i" UA‘,p)(Ai,, where p 1 Holink(X*, X*"1U 4%) - Xi-ty A

is projection.

An almost immediate corollary of this result is a good theory of open
regular neighbourhoods in manifold stratified spaces.

Holomorphic actions of compact Lie groups on C*
(Frank Kutzschebauch)

The talk was centered around the following problem:

Holomorphic Linearization Problem: Let K — Aut(C") be a compact
subgroup of the holomorphic automorphism group of C*. Can one conju-
gate this subgroup by a single automorphism into the general lincar group
'L, (C) C Aut(C*), i.e., is every holomorphic action of a compact group on
C* linearizable? n

Besides a short introduction about holomorphic automorphisms of C* and .
_an overview over the positive results concerning holomophic linearization I
sketched the main idea for the proof of the following theorem which is a joint
work with Harm Derksen.

Theorem. Let K be a compact Lie group (not the trivial group). Then there
exists an N such that for alln > N there is a nonlinearizable effective action
of K on C* by holomorphic transformations.
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Torus bundles over lens spaces
(Jim Davis)

This is joint work with W. Liick. Let T — £ 5 L be a torus bundle
over a lens space, so that |r;L| is an odd prime and 7 has a section. (For
example, given an action of Z, on Z", let E := T™ xg, S*.) We classify
all closed manifolds in the homotopy type of E, assuming the isomorphism
conjecture of Farrell-Jones. We classify h-cobordisms with fundamental group
I' = 7 E and stable isomorphism classes of finitely generated projective ZT'-
modules. We prove the stable positive curvature conjecture for manifolds
with fundamental group T'. |

Polynomial structures for polycyclic-by-finite groups
(Karel Dekimpe and Paul Igodt)

A group G has a polynomial structure if it admits a faithful representation |
p: (¢ = P(R") making it acting properly discontinuously and with compact

quotient. g\R™ P(R™) stands for the group of all polynomial diffeomorphisms

of R”. We prove the following theorems:

Theorem 1 (Main Cohomology Vanishing Theorem). Let T' be polycyclic-
by-finite and p : T — P(R™) a polynomial structure, which is compatible to
a given torsion-free filtration To = 1 CTh CTy C - C T CTeqq =T of
characteristic subgroups such that [;/T;o; = VA (1 £¢<¢)and T'/T, is
Jinite (K = Y5, k;). Then, for every morphism ¢ : ' — Gl(k,Z), dad, for
all 1 > 1,

H:

bxXp

(T,P(R*,R¥)) = 0.

(P(R".R¥) is the vectorspace of polynomial mappings RY — R* and becomes
a I-module by: Yx € T : V) € P(RM,R¥) = A = ¢(x) o Ao p(z)1.)

Corollary. Every polycyclic-by-finite group admits a polynomial structure,
taking ils image in a blocked Joncquiére group J.

Definition. For fired n-tuples of positive integers, k = (ki,...,k,) and

. . o
w = (wi....,wy), we define the (x,w)-weight of a monomial 27" .. .z'l',;:" e
A, o, ki . .
coor i as T T wiaij. The (8,w)-weight of a polynomial is

the maximum of the weights of its monomials.
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Theorem 2. Fix & = (k1,..., k) and w = (wy,...,wy,). Let Py, be the
subsel of J, consisting of the diffeomorphisms of R\ 4k being of the form

Tnky -
Pn(fl:l.h e Tak,)
Tn Pac1(Th1s - Tt k)
: =
Tk P2z, 331:2,1\'7)
: Pl(itl.l,n-,ﬂil.k,)
€

such that, for all i, | <i<n

Ti ki
il i) = A : + g, k)

Tit

with A; € Gl(ki,Z) and q; of (x,w)-weight < w;. Then, P, is a finitc di-
mensional Lie-subgroup of J. A

Theorem 3. for cuery finilely generated subgroup [ of a blocked Joncquiére
group J of lype (k.. .., ky) there exist w = (wy,...,w,) such that I' is con-
tained in P,,. This implies that T’ is of bounded degree.

Corollary. Lvery polycyclic-by-finite group I' admits a bounded degree poly-
nomial structure p: I' — Py, for some k and w.

Now that it is known that polycyclic-by-finite groups do not always admit
an affine structure (a problem originally posed by John Milnor in 1977 (Adv.
Math.), and for which even nilpotent counter-examples have been found in
the early 90’s), this P, ,-setting states the best general type positive answer
s0 [ar for this problem.

We present several elements giving evidence for the fact that the groups
P.. might be good alternatives for the group of affine transformations.

o®




Group actions, genus inequalities and 4-dimensional
surgery
(Dariusz Wilczynski)

A genus inequality, such as the adjunction inequality for example, provi-
des a lower bound for the genus of an embedded surface in a 4-dimensional
manifold. In this talk, we discussed certain generalized Rokhlin inequalities
and related them to the topological surgery problem in dimension 4. The

: latter asks if the topological surgery sequence is exact for a (compact) 4-
. manilold with any (finitely presented) fundamental group.

Dimension theory over finite von Neumann algebras
and applications

(Wolfgang Liick)

We define for arbitrary modules over a finite von Neumann algebra A4 a
dimension taking values in [0, o] which extends the classical notion of von
Neumann dimension for finitely generated projective A-modules and inherits
all its useful properties such as Additivity, Cofinality and Continuity. This
allows to define L2-Betti numbers for arbitrary topological spaces with an
action ol a discrete group I' extending the well-known definition for regular
coverings of compact manifolds. We show for an amenable group I' that the
p-th L2-Betti number depends only on the CI'-module given by the p-th sin-
gular homology. Using the generalized dimension function we detect elements
in Go(CI'), provided that I' is amenable. We investigate the class of groups
for which the zero-th and first L2-Betti numbers resp. all L2-Betti numbers
vanish. We study L2-Euler characteristics and introduce for a discrete group
I' its Burnside group extending the classical notions of Burnside ring and
Burnside ring congruences for finite I'.

Invariant measure and the Euler characteristic of
projectively flat manifolds

(Kyeonghee Jo and Hyuk Kim)
Let M be a projectively flat manifold. Then it has a developing pair
which is an equivariant map from its universal covering with fundamental

group action into RP™ with the corresponding holonomy action. Suppose
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that there is a probability measure A on RP™ which is invariant under the
holonomy action. Then we can show that a measure g is induced on M from
A by the holonomy invariance of A, and the following theorem holds:

Theorem. Let M be an even dimensional closed projectively flat manifold
and X be a holonomy invariant finitely additive probability Borel measure on

"RP". Then the Euler characteristic of M is equal to p(M), where o is the

measure on M induced from A.

Our study has been motivated from the effort to resolve Chern’s conjec-
ture: *Closed affinely flat manifolds have vanishing Euler characteristic.” As a.
corollary of the theorem we show that the conjecture is true if the holonomy
group of the affinily flat manifold has an invariant probability measure. This
generalizes the earlier results for the amenable case and the radiant case.

Fixed point sets of smooth actions of finite Oliver
groups on spheres

(Krzysztof Pawatowski, joint work with Masaharu Morimoto)

A finite group G is called an Oliver group if there is no sequence of normal
subgroups P C H C G such that P is a p-group, H/P is cyclic, and G/H
is a ¢g-group for two primes p and ¢. A finite nilpotent group is an Oliver
group il and only if G has three or more noncyclic Sylow subgroups. Every
finite nonsolvable (in particular, nontrivial perfect) group is an Oliver group.
For a finite group G, let P(G) denote the family of all prime power order
subgroups of G.

Theorem A. Let G be a finite nilpotent Oliver group. Let M be a closed
smooth manifold. Then there ezists a smooth action of G on a spheve S such
that 5% = M and S¥ # M for each P € P(G) if and only if M is stably
complex, if and only if there exists a smooth action of G on a disk D such
that D% = M.

Theorem B. Let G be « finite nontrivial perfect group. Let M be a closed
smooth manifold. Then there ezists a smooth action of G on a sphere S such
that 8¢ = M and S # M for each P € P(G) if and only if there exists a
smooth action of G on a disk D such that DY = M.

The question of which smooth manifolds occur as the G--fixed point sets
for smooth actions of G on disks has been answered completely by Bob Oliver

10
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[Topology 35 (1996), pp. 583-615] in the case where G is a finite group not of
prime power order. In the case where G is of prime power order, the answer
goes back to Lowell Jones {Ann. Math. 94 (1971), pp. 52-68].

Homeomorphic representations
(Erik Pedersen, joint work with Ian Hambleton)

Let G := (7, be a cyclic group of order n and consider 2 G-representations
written as Vi ¢b W, and V; éb W, that are equivariantly homeomorphic. It is
clementary that we then have V| @ W, ~, Vo, @ W}, and the problem can be
translated to a problem in bounded surgery. We do get S(V1)/G ~ S(V,)/G
so this determines an element a € J(S(V2)/G). Consider the diagram::

- LYZG) - SMSM)/G) - [S(V)/G,F[Tep) —
l 1 1
= Liw)(Cwa(Z) = SP((S(Va) x W)/G) = [(S(V2) x W)/G, F[Top) —

where the lower sequence is the bounded surgery exact sequence due
to Ferry, Pedersen and Hambleton. This shows that if the transfer on L-
groups is 0 we get a similarity. Using this technique we recover and sometimes
correct, all known facts on homeomorphic representations in the literature.
The ultimate result we obtain is that homeomorphisms of representations of
finite cyclic groups are determined by the Reidemeister Torsion. e

Topological models and cohomology of Galois groups
(Alejandro Adem)

We compute the cohomology of certain Galois groups which are deter-
mined by the Witt ring of a field F of characteristic # 2. Properties and
explicit computations were discussed. This is joint work with J. Minac and
D. Karagueuzian. .
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Multiplicity-free Hamiltonian actions and spherical
varieties

(Dominique Luna)

Let G be a complex reductive group and K a maximal compact subgroup.

"I tried to explain the relations which exist between Hamiltonian actions of A’

and algebraic actions of G (in particular between multiplicity-free Hamilto-

nian actions and spherical varieties). I mentioned briefly the definition (and
role) of wonderful varieties.

See also: "Toute variété magnifique est sphériqgue”, Transformation
Groups, Vol. 1, no 4 (1996)

Manifolds with little symmetry
(Volker Puppe)

The relation - obtained from P. A. Smith theory - between the multi-
plicative structure of the cohomology of a manifold and the possible fixed
point sets of Z/p-actions on it can be used to show the existence of closed
simply connected manifolds, which do not admit effective orientation preser-
ving actions of finite groups. Furthermore, for a certain class of 6-dimensional
manifolds (i.e. closed simply connected spin-manifolds with H3(—) = 0) it
is shown that the subset consisting of those manifolds which admit effective
Z [p-actions for infinitely many primes p, has density zero (with respect to
a certain density function). Similar arguments can be applied to prove that
'most’ Zy-cohomology types of closed 3-dimensional manifolds are represen-
ted by manifolds, which do not admit any non trivial involution.

The further aim is to get analogous results for higher dimensional mani-
folds. One might expect that the following holds. Let M? be the class of
rational cohomology types of closed simply connected 2k-dimensional mani-
folds, such that H**"(—;Q), as an algebra, is generated by H?*(—; Q). Then
for ’most’ elements in M?* a representing manifold does admit an effective
Z /p-action for at most finitely many primes p; in particular, it does not admit
an effective S'-action. Certain steps in this direction are done.

12
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Expanding maps on homogeneous infra-nilmanifolds
(HyunKoo Lee and Kyung Bai Lee)

Let M be a compact differentiable manifold. A C'-endomorphism f :
M — M is expanding if for some Riemannian metric on M there exist ¢ > 0,
A > 1 such that ||Df™v|| = cA™||v|| for all v € TM and all integers m > 0.
It is known [Gromov] that any expanding endomorphism of an arbitrary
compact manifold is topologically conjugate to an expanding endomorphism
of an infranilmanifold.

. We are concerned with the converse. It is known that every flat manifold
admits an expanding endomorphism. There are counter examples of nilpo-
tent Lie algebras which do not admit an expanding endomorphism, showing
that the existence of expanding endomorphisms does not hold for general
(infra)nilmanifolds.

We say that £ is a free Lie algebra of rank r if there exist r elements
Xi. X2, -+, X, € € which generate £ as algebra, and which enjoy the follo-
wing universal mapping property: any function from the set { X, X,,---, X, }
10 any algebra & extends to a unique algebra homomorphism £ — &.

Define the ideal £, i = 1,2, -+ of £ as follows:

e¢l=g

~

L = (g, g

1

An ideal 3 of £ is homogeneous if the vector space J is isomorphic to the
direct sum of (JNLH)/(INLHT), 7 =1,2,---. We shall say that a Lie algebra
& is homogeneous if ® is isomorphic to £/ with £ free and J homogeneous.
A nilpotent Lie algebra is called free if 3 = £ for some r; this is, it is of
the form £/£7. A nilpotent Lie group is homogeneous if its Lie algebra is
homogeneous.

An infra-nilmanifold is the quotient of a connected, simply connected

. nilpotent Lie group G by a discrete cocompact subgroup = of G x C, where

(" is a maximal compact subgroup of Aut(G). It is known that a Riemannian

- manifold M is almost flat if and only if it is homeomorphic to an infra-
nilmanifold.

An infra-nilmanifold #\G is of homogeneous type if G is of homogene-
ous type. It is known that: any homogeneous Lie algebra admits expanding
automorphisms. We generalize this to infra-homogeneous spaces.

Theorem. (1) Every 2-step infra-nilmanifold admits an erpanding map.

13
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(2) Every infra-nilmantfold of homogeneous type, with freely generated lattice,
whose holonomy group has prime order greater than the nilpotency, admits
an cxpanding map.

Spin(4)-actions on 8-dimensional manifolds
(Philippe Mazaud)

We study smooth, effective Spin(4)-actions on closed, orientable, 8-
dimensional manifolds. We further assume that the principal orbits are free.
spin(4)-manifolds make-up a rich class. of spaces, that are parametrized by
orbit data over a surface.

Iiquivariantly, one distinguishes between three general situations. (1) The
action is principal; these bundles are trivial, so that the interesting situations
are the following two. (2) "Seifert-like manifolds” over closed surfaces: the
action is free away from exceptional orbits (E # 0). (3) comprises all the
cases where singular orbits are present. The quotient space M* is a surface
with boundary. The singular orbits occur over this boundary. The isotropy
structure determines a partition of each connected component of Bd{Af™)
into vertices and edges, and must satisfy fairly strict local conditions. The
interior of M~ consists entirely of free orbits, and possibly a finite number of
L orbits.

We obtain the following equivariant classification of Spin(4)-actions: if
Spin(4) acts on M according to the conditions given above, and [ = 0,
then, up to equivalence, the action is completely characterized by: (a) the
homeomorphism type of the orbit space M~, (b) the isotropy weights, and
(¢) An eclement o € Z%, where b is the number of boundary components of
M=. Giiven some fixed ordering of the components of the boundary, to the j**
boundary circle is associated an element in Z,, and this is the 7t coordinate

of o.

The invariant o is directly interpreted as an obstruction to the “unifor-
mization” of a global section to the action {section that is shown to always
exists). We discuss the question pertaining to whether the invariant also en-
codes topological information, or whether it is strictly equivariant.

14
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Catesian products of 3-manifolds
(Slawomir Kwasik)

The following problem of S. Ulam was discussed

Problem. Let A and B be topological spaces such that A .= A x A and
B%:= B x B are homeomorphic. Are A and B homeomorphic?

The case of 3-manifolds was considered. For closed, connected irreducible
3-manifolds which are geometric the equation M™ = N™ for some n > 2 was
solved completely. It turns out that the above equation in general can have
many solutions, however all these solutions can be classified.

Homologically trivial group actions on 4-manifolds
(Allan Edmonds)

This talk outlined a proof of the following theorem: If a finite group G
acts pseudofreely, locally linearly, and homologically trivially on a closed,
simply connected 4-manifold X, with b2(X) > 3, then G is cyclic and the
action is semifree.

This contrasts with the rich families of symmetries of smaller 4-manifolds,
such as S 82 x §2, and CP2.

The proof involves group cohomology and the integral spectral sequence
of the Borel fibering X — Xe — Bg. One first deals with special cases where
¥ is an elementary abelian p-group or a nonabelian metacyclic group. The
argument then proceeds by induction on the order of the group.

Circle actions in symplectic geometry and
Lusternik-Schnirelmann category

(John Oprea)

Recently, the methods of homotopy theory have found use in symplec-
tic geometry. In particular, the theory of Hamiltonian actions has proven
especially amenable to this approach. Furthermore, recent work by Rudyak
and Rudyak-Oprea shows that homotopy theory also has a place in studying
more analytic symplectic problems such as the Arnold Conjecture. This talk

15
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discusses the relation of homotopy methods to Hamiltonian actions and the
Arnold Conjecture. More specifically, the following results are discussed in
this framework.

Theorem (Lupton-Oprea). For a symplectic manifold (M?™,w), if ¢,(M) =
v -w with v > 0, then every symplectic S'-action on M is Hamiltonian.

Theorem (Rudyak-Oprea). For a symplectic manifold (M*",w), if w|r, ) =
0. then cat(M) = dim(M), where cat(M) denotes the Lusternik- Schnivel-
mann category of M.

Together with powerful results of Rudyak, the latter theorem proves the
original conjecture of Arnold that the number of fixed points of a Hamiltoni-
an diffeomorphism is at least as great as the number of critical points of any
smooth function on M for manifolds satisfying wlmy = 0 = /(M )|nyan)
(i.e. Floer's original hypothesis). The second theorem also shows that mani-
folds satisfying wlx,(ar) = 0 cannot give positive solutions to the

Contractible Orbit Problem (McDuff-Salamon). Does there exist a free
sympleclic civele action on a symplectic manifold M such that all orbits are
contractible in M?

Thus, positive solutions cannot be obtained from Hamiltonian actions
(e.g. M simply connected), since such actions have fixed points or from non-
simply connected manifolds with w|.,(ary = 0. In fact, a positive solution
cannot. be obtained for any symplectic manifold having cat(M) = dim(M).

Normal surfaces and G-equivariant minimal Seifert
surfaces of links

(Jeffrey L. Tollefson)

Let L be an oriented polyhedral link in a homology 3-sphere © where
My = T —int(N) has a triangulation 7. Suppose that G is a finite group
of simplicial homeomorphisms of My such that the set Fix(G) = {z|g(x) =
x for some nontrivial g € G} is a subcomplex. One can find a least weight,
taut normal surface S such that [S] represents the homology class of a Seifert
surface for L.

Theorem. Let a € Ho(My,0M;Z) be a homology class such that g(o) =
o forall g € G. If S is a lw-taut normal surface representing o then ewery
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intersection curve between images of S is regular and the geomelric sum

T occ 9(S) is a disjoint union of lw-taut G-equivariant normal surfaces Sy _'

such that Sy is homologous to g(S).

Corollary. Let L be an oriented link in a triangulated homology 3-sphere ¥.
Let G be a finite group of simplicial homeomorphisms of ¥ such that fix(G)
is a subcomplez and for each element g € G either g(L) = L or g(L) = —L.
Then there exists an equivariant minimal Seifert surface for L.

A link L in a homology 3-sphere T has period n if there is a PL rotation
¢ of order n about an axis A disjoint from L which leaves the link invariant.
Using the existence of equivariant minimal Seifert surfaces one can find a
bound N on the period for any nontrivial oriented link by applying the
Riemann-Hurwitz formula (as is done by A. Edmonds for knots). This gives
another proof of J. Hillman’s result that only trivial links can have infinitely
many periods. o

Stabilized fixed point neighbourhoods in 4-manifolds
(Reinhard Schultz)

A basic question about group actions is the classification of neighbour-
hood germs of fixed points. For orientation preserving involutions on 4-
manifolds, results from the 1980s answer this question in the case of isolated
fixed points, and for nonisolated fixed points recent work of S. Kwasik and
myself describes the stabilized germs obtained by taking products with sui-
table linear representations. Analogous results and problems for actions of
larger finite groups and S* on 4-manifolds are considered in the present work.
In particular, one has the following results:

Theorem 1. Given a semifree S'-action on a 4-manifold M, its product with
the standard S'-action on C is locally linear.

Theorem 2. Given an isolated fized point of an S'-action on a 4-manifold
such that the nearly isotropy subgroups are {1}, Z/2 and S?, for each odd
integer m > 1, the neighbourhood germ for the restriction of the action to
Z/m has a weakly conelike structure (i.e. the formal collaring obsiruction on
Ky(Z[Z[m]) is zero).

The proofs rely on the classification. of neighbourhood germs in homo-
topy stratified sets (in Quinn’s sense) due to Hughes, Taylor, Williams and
Weinberger. The preceding is joint work with Slawomir Kwasik.
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The classification of radiant affine 3-manifolds
(Suhyoung Choi)

This talk has two parts:

I. We try to understand the geometric properties of n-manifolds with
geometric structure modeled on (RP™, PGL(n 4 1,R)), i.e. real projective
n-manifolds. Given a real projective n-manifold M, we show that the failure
of (n — 1)-convexity of M implies an existence of a particular type of real
projective submanifolds in M. We give a decomposition of M into simpler real
projective manifolds, some of which are (n — 1)-convex and others are affine.
We get a consequence for Lie-groups with left-invariant affine structure.

2. A topologist’s definition of an affine manifold is a manifold with an atlas
of charts to the affine space with transition functions which are affine maps. A
radiant affine manifold is an affine manifold with holonomy consisting of affine
transformations fixing a common point. We decompose an orientable closed
radiant affine 3-manifold into radiant 2-convex affine manifolds and radiant
concave alfine 3-manifolds along mutually disjoint totally geodesic tori or
Ixlein bottles using the (n — 1)-decomposition of real projective n-manifolds
developed earlier. Then we decompose a 2-convex radiant affine manifold into
convex radiant affine manifolds and concave-cone affine manifolds. To do this.
we will show the existence of certain nice geometric objects in the projective
completion of holonomy cover. The equivariance and local finiteness property
ol the collection of such objects will show that their union covers a compact
submanifold of codimension zero, the complement of which is convex. Finally,
using the results of Barbot, we will show that a closed radiant affine 3-
manifold admits a total cross section, confirming a conjecture of Carriere,
and hence every radiant affine 3-manifold is homeomorphic to a Seifert fibred
space with trivial Euler number, or a virtual bundle over a circle with fiber
homeomorphic to a torus.

Symmetry of model aspherical manifolds
(Wim Malfait)

Model aspherical manifolds are those aspherical manifolds M arising from
a Seifert fiber space construction. We think of symmetry of such a manifold
M in terms of finite groups of fiber preserving homeomorphisms acting ef-
fectively on M. In [3], we describe a subclass of model aspherical manifolds
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M for which the realization of a finite abstract kernel ¢ : G — Out(7,(M)),
as a group of fiber preserving homeomorphisms acting effectively on M, is
equivalent to realizing 1 as the abstract kernel of an admissible group exten-
sion of m;(M) by G. This approach allows to convert the study of symmetry
of M into a pure group-theoretical problem (partially solved in {2]).

An interesting subtopic is the study of model aspherical manifolds with
no periodic maps. A theorem of Borel ({1]) states that if the fundamental
group of an aspherical manifold M is centerless and Out(m(M)) is torsion-
free, then M admits no finite effective actions. In [4], we investigate to what
extent the converse of this result holds for model aspherical manifolds. In
particular, if there is a total lack of symmetry on a flat Riemannian manifold,
on an infra-nilmanifold or on an infra-solvmanifold of type (R), then. its
fundamental group is centerless and there are no outer autommphlsms of
finite order. We pose the problem of finding examples of such manifolds w:th
no periodic maps.

References:
(1] Conner P.E. and Raymond F., Manifolds with few periodic homeomorphzsms
Lect. Notes in Math. 299., Proc. of the Second Conference on Compact Transfor-
mation Groups, Springer-Verlag, 1971, pp. 1-75.

[2] Malfait W., Algebraic criteria to decide if a finite group acts effectively on a
model aspherical manifold. Journal of Algebra, 1996, to appear.

[3] Malfait W., Nielsen’s theorem for model aspherical manifolds. Ma.nuscrlpta
Math.. 1996, 90, pp. 63-83.

[4] Malfait W., Model aspherical manifolds with no periodic maps. Proc. Amer.
Math. Soc., 1997, to appear. <

Counterexamples of equivariant s-cobordism theorems
and Lefschetz rings

(Katsuo Kawakubo)

A lot of people are concerned with a sort of equivariant s-cobordism
theorems. They mainly dealt with isovariant case and finite group actions.
On the other hand, we got equivariant s-cobordism theorems for any compact
Lie group actions under'gap hypothesis. Here we do not consider orbit space
and stratification. Instead we handle G-mahifolds themselves and make use
of the technics of decomposition of G-manifolds which I exploited in studying
Je:( X). On the contrary, we get the following theorem.
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Theorem. Let G be an arbitrary non trivial compact Lie group. Then there
exists a (-s-cobordism (W; X, Y) such that X is not G-homeomorphic to Y.
In parvticular, W is not G-homeomorphic to X x I.

The second part of the talk is a joint work with the late E. Laitinen.
We introduce induction and restriction homomorphisms in Lefschetz rings,
and show that Frobenius reciprocity and Mackey property formulae hold.
Idempotents and prime ideals of Lefschetz rings are also discussed.

Representation spheres and stably linear homotopy
representations

(Gesa Ott)

For a compact Lie group G, the notion of a G-homotopy representation
(given by tom Dieck and Petrie in 1982) summarizes the most important ho-
inotopy theoretical properties of the unit spheres SV of (finite-dimensional)
orthogonal G-representations V: Essentially, a G—-homotopy representation
is a homotopy sphere X with G acting on it s. t. the fixed point set X*! of
any H C G is a homotopy sphere S™#) of topological dimension n(H).

In general, the dimension function dimgX : H ~ n(H) + 1 does not.
classily sufficiently the G-homotopy type of X. If X is stably linear, we de-
scribe how to get further invariants by means of equivariant K'-theory: [f
X is stably complex linear, Kg(C X, X) is a free R(G)-module of rank one.
Using this analogon to the Bott periodicity, we define certain class func-
tions M(X)y : NH/H — C which help to describe the G-homotopy type
sufficiently. Remarkably, if G is a p-group (p # 2), this description can be
simplified (tom Dieck 1987): SW and SV are oriented equivalent iff the quo-
tient. A(V)/A(W), is an element of R(G)*. (For p = 2, probably the same is
true.)

If G is finite, using results of Tornehave and K Og-theory, a similar des-
cription for stably linear G-homotopy representations can be obtained.
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Relations among characteristic classes and fixed point
sets

(Arthur G. Wasserman)

The first example of a relation between characteristic classes and fixed
point sets of group actions is Hopf’s theorem relating the zeroes of a vector
field on a manifold (fixed points of an action of R) to the Euler characteristic
of the manifold. Residue theorems or localization theorems relate a global
iuvariant of a manifold to local invariants of the fixed point sets. A more
general approach to characteristic classes helps to explain such relations.

Definition. A natural class in dimension k is a function = that assigns to
cach G-manifold M « cohomology class z(M) € H*(M,Z,) such that

a) if A is diffeomorphic to an open submanifold of B, i : A C B, then
*(2(B)) = z(A) and o

b) :(MxR)= (M) ¢ H*(M) = H*(M xR), i.e., natural classes are stible.

Fixed point sets of an action give rise to such classes. Let Fixed(M, H, p)
denote the union of the components of the fixed point set having nor-
mal representation p. Note that the codimension of any component of
Fixed(M, H, p) is just the dimension of p and hence, D(Fixed(M, H,p)) €
H*(M,Z,) is defined where & =dimension of p. I then prove a recocnition
theorem for finding relations among natural classes of G-manifolds for ' abe-
lian. I illustrate the use of the theorem by exhibiting some relations among
natural classes for 3-manifolds with involution. For example, w Fy = F; and
wiFy 4+ F? = F; where F;: denotes the Poincaré dual of the component of the
fixed point set of codimension ¢ and the w’s are the Stiefel-Whitney classes
of the manifold.

Siegel modular varieties of degree two
(Steven H. Weintraub, joint work with J. W, Hoffman)

Let Sy denote Siegel space of degree d, S; := {r|r is a d-by-d complex
symmetric matrix, 7 = X +¢Y, X,Y real and YV positive definite}. Let
Sp(2d,R) be the symplectic group

, vy (A B inp
.Sp(2d,R)—{M_(C D))MJM_J},
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0 ) Note that Sp(2d,R) acts on Su

where J is the 2d-by-2d matrix ( _01

by

M(7) = (At + B)(CT + D).
For an arithmetic subgroup T of Sp(2d, R), set
Mr = T\Sa

My is a quasi-projective variety of complex dimension d(d + l)/?. We let M7
denote a suitable compactification. ‘

These varieties are natural to consider as they arise as moduli spaces
of d-dimensional abelian varieties. When d = 1 they are Riemann surfaces
(note Sy is the usual upper half plane) and their topology was understood
‘u the nineteenth century. The situation for d = 2 is only beginning to be
understood.

Let ' = I'(3) be the principal congruence subgroup of level 3 in Sp(4, R).
Lot My = \S,, M3 its Igusa compactification.

Theorem. a) H(Mj) is free of rank 1,0,61,0,61,0,1 fori=0,...,6.

b) HPa(M3) =0 forp#gq.

¢) H'V is spanned by fundamental classes of boundary components and Hum-
bert surfaces.

d) HI(T(3).Q) has dimension 1,0,21,139,81 fori = 0,....4 and is 0 for
1> 4.

In fact, G = PSp(4,F3) (the group of even autoxﬁorphisms of the confi-
guration of 27 lines on the cubic surface) acts on M and Mj, and we can
describe all of these cohomology groups as representation spaces of G. .
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