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Tagungsbericht 10/1998

Elementare und Analytische Zahlentheorie
08.03.1998 — 14.03.1998

This conference on “Ell tary and Analytic Number Theory” was organized by

Jorg Briidern, Stuttgart

Hugh L. Montgomery, Ann Arbor
Hans Peter Schlickewei, Marburg
Eduard Wirsing, Ulm

About fifty inathematicians from sixteen different countries accepted the invitation of the In-
stitute. All lectures presented during the week gave a stimulating survey of current progress
in Analytic Number Theory. Approximately forty of the participants considered a wide
variety of topics in Analytic and Elementary Number Theory, such as

Artin’s Conjecture, Diophantine approximation, distribution of prime numbers, ex-
ponential sums, lattice points, linear recurrence sequences, moments of the Riemann
zcta-function and L-functions, partitions, primes in arithmetic progressions, the Sel-
berg Class, transcendence, set addition, Waring’s Problem,

while in parallel sessions a smaller group of ten focussed on a very special, but important
Diophantine topic, namely the Schinidt Subspace Theorem.

In the beautiful and relaxed atmosphere of the Institute, the participants enjoyed sharing
their questions and ideas. The organizers and participants of this conference express their
thanks to the Land Baden-Wiirttemberg, the Director of the Institute, Prof. Kreck, and his
staff for providing this productive experience.

Dank einer Unterstiitzung im Rahmen des EU-Programmes TMR (Training and Mo-
bility of Researchers) konnten zusatzlich einige jingere Mathematiker zu der Tagung
eingeladen werden. Dies ist einerseits eine hervorragende Forderung des wissenschaft-
lichen Nachwuchses und gibt andererseits den etablierten Kollegen die ("olegenhent
besonders begabte junge Mathematiker kennenzulernen.
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Conference Program

Monday, March 9

9:15-10:15  Wolfgang M. Schmidt The Zero Multiplicity of Linear Recurrence Sequences

10:25-11:15 Etienne Fouvry Exponential Sums and Divisibility of Class Nur ibers

11:25-11:55  Aleksandar Ivi¢ The Mellin Transform and the Riemann Zeta-lunction

12:00-12:30  Matti Jutila The Mellin Transform of the Fourth Power of Riemann’s

Zeta-Function

Hall 2

11:25-12:10  Patrice Philippon Some Remarks on Methods of Diophantine Approximation
LUNCH

16:00-16:30  Adolf J. Hildebrand Partitions into Primes

16:40-17:10  Jerzy Kaczorowski On the Structure of the Selberg Class

17:20-17:50  Alberto Perelli Linear Independence in the Selberg Class

18:00-18:30  Jean-Marc Deshouillers A Step Beyond Kneser’s Addition Theorem

DINNER

Tuesday, March 10

9:00-9:50 Roger Heath-Brown Solutions of Diagonal Cubic Equations
10:00-10:30  Helmut Maier The Distribution of the Values of the Ricmann Zeta- .
Function in Short Intervals of the Critical Line
10:40-11:20  Yoichi Motohashi The Complex Binary Additive Divisor Problem and

the Spectral Theory of the Three-Dimensional Hyper-
bolic Upper Half-Space

11:30-11:55  Dieter Wolke A Prime Number Theorem with Weights
12:00-12:25 C‘scile Dartyge Almost Prime Numbers with Missing Digits
Hall 2
10:00-10:50 Damien Roy Heights and Siegel’s Lemma
11:30-12:20  Jeff L. Thunder An Old Idea of Hermite Receives New Life
LUNCH
2
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16:00-16:50

17:00-17:30
'7:40-18:00
8:10-18:30

20:00

9:00-9:45
10:00-10:50
10:55-11:25
11:30-12:00
12:05-12:30

Hall 2
11:30-12:20

9:00-9:40
9:50-10:20
10:30-11:10

11:20-11:50
12:00-12:25

Hall 2
10:00-10:45
11:30-12:15
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Trevor D. Wooley

Koichi Kawada
Morley Davidson
Jorg Briidern

DINNER

PROBLEM SESSION

Wednesday, March 11

Philippe Michel
Jan-Hendrik Evertse
Kai-Man Tsang
Imre Z. Ruzsa

David W. Farmer

Gisbert Wiistholz

LUNCH
EXCURSION

Thursday, March 12

Robert C. Vaughan
Stephan Daniel
Gérald Tenenbaum

Steve G. Gonek
Manfred Peter

Robert Tijdeman
Roberto G. Ferretti

Exponential Sums and Diophantine Equations
in Many Variables

Sums of Fourth Powers and Related Topics
Local Solubility in the Waring-Siegel Problem
On Artin’s Conjecture, Local Case

Non-Vanishing of Critical Values of I-Functions
On the Norm Form Inequality |F(z)| < M
Lattice Points in Spheres

Additive Completion

Non-Vanishing of L-Functions and the Irreducibility
of Hecke Polynomials

Modular Varieties, Hypergeometric Series and
Transcendence

Primes in Arithmetic Progressions
Lattice Point Methods and Divisor Sum Problems

On the Gutman-Ivi¢-Matula Function and
Related Topics

The Variance of Small Powers of Primitive Roots

The Almost Periodicity of the Normalized Sequence
of Class Numbers

On the Number of Digit Changes

Mumford’s Degree of Contact and Diophantine
Approximations



|
| LUNCH
1 .
} 15:45-16:30  Peter D. T. A. Elliott
| 16:40-17:10  Jeffrey D. Vaaler
‘ 17:20-17:50  Jiirgen W. Sander
\
i 18:00-18:30  Lutz G. Lucht
| Hall 2
15:45:-16:30  Hans Peter Schlickewei

DINNER

|

|

|

|

|

|

| .

} Friday, March 13
‘ 9:00-9:30
|

|

|

\

Hugh L. Montgomery
9:40-10:10  Andras Biro
10:30-11:10  Daniel A. Goldston
11:20-11:50  Régis de la Bretéche
12:00-12:25  Alla Lavrik-Mannlin
Hall 2
9:45-10:30  Helmut Locher
11:00-11:45  Yuri V. Nesterenko
LUNCH
|
i : 16:00-16:30  Martin N. Huxley
| 16:40-17:15  Andrew Pollington
| 17:30-18:15  Ulrike M. A. Vorhauer

DINNER
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Primes and Products

On the Number of Polynomials over Z having Bounded
Height and Bounded Mahler Measure

Rational Points on a Class of Superelliptic Curves
Arithmetical Results on Certain Functional Equations

The Subspace Theorem and Geometry of Numbers

. ]

Beyond Pair Correlation
On an Extremal Problem Related to Gaussian Suns

Primes in Short Segments of Arithmetic Progressions

A Summation Process
On the Zeros of the Hardy Z-function and its Derivatives

On the Number of Good Approximations of Algebraic
Numbers by Algebraic Numbers of Bounded Degree

On an Equation of ( oormaghtigh

Integer Points Close to Curves and Exponential Sums
Haar Wavelets and Irregularities of Distribution - -
Three Two-Dimensional Weyl Steps in the Circle Prob]en.
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Abstracts of the Lectures

A Summation Process
Régis de la Bretéche, University of Orsay

We define P-convergence and P-regularity, a notion which was introduced by Fouvry and

Tenenbaum in 1991. Let P(n) = max,, p (n >1), P(1) =1. Wesay that aseries }_ ay,
is P-convergent if Y. an converges for each y > 2 and if 2!

P(n)<y
in( a)-e
P(n)<y
fod . 00
We say that a series ) a, is P-regular if it is P-convergent and if a = ) a,.

n=1 n=1

For multiplicative functions f with |f] < 1 we study the series
L)
r e(6n)
2 f() (logn)” ==
n=1

with respect to P-regularity.

On Artin’s Conjecture, Local Case
Jérg Bridern, University of Stuttgart

For a fixed k > 3, consider the statement: Any system of equations
N .
S ajzt =0 (a;€Z,1<j<R)
i=1

admits a non-trivial solution z; € Z whenever N > No(k, R). According to a well-known
conjecture of Artin, this should be true with

(1) No = Rk* +1,

but this has been confirmed only when R =1 or when R =2 and k is odd (by Davenport

and Lewis, middle 60ies). It is known that
No = 3R%klog(3Rk) (kodd),  No=48Rk%log(3RK?) (else)

are admissible choices. For odd k, this is very satisfactory in the k-aspect, but for even k,
the k-aspect is k*logk which falls considerably short of the expected k2 in (1). In joint
work with H. Godinko (Brasilia) we showed

THEOREM 1. Let R > 3. Then Ny = R*k? is admissible unless R =3, k = 27 in which
case one may take No = 36k2.

Refinements are possible for small R or k. We discuss in detail pairs (R = 2). Here
Davenport and Lewis showed that No = 7k® is enough when k is even.

Forschungsgemeinschaft
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THEOREM 2.
(i) Ifk=2.5" or k =p"(p~1) with p> 2 prime, then Ny(k,2) = Gk(k — 1) is

admissible.

(i) If k is not of the form considered in (i) but k = 27ko with ko € {1,3,5}, then
No(k,2) = 16k%ks" is admissible.

(ii1) For all other k, the choice No(k,2) = 3k(k — 1) is admissible.

Lattice Point Methods and Divisor Sum Problems
Stephan Daniel, University of Stuttgart

For some residue class a(mod q), q € N, we define

N,

2 N
E(M,N.q,a) = #{(z1,22) €Z* M;<z; <M;+ Ny, 21 = azz(mod )} ~ ‘T
Let f denote an irreducible polynomial with integer coefficients. We show that for Q > 1

2 X emax B N0 < VQIgQN + Q.

4<Q  a(modyg) MeR?
f(a)=0(modq)

We deduce
#{(x1,72,a,9): ¢ £Q, z1=azz(modq), f(a)=0(modq), a; < t'-’ <ai+ 1}
~ g cQ?

holds for some constant ¢ = ¢(f). By the same method we can show the mean valve

evaluation
Z d(lg(z1,72)]) = cN?logN + O(N*/logN)

1, 72EN

and similar cstimnates, where g is an irreducible binary form of degree 4.

Almost Prime Numbers with Missing Digits
Cécile Dartyge, University of Nancy 1

Joint work with Christian Mauduit, University of Marseille IT

Let r€ N, r >3, D = {0,dy,...,d;} C{0,...,r =1} with 2 <t < r—1 and so that
ged(da, ... ,di) = 1. Define Wp = {neN: n = Z?:oejrf with e; € D }. Then, there
exists k = k(r,D) such that Wyp contains infinitely many integers with at most & prime
factors.

Forschungsgemeinschaft
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A Step beyond Kneser’s Addition Theorem

Jean-Marc Deshouillers, University of Bordeauz

Joint work with Gregory A. Freiman, Tel Aviv

A general philosophy is that if you consider in a monoid a set A such that A- A = {a-b:
a€ A, be A} is small compared with A, in the sense of cardinality, measure or density,
then A has a special structure.

THEOREM.  Let A € Z/nZ which is not included in a coset modulo a proper subgroup of
Z/nZ with |A| < 10~°n and

(1) |4+ Al < 2.04]4].

Then there ezists a proper subgroup H of Z/nZ such that
(2) either A is included in an arithmetic progression of € cosets modulo H with

(2) (E-1IH] < |A+ A - Al
or
(ii) A is included in three cosets modulo H and (2) holds with €—1 replaced by 3.

COMMENTS

This is the first result of this type in Z/nZ for general n with a constant larger than
2in (1).

When the constant in (1) is less than 2, then Kneser’s Theorem permits to study the
structure of A.

A similar result with a larger constant in (1) has been obtained by Freiman in the
early 60’s when n is prime.

o The values of the constants are by no mean best. possible.

The general case of the Theorem is (i), which means that A belongs to ar arithmetic
progression of cosets modulo H which is well-filled by A.

As soon as the constant in (1) is at least 2, there is no way-to dispense with (it). Indeed,
if A consist of three cosets modulo # in general position, we have |4+ A] = 2]4|.

The proof combines analytic and combinatorial ideas.

Primes and Products
Peter D. T. A. Elliott, University of Boulder, Colorado

THEOREM 1. There are infinitely many representations

with pi, q; prime.
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THEOREM 2. There are infinitely many representations

$+5 @g+5 p3+l

with pi, q, prime.

Let f be a polynomial with integer coefficients and leading coefficient positive. Call a
prime € singular (w.r.to f) if for some m € Z, the congruence m f(n) = 1(mod?#) has
¢ — 1. reduced residue class solutions n(mod€). Then € < 1+ degf. Let A be the
product of the primes singular w.r.to f. There are classes nj(mod4), 1 < j < J, such
that m = n;(mod A) for some j iff no congruence m f(n) = 1(mod¢) has £—1 reduced
solutions for any prime €.

Define R
Jr !
d(€) = liminf (<= 1
ma(7) X X
n=n;(mod 4a)

for sets of rational integers &.

THEOREM 3. The density d of the set of integers representable in the form (p+1)f(q)~!
with p, ¢ prime, is at least 1/4.

On the Norm Form Inequality |F(z)| < M
Jan-Hendrik Evertse, University of Leiden

A major tool in estimating the number of solutions is the quantitative Subspace Theoremn.
The first such result was obtained by W. M. Schmidt in 1989. Thanks to many improve-
ments, due to the replacement of Roth’s Lemma by Faltings’ Product Theorem and the
replacement of the adelic version of Minkowski’s Theorem on successive minima of convex
bodies by McFeat and Bombieri-Vaaler by the absolute Minkowski Theorcin of Roy and
Thunder, Schlickewei and Evertse succeeded in deriving an absolute quantitative Subspace
Theorem, a special case of which is as follows:

THEOREM 1. Let Lyi(z),...,Ln(z) be linearly independent linear forms in =,... =z,
with coefficients in a number field of degree D, and with absolute Weil heights H(L;) < H.
Suppose that |L;| := max|coeff.of L;| = 1. Let 0 < § < 1, and let Z be the integral
closure of Z in @. Then the set of solutions of

n

m 1I

=1

max |Li(o(z))] < H(z)™®  in zeZ”
s€Gal (Q/Q)

with H(z)> (2nH)?"P/3 is contained in the union of at most 4("+6)°§—2n—410g D log(m—g‘; /-)-)
proper linear subsp of @" defined over Q.

Now let F(z) = cN(a1zy + ... + anZp) € Z[zZy,...,Zn] be a norm form of degree ». In
1971 Schmidt showed that if F is non-degenerate then for every M > 1, the number
Zp(M) of solutions of |F(z)] < M in z € Z™ is finite. Using his quantitative Subspace
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Theorem, he gave in 1989 an upper bound for the number of solutions Zr(1) of |F(z)] = 1
depending only on r = deg F' and n. He conjectured that Zr(M) < ¢(n,r)M™". 1 proved
the following weaker result, using Theorem 1:

THEOREM 2. Supp F is non-degenerate. Then

nt S A1
Ze(M) < @) M ET (1 jog aybninen -1

Non-Vanishing of L-Functions and the Irreducibility of
Hecke Polynomials
David W. Farmer, Bucknell University, Lewisburg

Kohnen and Zagier asserted that the L-functions associated to Hecke eigenforms f € Sk(1)
do not vanish at the critical point if the Hecke algebra of Sk(1) is simple (i.e. at least
one Hecke generator T, has an irreducible /Q characteristic polynomial). An outline of a
proof of that result was described. Several results and calculations on the irreducibility and
factorization (mod €) of these polynomials were described.

Mumford’s Degree of Contact and Diophantine Approzimations
Roberto G. Ferretti, Inst. des Hautes Etudes Scientifiques, Bures-sur- Yvette
Given linear forms Ly,...,L, with coefficients in a number field L. Then, under some

more conditions, the Schmidt Subspace Theorem implies that the solutions z € P*(K) for
a subfield K C L of the inequalities

ILi(z)) —r
< H(z)™™
E
| ¢ in finitely many subspaces of P™ if
(1) Sri> a4

i=0

If we consider solutions z € X(K) for some algebraic subvariety X C P", can we weaken
the condition (1)? The answer is positive in several cases. We consider some examples given
by ruled surfaces, Weierstrass fibrations and blow-ups.

Forschungsgemeinschaft
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Ezxponential Sums and Divisibility of Class Numbers
Etienne Fouvry, University of Orsay

If A is a fundamental discriminant, we denote by h(A) the class number of Q(vA). We
sketched the proofs of '

THEOREM 1 (joint with S. Daniel). There ezist infinitely many positive fundamental dis-
criminants such that A + 4 is also a fund, tal discriminant and such that h(A) and
h(A +4) are both odd.

THEOREM 2 (joint with Belabas). There ezist infinitely many primes p = 1(mod 4) such
that 3 does not divide h(p).

THEOREM 3. There ezist infinitely many positive fund tal discriminants such that A+4
is also ¢ fundamental discriminant, h(A) is odd and such that 3 does not divide h(A+4) .

Some tools which we use are the Gauf} criterion for the 2-rank of quadratic fields, Davenport
-Heilbronn results on the average behavior of the 3-rank of quadratic fields, the average
behavior of primes in arithmetic progressions (Bombieri-Friedlander-Iwaniec result) and
how to bound the exponential sums

. (ah. + bhy + chy + dhy )

A(ab,c,d)=0(mod p) P

and
e (ah] + bhg + chs + dhy )

A(a,b,¢,d)+4=0(mod p) p

with A(a,b,c,d) = b*c? + 18abed — 27a%d? — 4b%d — 4c®a b: using either the algebraic
properties of the function A or a result of Katz-Laumon about exponential sums.

Primes in Short Segments of Arithmetic Progressions
Daniel A. Goldston, San Jose State University

Joint work with C. Y. Yildirim.
Let

9 2z h 2
Heho = 2 [ (9t e - vinaa) - ) a,

(a,q)=1
where

Y¥(z,q,0) = Z A(n).

n<z
n=a(mod q)
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Assuming a Twin Prime Conjecture we prove
h
I(z,h,q) ~ hzlog(%q) for 15;‘51‘/2".

If we replace the Twin Prime Conjecture with the Generalized Riemann Hypothesis, then
we can still prove

I(z,h,q) ~ hzlog (L h ) for almost all ¢ with h3/4+€ < g < pl-e;
Z I(z,h,q) ~ Qhz ]og( for hM*(logz)* <Q < h<z;
<Q .
I(x,h,q) > (l—e)Llog((g) z) for 1<E<<::‘/3'5,
nt = 2 h ~ g

These results have applications to pair correlation of L-functions.

The Variance of Small Powers of Primitive Roots
Steve G. Gonek, University of Rochester

For g a primitive root (mod p), let
N ={g“(modp): 1<v < N}

and let f(m, H) be the number of elements of A that are also in the interval (m,m + HJ,
where 1< H N<pand m=1,...,p. H. Mont.gomery established an asymptotic formula
for the variance of f(m, H) when p*7+¢ < N < p!~ and asked to what extent the range
of N would be increased if one were to average over all the primitive roots (mod p). We
show that in this case we can take p?/3*¢ < N < p!~¢ and prove an analogous result when
the primitive root (mod p) is fixed, but we average over primes. In this case we can take
P2 He < N < ploe

Solutions of Diagonal Cubic Equations
Roger Heath-Broun, Magdalen College, Ozford

THEOREM 1. Let py = py) = p3 = ps = ps = 8(mod 9) be primes. Then, under the

General Riemann Hypothesis Y p;z} =0 has a non-zero integral solution.
i=1

THEOREM 2. Let py = p; = p3 = pa = 2(mod 3) be primes. Then, assuming the Parity

Congjecture for elliptic curves, Z piz3 =0 has a non-zero integral solution.

i=1

Forschungsgemeinschaft
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In Theorem 1 we assume the General Riemann Hypothesis for L-functions with Gré8encha-
racters over Q( ‘—*32@ ) - In Theorem 2 the Parity Conjective is needed for curves 3 +y3 =
A only. The key idea is as follows: Suppose the 3-Selmer rank of z°+y% = A is 1 and that
the arithmetic rank is also 1, either because in Theorem 2 we assume the Parity Conjecture,
or because in Theorem 1 we arrange the analytic rank to be 1. Then any az®+a~'y3 = A,
which is everywhere locally solvable, over Q( l—+‘2£§ ), has rational points there. This
enables us to get points on p;z3 + pay® = p for suitable primes p. In Theorem 2 we solve
two equations p1z° + poy® = p = pau® + psv® in this way. For Theorem 1 we consider all
fifteen possible pairs of equations. By showing (under GRH) that the average analytic rank
is at most 2, we can find one pair where both equations correspond to analytic rank 1, which
suffices.

Partitions into Primes
Adolf J. Hildebrand, University of Iilinois, Urbana

The ordinary partition function p(n) denotes the number of representations of n as a
sum of non-increasing positive integers and has a generating function 377 p(n)z" =
T152,(1 — ")~ . We consider the function pa(n) defined by

Qo oo
dopamz = [ (-2,
n=0 n=1

where A(n) is the von Mangoldt function. This function represents a weighted count of
the number of partitions into prime powers. Since A(n) is 1 on average, one mnay expect
that the behavior of pa(n) is similar to that of the ordinary partition function p(n). This
expectation is confirmed, to some extent, by the following res it of B. Richinond (1975):
Let A(n) = logpa(n) — logp(n). Then

(1 AR < Jr_zexp(—(logn)‘/"’) .
Moreover, under the Riemann Hypot}iesis, (1) can be sharpened to
(2) An) <« n'/t.

For comparison, logp(n) has order of magnitude /n. Recently, my student Yi-Fan Yang
improved these results as follows:

THEOREM.

(i) The unconditional estimate (1) can be sharpened to

logn
Am) € Vaexp (_C (]oglogn)’“(logloglogn)”“) ’
(ii) The estimate (2) is best-possible in the sense that A(n) = Qu(n!/4).

(iii) If (2) holds in the weaker form A(n) = Oc(r'/*) then the Riemann Hypothesis is
true. Thus (2) is equivalent to the Ri Hypothesis.

Forschungsgemeinschaft
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Integer Points Close to Curves and Exzponential Sums
Martin N. Huxley, University of Cardiff

The methods for bounding an exponential sum
0 e (7 (57))

and estimating R, the number of solutions of
m
@ 'n—NF(M)l <6,

are compared with analogues for rational points

3

|5 -2 () <

. or projective rational points

) |§—,\F(;"—3)|5%.

New results include

log N

R « 8'3M + MO-20)/10  ghere a = ,
log M

<a<?2,

N W

in (2) under standard conditions and a bound for (3). There are applications to means of
differences between square-free numbers

ST (sinr =) ~ Bm) N

sip1 SN

and to the exponential sums given in (1).

The Mellin Transform and the Riemann Zeta-Function
Aleksandar Ivié, University of Belgrade

Let
Z(s) =/ l((%+iz)|4z"dz (Res>1).
1

By using analytic properties of Z»(s) several results have been obtained. These include
two-sided omega results for f‘.;r E,(t)dt and L(T), where E,(T) is the error term in the
asymptotic formula for fOT l¢d + z‘t)[‘dt and L(T) is the error term in the asymptotic
formula for fDT [¢(s + it)l‘e“/Tdt. It is proved that j;)TEg(t)dt > T2, which comple-
ments the estimate foT E2(t)dt < T*(log T)C , obtained jointly with Y. Motohashi in 1994.
Mean square estimates for Z»(s) (3 <Re(s)<1) and possibilities to use Z5(s) to bound

5T [¢(s + it)|°dt and Il + it)|sdt are discussed. The latter is joint work with M.
Jutila and Y. Motohashi.

Forschungsgemeinschaft




Function
Matti Jutila, University of Turku

The function .
Zy(s) = / l¢(3 + iz:)ld £ dz
1

has been introduced and studied by Y. Motohashi, who showed its meromorphic continuation
and spectral decomposition. In the half-plane Res > —1/2, this function has poles at
1, 3 +ix; and p/2, where x; = /A;—1/4 with X; standing for eigenvalues of the
hyperbolic Laplacian and ¢ summing over non-trivial zeros of the Riemann zeta-function.
It is interesting that .

() = Y dm)din+ fin™  (f#£0),
n=1

related to the additive divisor problem, has the same poles. Moreover, the latter function
is of polynomial growth on vertical lines, if neighborhoods ‘of the poles are excluded. By
analogy, one would expect the same to be true for Z,(s) as well, and a proof of this is in
fact outlined in the lecture. More precisely,

Zo(u+iv) € (v+ )70/
for w> —1/2, v > 0. This should be compared with
(lu+iv) € (v+ 1) 7ute,

which may be viewed to represent the conjectured order of Z,(s) , again by the saine analogy.
The basic idea of the proof of the estimate of Z(s) is to replace |((% + i:n)]4 in its
definition by a local weighted average, for which a spectral decomposition due to Motohashi
is available. Then a correction term has to be added and in the resulting decomposition of
Zy(s) into a sum of two functions, both of them can be shown to be of polynomial order.
This method works also, at least to some extent, for automorphic L-functions.

On the Structure of the Selberg Class '\‘ i

Jerzy Kaczorowski, University of Poznan

This is a report on a work in progress. Let S; denote the set of L-functions from the
Selberg class S having degree d. Functions from S, are fully characterized for d < 1
only (Bochner, Richert, Conrey-Ghosh, Kaczorowski-Perelli). The basic conjecture in this
context is the so called Degree Conjecture saying that Sy = 0 unless d € Z . We prove the
following

THEOREM (joint with A. Perelli). There are no F € Sq4 with poles if 1<d<?2.

14
The Mellin Transform of the Fourth Power of Riemann’s Zeta-
|
|
The proof depends on the study of the suitable twist of F(s) =Y _an,n™* € Sa:

oo
F*(s) = z ann=?* exp(—27riA;.-n”("")),
n=1

| DF Deutsche i
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where Ap = (d-1) q;,’ (@=1) and gF is the modulus of F.

Sums of Fourth Powers and Related Topics

Koichi Kawada, Iwate University, Morioka

Joint work with Trevor D. Wooley, University of Michigan

We first prove a good lower bound for N(X), the number of natural numbers < X, which
are the sum of 5 fourth powers. Instead of 5 genuine fourth powers, let r(n) be the
number of representations of n in the form n = 2m? + u* + v*, where u,u € N and m is
an integer written as m = z2 + zy + y® with z,y € N. Then, by a well-known argument,
one can easily show that #{n < X: r(n) >0} > X!~¢. On the other hand, r(n) > 0
means that n is a sum of 5 fourth powers, since s

(1) 2(z? +zy + %) = =¥ + ¢t + (z +y)h.

Therefore we have N(X) > X!~¢. Using Tenenbaum’s method to estimate Y r(n)?, we

further obtain ns=

TuEOREM 1. N(X) > X(logX)™'~¢ for any fized € > 0.

The identity (1) is attributed to F. Roth in Dickson’s book “History of the Theory of Num-
bers”. We can apply this idea to various additive problems involving fourth powers. On
occasion, however, we must admit that some residue classes modulo 16 are definitely out of
grasp of our method, because the three integers z,y and z +y cannot be odd simultane-
ously. More precisely, one sees that z* + 4% + (z +y)* = 0 or 2 (mod 16), while sums of 3
genuine fourth powers represent 0, 1, 2 and 3(mod 16). Anyway, some of our results are:

THEOREM 2. When 4}k, every sufficiently large integer is the sum of 10 fourth powers
and a k-th power. When 4|k, every sufficiently large integer = r(mod 16) with 1<r <9
is the sum of 10 fourth powers and a k-th power.

THEOREM 3. Every sufficiently large integer = r (mod 16) with 1 < r < 10 is the sum
of 11 fourth powers.

On the Zeros of the Hardy Z-function and its Derivatives
Alla Lavrik-Ménnlin, ETH Zirich

Hardy’s Z-function is a real-valued function, whose zeros coincide with those of the Rie-
mann zeta-function on the critical line. We discuss the problem of mutual localization of
zeros of Z(t) and its derivatives, as well as its connection with a problem of gaps between
consecutive zeros of the Riemann zeta-function on the critical line.
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On the Number of Good Approzimations of Algebraic Numbers
by Algebraic Numbers of Bounded Degree

Helmut Locher, University of Marburg

Let a € Q, de N, 6 > 0. Consider the inequality
la=Bl < (A)™*=%,  BeqQ, degp<d.

An explicit lower bound in terms of dega, i(a) and & is given, where h(-) denotes the
absolute multiplicative height. Also a p-adic version of this result was presented.

Arithmetical Results on Certain Functional Equations
Lutz G. Lucht, University of Clausthal

The classical system of functional equations

n

1%t jz+v
- Z F( ) = n"*F(z) (n€eN)
v=0

with s € C is extended to

n—1

1 T+v had
- ;F( ) = z—:/\..(d)F(dz) (neN)

n
d=1

with sequences X, : N = C. We determine the periodic integrable solutions F:R/Z->C
and show that, under suitable assumptions concerning the sequence (A (1)), aperiodic
continuous solutions F: Ry — C can only occur in the classical case. This solves an open
problem in the theory of functional equations via arithmetical methods.

The Distribution of the Values of the Riemann Zeta-Function
in Short Intervals of the Critical Line

Helmut Maier, University of Ulm

We study the behavior of ((4 +i7) for 7 € [t,t+(logt)™?}, 0 < @ < 1, and show that
log ¢(} +it) is normally distributed with expectations depending on t for most ¢-values.
For the proof we use an approximation formula of Sciberg to show that

log (% +it) ~ Zp’é’“

p<z

for most t-values and then replace p~# by independent random variables X, .

o
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Non-Vanishing of Critical Values of L-Functions
Philippe Michel, University Paris -Sud, Orsay

Joint work with Emmanuel Kowalski, Rutgers University

Let g be a prime, and let S§(g) be the set of primitive cusp forms over I'g(g). We study
the average order of vanishing of L(f,s) for f € S§(¢) at the critical point s = 1. This
can be interpreted in terms of the rank of Jy(q) = Jac Xo{(q) by the Birch, Swinnerton-
Dyer Conjecture (BSD). We prove

THEOREM 1. There is an absolute constant ¢ > 0 such that

® Y ord L(fis) < (e+o(D)[S3@]  for g = +oo.

JeS2a)

For the first time such a bound is given unvconditionally, without GRH like in former_g_'orks
of Brunner or Ram Murty. Moreover, one can take ¢ < 10. On the other hand we also
prove non-vanishing results:

THEOREM 2. We have
m [{f € S}@): ord L(£,9) =0}] > (£ +0(1)) 5|S(a)],

@ [{f € S5@): ord L(f,s) = 1}] > (53 +0(1)) 5|S5(a)] -

There are similar results of Balasubramanian and Murty for the case of Dirichlet L-func-
tions except that much better constants are obtained by our method. By works of Gross,
Gross-Zagier, Kolyvagin-Logachev, these imply an arithmetic statement about the existence
of large quotients of Jo(q) satisfying the BSD Conjecture.

In particular (1) provides a lower bound for the dimension of the winding quotient of Merel
J. which has rank 0, satisfies BSD and dimJ, > (:',: + 0(1)) dim Jo(g) . By Gross-Zagier,
(2) provides the lower bound

rank Jo(g) > (35 +o(1)) dim Jo(q).

These results have also applications to forms of weight 3/2. Our methods are based on
. cstimates for modified mean squares

YL MLs)', where M(f,s) = 3 Ap(m) kmm™®,
7

m<M

and s is either 1 or 1+ 1/logq+it. By the estimates in Theorem 1, we prove an analogue
of an old density theorem of Selberg to derive our upper bound. These methods generalize
to other families of automorphic L-functions.
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Beyond Pair Correlation
Hugh L. Montgomery, University of Michigan

Assuming the Riemann Hypothesis, it is known that the Pair Correlation Conjecture is
equivalent to the assertion that

z . 2
h) —(z) - h) dzr ~ tz’hiog(Z),
[ (v +m =i -n) e ~ Letniog (),

for ¢ < h < z' ~¢. Since the Cramér model would predict logz on the right-hand side in
place of log(z/h), the distribution of ¥(z + h) — ¥(z) — k is unclear. In joint work with
Soundararajan, we give reasons to believe that this quantity is normally distributed witl
mean 0 and variance log(z/h) . Equivalently, in terms of zeros, if z° < T < z'~¢, then

z"
0<y<T

is distributed, for X < z < 2X, like a sum of N(T) unimodular independent random
variables.

The Complex Binary Additive Divisor Problem and the Spectral
Theory of the Three-Dimensional Hyperbolic Upper Half-Space
' Yoichi Motohashi, University of Tokyo

My original motivation was to find something lying inbetween the fourth power and the
cighth power moments of the Riemann zeta-function. One of many possibilities is the
fourth power moment of the Dedekind zeta-function of a given imaginary quadratic field.
Naturally one may consider the same problem for any real quadratic number field; such
a theory is now under construction. The problem is essentially equivalent to the complex
binary additive divisor problem:

Y oalmosn+Nu(F)  (f#0).

Here n runs over integers of a given imaginary quadratic field; o, is the sum-of-powers—
of-divisors function of the field, and w is a smooth weight. The use of Ramanujan’s Fourier
expansion of o, leads us to an expression that is a sum of Kloosterman sums

Semni) = Y e(Re(hm)+Re(% W),
h(mod &)
(h,£)=1
hh*=1(mod ¢)

where as usual e(z) = e?™*, if the situation is simplified with the assumption that the field
is Q(v/—=1), though the generic case is very similar.

Then, following the example in the case of a rational number field due to Kuznetsov, we are
led to the spectral theory of the upper half-space. We have already proved the corresponding
trace formula. The formula contains an integral transform involving a product of two Bessel
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functions. Now, the problem has essentially been reduced to the “inversion” of this integral
transform. Here, still a lot of work has to be done.

On an Equation of Goormaghtigh
Yuri V. Nesterenko, University of Moscow

Joint work with T. N. Shorey, Tata Institute, India

The equation of Goormaghtigh asks for integers that can be written with all digits 1 with
respect to two distinct bases. It has been conjectured that this problem has only finitely
many solutions. For fixed positive integérs m > 2 and n > 2 in the equation

™~ 1 y" -1

(1) -1 = y-1 R

H. Davenport, D. J. Lewis and A. Schinzel proved in 1961 that indeed only finitely many
solutions in integers = > 1 and y > 1 with z # y exist. This result is extended in the
following quantitative sense:

THEOREM 1. "Let m—1=dr, n—1=ds, where d,r,s are positive integers, d > 2,
ged(r,s) =1. Then (1) with z <y implies that

9Dr
z(max(9, 5 +1):
hore 4
where g = d;l and D, = d™ npordp(r!).
pld

The theorem yields all solutions of (1) for small values of d, r and s. For example

'THEOREM 2. Equation (1) with 2 <y, m =1(mod?2) and n =3 implies that

m>25 unless (z,y,m) = (2,5,5) or (2,90,13).

Linear Independence in the Selberg Class
Alberto Perelli, University of Genova

Motivated by the Countability Problem for the Selberg class S, i.e. the class of Dirichlet
series admitting meromorphic continuation, functional equation and Euler product, we prove
the following theorem, which is essentially a result on multiplicative functions.

THEOREM 1 (joint with J. Kaczorowski).  Distinct functions in S are linearly independent
over C.
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Calling two functions f, g equivalent if f(p™) = g(p™) for all m and all but finitely many
primes p, we also have

THEOREM 2 (joint with J. Kaczorowski).  Pairwise non-equivalent multiplicative functions
are linearly independent over C.

In fact, Theorem 1 follows immediately from Theorem 2 by a result of Murty-Murty, as-
serting that coefficients of functions in § are non-equivalent.

The Almost Periodicity of the Normalized Sequence
of Class Numbers
Manfred Peter, University of Freiburg

Let h(d) be the number of equivalence classes of binary primitive quadratic forms of discrim-
inant d. It is shown that the sequence d — h(-d)d~'/2, de N, =0, 1(mnod 4), no square,
is almost periodic. This can be generalized to sequences d — L(s,xq) with Res > 1/2
and x4 the Jacobi character associated to d. Other possible generalizations are related to
Hurwitz’ class numbers and the numbers of representations of natural numbers by a positive
integral ternary quadratic form. As a consequence the existence of limit distributions and
mean values of these sequences over certain subsets of N can be shown.

Some Remarks on Methods of Diophantine Approzimation
Patrice Philippon, Paris

Hoping for a shake-hand between methods from Diophantine Approximation Theory and
Transcendance Theory, we show how zero estimates from Transcendence Theory imply
Roth’s type lemmas (including the Product Theorem), we also recall how the Subspace
Theorem can deal with forms of higher degrees and finally we formulate some strong con-
jecture on lower bounds for linear forms in logarithms of rational numbers with rational
coefficients, inspired by the Subspace Theorem and which would imply, for example, the
abc-Conjecture.

Haar Wavelets and Irregularities of Distribution
Andrew Pollington, Brigham Young University, Provo

We study the discrepancy function of N points in the unit d-dimensional cube and obtain
lower bounds for the discrepancy with respect to rectangles with sides parallel to the coordi-
nate axes. The method adopted is to use the Haar system, where the fundamental building
blocks are squares. Using this method we obtain lower bounds for || D], .
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Heights and Siegel’s Lemma
Damien Roy, University of Ottawa

E. Bombieri and J. Vaaler showed that, if V' is a subspace of (_I" of dimension m defined
over a number field K, then there is a basis {z,,...,z,,} of V contained in K™ which
satisfies

H(z,)---H(z,,) < m™?[Disc(K)|RH(V),

where H denotes the absolute Weil's height on Q@", d the degree of K and Disc(K) its
discriminant. In a joint work with J. Thunder, we prove that a dependence on the field K
is needed if looking for a basis of V in K™ but not for a basis of V in Q. In the latter
case, we prove that, for any constant ¢ > ¢(m)™, where ¢(m) = \/§m_i, there exists a
basis {z,,...,z,,} of V with

H(z,) - H(z,) < cH(V).

We call this an absolute Siegel’s Lemma. Let K be a number field and let K5 denote
its ring of adeles. To each element A of GL,(Ka), we associate a height function .H 4
on @" . When A is the identity, this is the usual absolute height on @n denoted, H
above. We also define Ha(V) for a subspace V of Q" and Ha(P) for a polynomial
P € Q[Xy,...,X,], and we indicate properties of these. The main one is that, given an
injective lincar map ¢: Q" — Q" defined over K and an element A of GL,(Ka), there
exists an element B of GL.(Ka) such that Ha(p(V)) = Hp(V) for any subspace V
of @". These twisted heights introduced by J. Thunder are an essential ingredient in the
proof of our absolute Siegel’s Lemma.

Additive Completion
Iinre Z. Ruzsa, Math. Inst. of the Hungarian Academy of Sciences, Budapest

We say that two sets A, B are additive complements if all except finitely many positive
integers are of the form a +b, a € A, b € B. We say that a complement B of A is
economical, if A(z)B(z) « z, with A(z), B(z) denoting the respective counting functions,
and it is exact, if A(z)B(z)/z > 1.

By a result of Narkiewicz for a pair of exact complements we have A(2z)/A(z) — 1 and
cousequently A(z) = O(z®), or the analogous statements for B. Hence in order to have an
exact complement, A must be either very thin or very dense.

We found that very thin sets automatically have an exact complement. If A = {a;,a,,... },
such that an41/(na,) = 00, then A has an exact complement. We show with a modifica-
tion of the method that the same is true for A = {2": n € N} .

We also prove that the primes do not have an exact complement. Every completion B of
the set of primes must satisfy liminf B{z)/logz > e, where v denotes the Euler constant.
We conjecture that it does not even have an economic complement.
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Rational Points on a Class of Superelliptic Curves

Jiirgen W. Sander, University of Hannover

A famous Diophantine equation is given by
(1) yk=(z+1)(x+2)---(z+m).

For k> 2 and m > 2, all integer solutions of (1) are z = -5 (j =1,... ,m), y=0,
by a remarkable result of Erdés and Selfridge in 1975. From the viewpoint of Algebraic
Geornetry, equation (1) represents a plane curve for fixed k and . Therefore it is natural
to ask for rational solutions. For k> 2, m > 2 and k+m > 6 , we know fromn Faltings’
proof of Mordell’s Conjecture that (1) has at most finitely many rational solutions. In this
talk we shall use Wiles’ recent method and results, which led to the celebrated proof of
Fermat’s Last Theorem, in order to deduce the following

THEOREM. For k> 2 and 2 <m <4, all rational points (x;y) on the superelliptic curve
(1) are the trivial ones with z=~j (j=1,...,m), y=0, czcept for the case k=m =2,
where we have ezactly those satisfying

_ 2c'f—c§ v = c|1C2
=2z YV=Eaz-2
g -c G~

with coprime integers ¢ # *c, .

The Subspace Theorem and Geometry of Numbers

Hans Peter Schlickewei, University Marburg

Joint work with Jan-Hendrik Evertse, Leiden

The classical Subspace Theorem of W. M. Schmidt (1972) says the following:

Let Ly,...,L, be linearly independent linear forms in X,,... , Xn with algebraic cocffi-
cients. Suppose § > 0. Then there exist finitely many proper linear subspaces Ty,..., T,
of Q" such that the set of solutions z € Z" of the inequality |Ly(z) - Lu(z)| < 1z|7¢ is
contained in the union Ty U...UT;. Here we give a quantitative, parametric version of this
theorem. A very special version of our result is the following:

Let K be a number field of degree d. Write 9 (K) for the set of places of K. Suppose
that for each v € M(K) we are given linearly independent linear forms Lg") seo LYY with
coefficients in K. Assume that we have L%") =Xy,..., L = X, for almost all v € M(K).
Let ¢ = (ciy; v € M(K), i =1,...,7n) be a tuple of real numbers with

Z Xn:ciu=0, z max ¢y < 1

vEM(K) i=1 VEM(K)
€1y =...=Cpy =0  for almost all v € M(K).
For v € M(K) write || ||v for the absolute value corresponding to v, normalized such

that the product formula holds. For a finite extension F of K and fur w € M(F) lying
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above v € M(K) write:
L™ = L, d(w,v) = [Fy: K)/[F: K], ciw=dw/v)ci.

Finally, for v € MM(K) put s(v) =1 if v|oo and s{v) =0 if v is finite. Now for given
@ > 1 consider the inequalities

(1) [8@)], < AL Qew=d G dw/vst w € M(F), veMK),
wlv, t=1,...,n,

0<d< i andwhere A, = || det(L{,... ,Li)|,, . Let C be defined by

@) C = max { H(LM), n/ } .

THEOREM. Suppose that we have R systems of forms {L\?,...,L\®} such that for any -

v e M(K) the system {L,... L%} is a permutation of {L'®,... L@} for a suitable

o with 1 < ¢ < R. Then there exist proper linear subspaces T\,... , T, of @", defined -

over K, .
t < 220r+7°6-n=4 1554 R loglog4 R

with the following property: For every finite eztension F of K and for every Q "with
Q > C and C asin (2) the set of solutions z € F" of (1) is contained in the union
TyU...UT,.

The theorem already has led to applications estimating the number of solutions of Diophan-
tine equations. It is a main ingredient in W. M. Schmidt’s proof that the multiplicity of a
non-degenerate linear recurrence sequence of order & is bounded in terms of & only.

At a crucial point in our proof we use a recent result by Roy and Thunder, an absolute
version of Minkowski’s Theorem.

The Zero Multiplicity of Linear Recurrence Sequences
Wolfgang M. Schmidt, University of Colorado, Boulder

Consider a linear recurrence sequence {un}ncz of order t, so that u, € C and u, =
Clun—1 + ...+ Ciun_y (n € Z) with fixed coefficients ci,...,¢,. Such a sequence is of the
form u, = 3%, Pin)a?, where a; € C< and P; € CJX] with 5 (1 +degP;) = t.
The sequence is non-degenerate if no quotient a;/a; (i # j) is a root of 1. The zero-
wultiplicity is the number of n with u, = 0. Clearly this is the number of solutions z € Z
of the equation

k
S Piz)af =0
i=1

of mixed polynomial-exponential type. According to a classical theorem of Skolem-Mahler—
Lech, a non-degenerate linear recurrence sequence has finite zero-multiplicity. Much progress
has been made during the last decade on estimating this multiplicity, with contributions by
Bombieri, Evertse, Faltings, van der Poorten, Roy, Schlickewei, Thunder, Zagier, Zanuier,
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S. Zhang, and the author. I now can prove that a non-degenerate linear recurrence of order
t has zero-multiplicity below some bound ¢(t) depending on t only.

On the Gutman-Ivié-Matula Function and Related Topics
Gérald Tenenbaumn, University de Nancy 1

Joint work with Régis de la Bretéche, Orsay .

"The function referred to in the title has first been defined in 1968 by Matula for purposes
in theoretical chemistry. It is the only completely additive arithmetical function such that
f(p) = 1+ f(k) (k> 1), where p; denotes the k-th prime. We define a vector space
& which contains both, the above function and the logarithm. By means of a general result
which links the average of an arbitrary function g(n) to the asymptotic behavior of

Rzig) = 13 o) - 2 3 s®[ =],

T
n<z pisz

we obtain remainder asymptotic formulae for all functions of €. A quantitative mean value
theorem for multiplicative functions h with certain links between h(k) and h(p) en-
ables us to obtain convergence to the Gaussian law of elements f in € for (f(n) —

Cylogn)/Dy\/logn for suitable C, = C|(f) and D, = D,(f) > 0. An estimate of
the rate of convergence is given.

An Old Idea of Hermite Receives New Life
Jeff L. Thunder, Northern Illinois University, De Kalb

Joint work with Damien Roy, Ottawa
Let K dcnote a number field and let n be a positive integer. For A € GL,(Ka) let Ha 0
be the twisted height as defined in the abstract of D. Roy. Define minima 4;(4) < p,(4) <
... € pnfA) as follows:
pi(A) = inf {p>0: 3z,,...,2, € Q", lin. indep., Halz;) < p forall j<i}.

We prove the following absolute version of Minkowski’s second Convex Bodies Theorem:

THEOREM. Let k,n and A as above. Then
n
o N
Ha{Q") = {det(A)la < []pilA) < c(n)™|det(A)|a,
i=1

where c(n) = \/f"hl .
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This theorem implies our absolute Siegel’s Lemma stated by Roy in his abstract. It can be
shown that this theorem is implied by the inequality

m(4) < cfn) | det(A)[".
We prove this inequality in the case n = 2 and then show that
c(n) < c(n_l)(n-l)/(n—i)

for n > 2, giving c(n) < ¢(2)"~!. The line of argument is similar to Hermite’s method of
bounding the Hermite constant y(n) from above by first showing that v(2) = 2/v/3 and
then y(n) < y(n-1)"~W"-2) for n > 2.

On the Number of Digit Changes -
Robert Tijdeman, University of Leiden

It follows from work of Senge and Straus (1973) and Stewart (1980) that the number of
non-zero digits of a large positive integer can only be small with respect to two bases b,
and b, if logb;/logb;, € Q. Stewart proved a corresponding result for terms of a linear
recurrence expressed in base b. In a similar way, Blecksmith, Filaseta and Nirol (1993)
proved that the number of digit changes of " in base b tends to infinity with n uniless
loga/logh € Q. In joint work with Barat and Tichy such results have been generalized
to linear number system expansions. It turns out that the ineffective Thue-Siegel-Roth—
Schmidt method and the effective Gelfond-Baker method yield results of different types.

Lattice Points in Spheres
Kai-Men Tsang, University Hong Kong

We consider P3(R), the remainder term in the asymptotic formula for the number of lattice
points inside the three-dimensional sphere of radius R, centered at the origin. The upper
bound P3(R) < R?!/'%+¢ was obtained recently by D. R. Heath-Brown. For Q-results, it
is known that

Py(R) = Q_(RVIogR) and P3(R) = O, (RloglogR) .
We introduce a different approach to prove that
Py(R) = Q:(RVlogR)
holds. .
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On the Number of Polynomials over Z having Bounded Height
and Bounded Mahler Measure

Jeffrey D. Vaaler, University of Tezas, Austin

Let M : RV — [0,00) denote the Mahler measure of the polynomial having z in RV as
its vector of coefficients. So

1 N
M(z) = exp{/o log|Zzne((N—n)0)|d0}
n=1

for z € RY. From this point of view, M is a symmetric distance function in the sense of
the geometry of numbers and ’

Sy = {zeRV: M(z) <1}
is an open, bounded starbody. It follows, moreover, that

> 1= Volw(SM)TY + On(TV™')  as T 0.
tezv~
ML) <T

Note that Sy is not convex if N > 3. We show that

N pIN/2] N=L
%['” I nv-me-o

n=1

Voln(8n) =

for each NV > 1. The proof uses the analytic function

/RNM((_lI_))-’dE (Re(s) > N)

FN(S)

and the discovery that
Fx(s) = Ans™5141 T (s~ N+2m)7?,
’ o<mg[¥t)

with A, € Qx. Similar - but easier - results hold when R is replaced by C or by a non-
archimedean local field.
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Primes in Arithmetic Progressions
Robert C. Vaughan, University of Michigan

Let
Yz.qa) = Y, AR),
nEa'zs:)dq)
v 3 z_*
@) = 3 v a0 - 3551
(a,9)=1
U(z,q) = zlogq—z(‘y+loan+Z%) ,
rle
Mz,Q) = Y |V(a-Ueal.
Q/2<95Q g

Then the following theorem was obtained.

THEOREM.  Suppose that | is a positive number and that k is a positive integer. Then
for every Q@ and z with z(10gz)~* < Q <z we have

- k o
Mi(z,Q) < Qz"F(-é—) + (bi;z)—A

where, fory > 1,

_ c(log2y)%/®
F(y) € y™V?exp ( - -————(]og log 35)175 )

with ¢ a positive constant.

Three Two-Dimensional Weyl Steps in the Circle Problem
Ulrike M. A. Vorhauer, University of Ulm

Joint work with Eduard Wirsing, Ulm

We study the circle problem and its generalization involving the logarithmic mean. Most
non-trivial results depend on estimates of exponential sums. Chen has carried out such
estimates using three two-dimensional Weyl steps in complicated techniques. Our approach
is simpler and clearer. Crucial is a good understanding of the Hessian determinant in
question and a simple estimate for certain exponential integrals. We determine the order of
magnitude of the Hessian as well as that of the maximum of the second derivatives for the
third order differences of the two-dimensional Euclidean vector norm.

The classical tool for estimating two-dimensional exponential integrals is a theorem of Titch-
marsh that was refined by Min among others. Apart from its difficult proof and somewhat
doubtful formulation it has the disadvantage that it requires a system of complex side
conditions that are hard to check or to satisfy. We propose for the same purpose a similar
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theorem which is somewhat weaker but which, on the other hand, needs few and simple
asswinptions and is considerably easier to prove:

THEOREM. Let G C R? be a convex, compact region of diameter € with boundedly many
algebraic arcs for its boundary 0G . Let U be an open neighborhood of G and f:U — R
be a real algebraic function such that on G

|f:r:|a |f2y|v Ifuvl < /\2,

. Afoafoy = 20 2 H > 0.

Then A\ '

J= // e(f)dady < 3 tog (24 V/st)
g

where, as usual, e(z) = e*™ 2, and the O-constant depends only on the total degree of the
minimal polynomial F(z,y,f) of f and on the number and degrees of the boundary arcs.

The convexity condition can easily be relaxed, but it is convenient to assume and suffices for
our applications. This theorem is best possible apart, possibly, from the log-factor. Any
improvement in the direction of the Titchmarsh-Min lemma must use stronger assumptions.
This can be seen from an instructive example that is given by the function f(z,y) =
$(r = R)*, r = /22 +y2, on the circular ring R/2 < r < R — R® with a parameter
a € (0,1). Here Ay <1, H(z,y)>» R°! and J x R!~®. The same holds for the convex
hull of, say, one quarter of the above ring:

A Prime Number Theorem with Weights
Dieter Wolke, University of Freiburg

The following weighted version of the Prime Number Theorem is discussed. There is a
function g: P — R such that, with numerical constants ¢;,c; > 0

(logp)!/? )) ‘

gp) = 1+0 (exp (— CIW

3 9lp) = liz+O(z'~2).

p<z
As I. Ruzsa and E. Wirsing remark, this can be derived very easily from a Hoheisel-Ingham

type Prime Number Theorem. We get it from an analytic process which may be of interest
in itself. Consider the partial fraction expansion

(ol (1,1
~TO) = 5 Zp:(s_g+g)+3,

where ¢ runs over the trivial and non-trivial zeros of ((s). The principal idea is to erase
the poles at o by adding —(¢’'/¢)}(s+1 - ). As this produces new poles there are severe
convergence problems. However, it can be done by using a generalized form of an approx-
imate formula for —('/¢ due to Selberg. By this we produce a function H(s) such that
H(s) = (s —1)7" is regular for Re(s) >0. H(s) = L A*(n)n~* in Re(s) > 1, where A"
is very close to A, and is of not too large order of magnitude for Re(s) > 1/2.
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Ezponential Sums and Diophantine Equations
in Many Variables
Trevor D. Wooley, University of Michigan

W : provide estimates for exponential sums over binary forms of strength close to that
attainable by the classical version of Weyl’s Inequality and Hua’s Lemma in the diagonal
situation. Our main results are as follows.

THEOREM 1. Let &(z,y) € Z|z,y] be a non-degenerate binary form of degree d > 3, and

let
FaPQ) = Y Y, elad(zy).
0<z<P 0<y<Q
Suppose that ‘P < Q are large. Let a € R, and suppose that there ezist T € Z and g€ N
with (r,q) =1 and |a —r/q| <1/¢*. Then

Q2-d

F(a; P,Q) < Pz+’(q‘l +P-l+qP"‘)

THEOREM 2. Let ®(z,y) and F(a; P,Q) be defined as in the statement of Theorem 1.
When d =3 or 4, or when d >5 and j =1 or2, one has h

! i-1 i
/ |Fa; P,Q[" da <« P¥ite.
)
When d >5 and 3 <j <d—2 one has
! 27t 27 41
/ |Fle; P,Q)|" da < P Sitate
0
When d > 5 one has also
1 .
[ PP * da « pEeriee,
o

and

1 -
/]

There are applications to the solubility of equations of the type
& (z;, 1)+ ...+ Bs(25,45) =0.

For example with each ‘®; a binary form of degree d having integral coefficients, one may
establish an asymptotic formula for the number of integral solutions within a box of size B
large. :
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On an Extremal Problem Related to Gaussian Sums
Andrds Biro, Math. Inst. of the Hungarian Academy of Sci , Budapest

We prove partial results concerning a modified version of a problem of Harvey Cohn on the
“characterization of characters” (see Problem 39 of the book of Hugh L. Montgomery: Ten
Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis). We
consider the problem only for the prime field. We show that there are only finitely many
solutions in the complex case (for a fixed prime p), and solve the problem completely in the
mod p case.

Local Solubility in the Waring-Siegel
Morley Davidson, Kent State Um‘uersity

Recent progress on the analytic side of the Hardy-Littlewood-Siegel circle method for num-
ber fields, as applied to the generalized Waring problem, has justified a re-examination of
the algebraic side, dealing with local solubility. It was proved by C. P. Ramanujam that, for
exponent k in the Waring problem for a number field K, using at least 8k® summands
guaranteces local solubility (hence convergence of the ‘singular series’ to a positive number).
We arc able to improve this to k%logk for almost all k with ouly two distint prime divi-
sors, and to k% logk for almost all squarefree k, by using results of R.-M. Stemmler on the
density of primes of the form (p" — 1)/((p? — 1) with p prime. We conjecture that there
is a constant ¢ independent of k and K such that ck summands suffice. (Currently it is
known that 4nk variables are sufficient, due indepedently to Stemmler and O. Kérner.)

Reported by: Ulrike Vorhauer, Ulm
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PROBLEMS POSED
Oberwolfach, 10 March 1998

1. (J6rg Bridern) In F? we pick vectors (3;), 0<i<p, such that no three are on a
line, which is to say that

a: a;
det| ' 7 0 (mod p) .
e (ba b,-) # 0(mod p)

Is it true that there exist numbers £; = 0 or 1, not all 0, so that

-Z:;Ei (:) (g) (mod p) ?

If this is true, is there a generalization to dimension 3 and higher?

2. (Imre Ruzsa) Let aj,c2,... bereal numbers with 0 < a; <1 for all i. We consider
the sums a; +a; for 1 <7 < j < n, and ask how well-spaced these sums can be. Let
4(n) be the minimum dista. ce between any two of these n(n + 1)/2 numbers. We know
that &(n) < 3/n?. Is it true that liminf, ,o, n%d(n) = 07 It is known that the a; can be
chosen so that §(n) > 1/(nlogn)?.

3. (Imre Ruzsa) Let 2 be a set of positive integers, and let r(n) denote the number of
ways of writing n = a+b® with a € 2. Can theset 2 be chosen so that Zns/v Ir(n)-1| =
o(N)?

4. (Imre Ruzsa) Geometric problem. It is well-known that there is no finite set on the
plane (not all points in a line) with the property that every line connecting two of the points
passes throught a third. There are finite sets that have the following weaker property. If we
connect two points, either this line passes through a third point, or there is a parallel line
that passes through at least three of our points.

I have two examples. One has 7 points: the vertices of a triangle, the midpoints of the sides

and the barycenter. The other has eleven: an affine regular pentagon, the crossing poins of -

the diagonals, and the center. Are there any further such configurations?

5 (Jerzy Kaczorowski) Let

-
Y(s) = Q° [] r(vjs+us)
=1
be the factor in the functional equation for a function F in the Selberg Class. We call
dp =2 2;=| A;j the degree of F. The Degree Conjecture asserts that dp is a positive integer
for all F in the Selberg Class. We now formulate three conjectures that are equivalent if
the Degree Conjecture is true.

Cohj. 1: For every F in the Selberg class, the numbers A; are all rational.

Conj. 2: Call A; and A; equivalent if X;/X; € Q. For a given F in the Selberg Class, let
hr be the number of equivalence classes among the A;. We conjecture that hp = 1.
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Conj. 3: Let A = (Ay,...,A;) and p(A) € C an invariant of the functional equation. Then
there is a function f: R — C such that p(A) = f(dF).

Given a functional equation
B(s) = w®(l-5s) with |w|=1,

we can define the associated number

ig r
. _ —in(n+1)/2 q d —~2ilmpy;
w' = we (_(27r)“) '”/\J- (N

where
T r
‘Z=(21r)dQ2H,\?"i, ’7"”'9:5:22(”1“%)-

j=t i=1

We conjecture that w* is an algebraic number.

David Farmer préposes the problem of showing that if F is in the Selberg Class then
F(1+it)#0.

5. (Alberto Perelli) Suppose that F is in the Selberg Class, and that F is entire. Put
Fy(s) = F(s+i8). Show that if F is primitive then Fy is primitive for all 8. (This would
follow from the Selberg Orthonormality Conjecture.) .

We know that members of the Selberg Class have unique factorization into primitive mem-
bers of the class. Show that if F' and G are members of the Selberg Class with (F,G) =1,
then there is a complex number g such that mp(g) # mg(e). Here mp(o) denote the
multiplicity of vanishing of F at g.

6. (Yoichi Motohashi) Find a direct proof (without using Kloosterman sums) for the
spectral decomposition of

+0oo
/_ |<(3 +it)|* g(t) dt

with suitable weights g.

7. (Aleksandar Ivié) Let o be a simple zero of {(s). Bound |('(g)| from below, in
terms of |g|.

8. (Aleksandar Ivié) (due to Kuropa, 1971) If p > 2 then
0'+1'+ -+ (p-1) # 0(modp)?

True for p < 8-10°.

9. (Antal Balog) Let c, be real or complex numbers such that c,u(n) = 0 for all n.

How small can
Z e(na) - Z cne(na)

n<z n<z

sup
a€f0,1]

be? It is known that there exist ¢n so that the above is < z34log?z, and that the above
is > z2/3 for any choice of the c, .
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10. (Trevor Wooley) Let Q™ be the maximal radical extension of Q. Thus, if a € Q™
then a!/™ € Q™4 for all positive integers n. Let d be a given positive integer. How large
pust s be, in order that for any homogeneous F € Qrad [z1,... ,%s) of degree d, thereis
a y € (Q™?)"\{0} such that F(y) =07 For d=1,2,3,4, s =2 is enough. For d > 5
one needs at least s > d+ 1. It is also known that s = 22" + 1 is enough.

Also, in this connection, find an absolutely irreducible polynomial P in three variables with
coefficients in Q™4 such that P has no non-trivial zero in (Q4)*.

11. (Trevor Wooley) (due to Novak) Prove that there is a § > 0 such that the number

of solutions of the equation

z* _yk k

-Q“_IU

o ok

in variables z,y,u,v,p,q satisfying 1 < z,y,u,v < X, (z,y) = (n,v) = (p,g) = 1,
Ip/gl #1 is « X279,

This would have the following application: If k is odd then the number of lattice points
(u,v) such that Jul* + |v]* < T*? is ¢T — bTY/2=V/* + Q (T"/*(loglog)'/*) .

12. (Gérald Tenenbaum) Is it true that the number of perfect powers between z and
z +y is € /¥ uniformly in 7 Even stronger, is it true that the number of square-full
integers between z and z +y is <« /y uniformly in z? The estimate < /y + logz is
trivial.

13. (Dieter Wolke) Let C be a sufficiently large constant. An odd integer N is called
rich if for every prime p € (2, N — C) the number N — p can be written as a sum of two
primes. Do there exist infinitely many rich integers? If so, give a lower bound for their
frequency.

14. (Daniel Goldston)

Let
_ 5 2@ _ 5 u)
Ag(n) = OSZQ ) %u(d)d .?g:a o) S
din
and set

Ao(n)

3 ld)log (Q/d).
i<

We believe that Ag(n) and Ag(n) are close for most n. Graham (JNT 10, 1978) proved
that

3 Aon)? = zlogQ + O(z)

n<z

for 1 < Q < z. Prove the same for Ag(n).

15. (Yoichi Motohashi) In the notation above, can one show that

> Ao(m)* < z(log Q)+ !

n<z

o®
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when k is a fixed integer > 17

16. (Yoichi Motohashi) The Brun-Titchmarsh inequality asserts that if (g,€) = 1 then

z

(50,0 < (2+0(1) s -

In addition, it is known that if ¢ < z'/3 then the log(z/q) in the denominator can be
replaced by log(z/q%/'€). We have two problems:

(a) Derive this improvement with the restriction ¢ < z'/3 relaxed, to allow larger values
of g. (b) Replace ¢*'® by something smaller, even if only for a more restricted range, say
q< 3100

17. (Eduard Wirsing) Among the abstracts of the conference of Nov. 9-15, 1972 one ‘
finds the following entry:

It is easy to see that the set P of all primes cannot be represented in the form
P=A+B with #A, #B.> 2. Similarly P\ {2} # A+ 8.

The “Inverse Goldbach Problem” consists in showing that even
PN[n,00) = (A+B)N[n,00), #A>2, #B>2
with any n € N is impossible.

At that occasion I proved

TneoreM.  Let N be a natural number and sets A, B C [0,N] such that A+ BCP.
Then #A -#B < N.

The proof is a simple application of the Davenport-Halberstam inequality.

The Inverse Goldbach Problem would obviously be settled if one could prove #A4 - #8 =
o(IOgLN) instead, provided that #A4 >2, #B> 2.

18. (Jirgen Sander) A result of Erdés and Selfridge from 1975 shows that
v =@+ ) (z+2) - (z+m). (1)

has no integer solutions z,y # 0 for k> 2 and m > 2. From the viewpoint of algebraic
geometry, equation (1) represents a plane curve for fixed ¥ and m, which is an elliptic
curve for k = 2 and m = 3. Therefore, it is natural to ask for rational solutions. For
k>1,m>1 and k+m > 6, we know from Faltings’ proof of Mordell’s conjecture that
equation (1) has at most finitely many rational solutions. We have proved that for k > 2
and 2 < m < 4, rational points z, y # 0 on the superelliptic curve (1) exist only for
k =m = 2. They are given by

_ 26%—(‘% Ci Co

3d-4° YT g-a

with coprime integers- ¢y # *c2. We conjecture that for other k > 2 and m > 2 no
rational points £ and y # 0 on (1) exist.
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