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Tagungsbericht 10/1998

Elementare und Analytische Zahlentheorie

08.03.1998 -14.03.1998

Thi~ c:onfcrence on tlElementary and Analytic Number Theory" was organized by

Jörg Brüdern, Stuttgart
Hugh L. Montgomery, Ann Arbor
Hans Peter Schlickewei, Marburg
Eduard \Virsing, Ulm

Ahout fifty mathematicians from sixteen different countries accepted the invitation of the In­
stitut.e. Alliectures prcsented during the week gave a stimulating survey of current progress
in Analytic Number Theory. Approximately forty of the participants considered a wide
variety of topics in Analytic and Elementary Number Theory, such as

Artin's Conjecture, Diophantin~ approximation, distribution of prime numbers, ex­
ponential sums, lat.tice points, linear recurrence sequences, moments of the Riemann
zcta-function and L-functions, partitions, primes in arithmetic progressions, the Sel­
berg Class, transcendence, set addition, Waring's Problem,

whilc in parallel sessions a smaller group of ten focussed on a very special, but important
Diophantine topic, namely thc Schmidt Subspace Theorem.

In the beautiful and relaxed atmosphere of the Institute, the participants enjoyed sharing
their questions alld ideas. The organizers and participants of this conference express their
t.hanks to the Land Baden-Württemberg, thc Director of thc Institute, Prof. Kreck, and his
staff for providin~ this productive experience.

Dank einer Unterstützung im Rahmen des EU-Programmes TMR (;Training and Mo­
bility of Researchers) konnten zusätzlich einige jüngere Mathematiker zu der Tagung
eingeladen werden. Dies ist einerseits eine hervorragende F()rderung des wissenschaft­
lichen Nachwuchses und gibt andererseits den etablierten Kollegen die Gp.legenheit,
besonders begabte junge Mathelnatiker kennenzulernen.
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Conference Program

Monday, March 9

9:15-10:15

10:25-11:15

11:25-11:55

12:00-12:30

Wolfgang M. Schmidt

Etienne Fouvry

Aleksandar Ivic

l\1atti Jutila

Thc Zero Multiplicity of Linear Recurrcllce Scqucllccs

Exponential Sums and Divisibilit.y of Class Nm ibers e
The Mellin Transform and thc Riemann Zcta-l'uIlction

The Mellin Transforrn of thc Fourth Power of Riemann 's
Zcta-Function

Hall 2

11:25-12:10 Patrice Philippon

LUNCH

Some Remarks on Methods of Diophantine Approximation

IG:OO - IG:30

16:40-17:10

17:20 -17:50

18:00 -18:30

Adolf J. Hildebrand

.Jerzy Kaczorowski

Alberto Perelli

Jean-Mare Deshouillers

DINNER

Partitions into Primes

On the Structllre of the SeIberg Cla...-.;s

Linear Independence in thc SeIberg Class

A Step Beyond Kneser's Addition Theorem

Tuesday, March 10

9:00-9:50

10:00 -10:30

10:40-11:20

11:30-11:55

12:00-12:25

Hall 2

10:00-10:50

11:30 -12:20

Roger Heath-Brown

Helmut Maier

Yoiehi Motohashi

Dieter \-Volke

C~cile Dartyge

Damien Roy

Jeff L. Thunder

LUNCH

Solutions of Diagonal Cubic Equations

The Distribution of the Values of the Ricmann Zeta­
Funetion in Short Intervals of the Critical Line

The Complex Binary Additive Divisor Problem and
the Spectral Theory of the Three-Dimensional Hyper­
bolie Upper Half-Space

A Prime Number Theorem with \Veights

Almost Prime Numbers with l\1issing Digits

Heights and Siegel 's Lemma

An Gld Idea of Herrnite Receives New Life

2
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16:00-10:50

17:00-17:30

•7:40 -18:00

8:10-18:30

Trevor D. 'Vooley

Koichi Kawada

Modey Davidson

Jörg Brüdern

DINNER

3

Exponential Sums and Diophantine Equations
in Many Variables

Sums of Fourth Powers and Related Topics

Local Solubility in the \Varing-Siegel Problem

On Artin 's Conjecture, Local Case

20:00 PROBLEM SESSION

Wednesday, March 11

9:00-9:45

10:00 - 10:50

10:55 -11 :25

11:30-12:00

12:05 -12:30

Hall 2

11:30 -12:20

Philippe rvlichel

Jan-Hendrik Evertse

Kai-Man Tsang

Imre Z. Ruzsa

David \V. Farmer

Gisbert \Vüstholz

LUNCH

EXCURSION

Non-Vanishing of Critical Values of I....Functions

On the Norm Form Inequality IF(~)I $ Ai
Lattice Points in Spheres .

Additive Completion

Non-Vanishing of L-Functions and the Irreducibility
of Hecke Polynornials

I\1odular Varieties, Hypergeometric Series and
'franscendence

Thursday, March 12

9:00-9:40

9:50-10:20

10:30 -11:10

11:20-11:50

12:00-12:25

Hall 2

10:00 -10:45

11:30-12:15

Robert C. Vaughan

Stephan Daniel

Gerald Tenenbaum

Steve G. Gonek

Manfred Peter

Robert Tijdeman

Roberto G. Ferretti

Primes in Arithmetic Progressions

Lattice Point Methods and Divisor Sum Problems

On the Gutman-Ivic-Matula Function and
Related Topics

The Variance of Small Powers of Primitive Roots

The Almost Periodicity of the Normalized Sequence
of Class Numbers

On the Number of Digit Changes

Mumford's Degree of Contact and Diophantine
Approximations
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LUNCH

15:45 - 16:30

16:40-17:10

17:20 -17:50

18:00 - 18:30

Peter D. T. A. Elliott

Jeffrey D. Vaaler

J ürgen W. Sander

Lutz G. Lucht

Prirnes and Products

On the Number of Polynomials over Z having Bounded
Height and Bounded Mahler Measure

Rational Points on a Class of Superelliptic Curves

Arithmetical Result.s on Certain Functional Equations

Hall 2

15:45: -16:30 Hans Peter Schlickewei The Subspace Theorem and Geometry of Nllmbers

DINNER

Friday, March 13

9:00-9:30

9:40-10:10

10:30-11:10

11:20-11:50

12:00-12:25

Hall ~

9:45-10:30

11:00-11:45

16:00 -·16:30

16:40 -17:15

17:30 -18:15

Hllgh L. l\10ntgomery

Andras Biro

Daniel A. Goldston

Regis de la Breteche

AHa Lavrik-Männlin

Helmut Locher

Yllri V. Nesterenko

LUNCH

Martin N. Huxley

Andrew Pollington

Ulrike M. A. Vorhauer

DINNER

Beyond Pair Correlation

On an Extremal Problem Related to Gaussian Sums

Primes in Short Segments of Arithmetic ProJ{rcssions

A Summation Proccss

On the Zeros of the Hardy Z-function and its Derivat.ives

On the Number of Good Approximations of Algebraic
Numbers by Aigebr;\ic Numbers of Dounded Degree

On an Equation of ( oormaghtigh

Integer Points Close to Curves and Exponential Sums

Haar \Vavelets and Irregularities of Distribution .­

Three Two-Dimensional Weyl Steps in the Circle Prohlen.
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Abstracts 0/ the Lectures

A Summation Process
Regis de la Breteche, University 0/ Orsay

\Ve define P-convergence and P-regularity, a nation which was introduced by Fouvry and
Tenenbaum in 1991. Let P(n) =maxpln p (n > 1), P(I) = I . \Ve say that aseries L an

is P -eonvergent if L On converges for each y ;:: 2 and if n~ I

P(n):5Y

yl~~ ( L an) = o.
P(n)$y

\Ve say timt aseries f. an is P-regular if it is P-convergent and if 0' = f. an .
n=l n=l

For multiplicative functions f with If I ~ I we study the series

f fln) (logn)k el:n)
n=l

wit.h respcct to P-regularity.

On Artin's Conjecture, Local Gase
.!örg Brüdenl, University 0/ Stuttgart

Für a fixed k;:: 3,. consider the statement: Any system of equations

N

L aij x~ = 0 (aij E Z, 1 ::; j ::; R)
i=1

admits a non-trivial solution Xi E Z whenever N ~ No(k, R). According to a well-known
conjecture of Artin, this should be true with

.,. .:..:

~- r; .

(1) No = Rk2 + 1,

but this has been confirmed only when R = 1 or when R =2 and k is odd (by Davenport
and Lewis, middle 60ies)., 1t is known that

No = 3R2k log(3Rk) (k oddL No =48Rk3 log(3Rk2
) (else)

J

I

are admissible choices. For odd k, this is very satisfactory in the k-aspect, but for even k,
thc k-aspect. is k3 log k which falls considerably short of the expected k 2 in (1). In joint
work with H. Godinko (Brasilia) we showed

THEOREM 1. Let R ;:: 3. Then No = R 3k 2 is admissible unless R = 3, k = 2T in which
casc onc may take No = 36 k2 ,

Rcfinements are possible for small R or k. We discuss in detail pairs (R = 2). Here
Davcnport and Lewis showed that No = 7k 3 is enough when k is even.

5
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THEOREM 2.
(i) I/k = 2· ST 01' k = pT(p - 1) with p > 2 prime, then No(k,2) = 6k{k - 1) is

admissible.

(ii ) 1/ k is not 0/ the form conside1'ed in (i) but k = 2T ko with ko E {I, 3, S}, thcn
No(k,2) = 16k2kö1 is admissible.

(i-ii) Fm' all otller k, tlle choice NoCk,2) = 3k(k - 1) ü admissiblc.

Lattice Point Methods and Divisor Sum Problems
StelJhan Daniel, Univc1'sity 0/ Stuttgm·t

Für some residue da.<:;s a (mod q), q E N , we definc

N I N2E(M, li, 'I, a) = # {(Xl, X2) E Z2: A1i < Xi $. A1i +Ni , Xl == aX2(mud q)} -
q

Let f denote an irreducible polynomial with integer coefficients. \Ve show that for Q 2: 1

\Ve deduce

#{ (XI, X2, (L, (1): q $. Q, Xl =: ax2(mod q), /(a) :;:: O(mod q), 0i < ~ ~ O:i + IN}

'" 1/11/2 CQ1.

holds für süme constant c = c(/). By the same method wc can show the meau valve
evaluation

L d(lg(xt, X2)1) = cN2logN + O(N2JlogN)
xI,x2$N

and similar cstimates, where 9 is an irreducible binary form of degree 4.

Almost Prime Numbers with Missing Digits
Cecile Dartyge, Unive1'sity 0/ Nancy 1

Joint wo1'k with Christian Mauduit, University oi Marseille 11

Let rEN, T ~ 3,1:> = {O,d2 , ... ,dtl C {O, ... ,r-l} with 2 ~ t ~ 1'-1 and so t.hat
gcrl(d2 , •.. ,dt ) = 1. Define 2IJ:D = {n E N: n = L;=oEjrj with Ej" E!)}. Thcn; there
exists k = k(r,1:» such that 2211) contains infinitely many integers with at most k prime
factors.
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A Step beyond Kneser's Addition Theorem
Jean-Marc Deshouillers, University 01 Bordeaux

Joint work with Gregory A. Freiman, Tel Aviv

A general philosophy is that if yOll consider in a monoid a set A such that A· A = {a· b:
a E A~ b E A} is small compared with A ~ in the sense of cardinality~ measure or density~

thell A has a special structure.

THEOREM. Let A E Z/nZ which is not included in a coset moduln a proper subgroup 01
Z/nZ with lAI ~ 10-9n and

(1) IA + AI ~ 2.04IAI·

Thcn therc exists a proper subgroup 11. 01 Z/nZ such that

( i) c.ithr.r A i.Ci includcd in an arithmetic progression 01 e cosets modulo 11. with

(2)

07'

(ii) A ü i71cluderl in three cosets modulo 11. and (2) holds with e- 1 replaced by 3.

COMMENTS

• This is t.hc first result of this type in Z /nZ for general n with a constant larger than
2 in (1),

• \Vhcn the constant in (1) is less than 2~ then Kneser's Theorem permits tu study the
structure of A.

• A similar result with a larger eonstant in (l) has been obtained by Freiman in the
early 60's when n is prime.

• The values of the constants are by no mean best possible.

• The general case of the Theorem is (i) ~ which means that A belangs to aJ~ :trithmetic
progression of eosets modulo 1-1. which is well-filled by A.

• As soon as the constant in (1) is at least 2, there is no way-to dispense with (ii). Indeed,
if A consist. of three eosets moduln 11. in general position, we have IA + AI = 21AI .

• Thc proof combines analytic and combinatorial ideas.

Primes and Products
Peter D. T. A. Elliott, University 01 Boulder, Colorado

THEOREM 1. There are infinitely many representations

2 = PI + 1 . P2 + 1 . q~ + 5
qr + 5 q~ + 5 P3 + 1

with pi, qj prime.
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T H EOREM 2. There are infinitely many representations

2 _ PI + 1 P2 + 1 q~ + 5
- q~ + 5 . q~ + 5 . P3 + 1

with Pi, fJJ TJrime.

Let f be Cl polynomial with integer coefficients anel leading coefficient positive. CaU a
prime e singular (w.r. to f) if for some 1n E Z, the congrllence rnf(n) == l(modf.) has
f. - 1. reduced residue dass solutions n (mod e). Then e ~ 1 + lieg f. Let ß he the
product uf thc primes singular w.r. to f. There are classes Ttj (mod ß), 1 :s; j :$ J, such
t.hat 1rL == 1Lj (mod ß) for same j iff no congruence 1nf(n) == 1 (modi) has f. - 1 rcduced
solutions for any prime e.
Define

d(E:)

for sets of rational integers E:.

Jx -I J

l~~~f( ~) ~ ~
;=1 n$:r..nEE"

n=rlj(mod 0)

THEOREM 3. The density d 0/ the set 01 illtcgers reTJreSelltable in thc fonll (11+ I)J('1)-1

with p, fJ ]Jrime, is at least 1/4.

On the Norm Form Inequality IF(~)I ~ M
Jan-Hendrik Evertse, University 0/ Leiden

A major tool in estimating the number of solutions is the quantitative Subspace Theorem.
Thc first such result was obtained by W. M. Schmidt in 1989. Thanks to many improve­
ments, duc to the replacement of Roth's Lemma by Faltings' Product Theorem anel thc
replacement of the adelic version of !\.1inkowski's Theorem on successive minima of convex
bodies by McFeat and Bombieri-Vaaler by the absolute Minkowski Theorem of R.oy and
Thunder, Schlickewei and Evertse succeeded in deriving an absolute quantitative Subspace
Theorem, a special case of which is as follows:

THEOREM 1. Let LI (~), ... ,Ln(~) be linearly independent linear /orms in Xl, ... ,Xn

with coefficients in a number field 01 degree D, and with absolute Weil heights H(Ld ~ H.
Suppose that ILi I := max IcoefJ· 0/ Li I = 1. Let 0 < fJ < 1, and let Z be the integral
closure 01 Z in ij. Then the set 0/ solutions of

(1) in :f. E Zn

with H(~) ~ (2nH)2nD/6 is-.:~ntainedin the union 0/ at most 4(n+6)28-2n-41og4 D log (lOgj' '2)
proper linear subspaces 01 Q defined over Q.

Now let F(;~J = cN(o}xI + ... + Qnxn) E Z(Xl"" ,xn ] be a norm form of degrce 1'. In
1971 Schmidt showed that if F is non-degenerate then for every M ~ I, thc Ilumher
ZF(M) of solutions of IF(~)I :$ M in ~ E zn is finite. Using his quantitative .subspar.e
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Theorem, he gave in 1989 an upper bound for the number of soJutions ZF(I) of 'F{~)I = 1
depending only on r = deg F and n. He conjectured that ZF(A1) ::; c(n, r)Mnlr. I proved
the following weaker result, using Theorem l:

THEOREM 2. Suppose F is non-degenerate. Then

Non- Vanishing 0/ L-Functions and the- Irreducibility 0/
Hecke Polynomials

David W. Fanner, Bucknell University, Lewisburg

Kahnen and Zagier asserted that the L-functions assaciated to Hecke eigenfarms f E Sie (1)
do not vanish at the criticaJ point if the Hecke algebra of Sk(l) is simple (i.e. at least
one Hecke generator Tn has an irreducible /Q characteristic polynomiaJ). An outline of a
praof of that result was described. Several results and calculations on the irreducibility and
fact.orization (mod e) of these polynomials were described.

Mumford's Degree of Contact and Diophantine Approximations
Roberto G. Ferretti, Inst. des Hautes Etudes Scientifiques, Bures-sur- Yvette

Givcn linear forms La, ... ,Ln with coefficients in a number field L. Then, under same
more conditions, the Schmidt Subspace Theorem implies that the solutions ± E IPn(K) for
a suhfield K C L of the inequalities

I e in finitely many subspaces of IPn if

(1)
n

LTi > n+I.
i:::O

Ir we consider solutions ;l;. E X (K) for same algebraic subvariety X c IP'n , can we weaken
the condition (I)? The answer is positive in several cases. We consider some examples given
by ruled surfaces, Weierstrass fibrations and blow-ups.
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Exponential Sums and Divisibility oJ Class Numbers
Etienne Fouvry, University of Orsay

Ir ß is a fundamental discriminant t we denote by h(ß) the dass number of Q(v''K) . We
sketched the proofs of

THEOREM 1 (joint with S. Daniel). There erist infinitely many positive fundamental dis­
criminants such that ß + 4 is also a fundamental discriminant and such tllat h(~) and
h(6 + 4) lire both odd.

THEOREM 2 (joint with Belabas). There exist infinitely many primes 1) =: 1(mod 4) such
that 3 does not divide h(P).

THEOREM 3. There exist infinitely many positive fundamental discriminants such tJUlt 6+4
is also a fundamental discriminant, h(Ä) is odd and such that 3 does not dividc h(ß + 4) .

Some tools which we use are the Gauß criterion for the 2-rank of qlladratic fields, Davenport
-Heilbronn results on the average behavior of the 3-rank of quaclratir. fields, the average
behavior of primes in arithmetic progressions (Bombieri-Friedlander-Iwaniec result) ami
how to hound the exponential sums

~ e (ah. + bh2 ;Clt3 +dh4 )

L\(a,b,c,d)=O(mod p)

and
L e ( alt} + bh, ; eh3 + dh4 )

A(a,b,c,d)+4:=O(mod p)

with 6(a, b, c, d) = b2c2 + 18abcd - 27a2 rJ? -. 4b3d - 4c3a b: using either the algebraic
properties of the function ß cr a result of Katz-Laumon abollt exponential sums.

Primes in Short Segments oJ Arithmetic Progressions
Daniel A. Goldston, San Jose State University

Joint work with C. Y. Yildirim.

Let

where

I(x,h,q)

',p(x,q,a)

q

L
a=l

(a,q)=l

{'lx h :l

J
x

(1/;(y + htq,a) - t/J(y,q,a) - tp(q) ) dy,

A(n).

                                   
                                                                                                       ©



11

Assuming a Twin Prime Conjecture we prove

xq
I(x,h,q) ..... hxlog("h) for I<!!:. <xl/2-~.

- q -

Ir we replace thc Twin Prime Conjecture with the Generalized Riemann Hypothesis, then

we can still prove

I(x,h,q)

L I{X)l,q)
q$.Q

qx
hx log (h)

Qx
Qhx log (T)

for aJmost aB q with h3/4+~ ~ q ~ hl-~i

for 1 < !!:. « x 1/3 - e •
- q

These results have applications tQ pair correlation of L-functions.

The Variance 0/ Small Powers of Primitive Roots
Steve G. Gonek, University 01 Rochester

For .cl a primitive root (mod p) ,let

N = {l"(mod p): 1 ~ v ~ N}

and let f(rn, H} be the number of elements of N that are also in the interval (m, m + H] ,
where 1 ~ H, N :::; p and m = 1, ... ,p. H. Montgomery established an asymptotic formula
for thc variance of fern, H) when p 5/ 7 + E ~ N :5 pl-e and asked to what extent the range
of N would he increased if one were to average over all thc primitive roots (mad p). We
show that in this case we can take p2/3+e' ~ N ~ pl-e and prove an analogaus result ~hen
the primitive root (mod p) is fixed, but we average aver primes. In this case we can take
IJI9/27+e :::; N ~ pl-e .

Solutions 0/ Diagonal Cubic Equations
Roger Heath-Brown, Magdalen College, Oxlord

TH EOREM 1. Let PI =: P'l == P3 == P4 == P5 = 8 (mod 9) be primes. Then, under the
5

General Riemann Hypothesis E PiX~ =0 has a non-zero integral solution.
i=1

TIIEOREM 2. Let PI == P2 == P3 == P4 =: 2 (mod 3) be primes. Then, assuming the Parity
4

Conjecture for elliptic curves, L PiX~ = 0 has a non-zero integral solution.
i=1
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In Theorem 1 we asSUlne the General Riemann Hypothesis for L-functions with Größencha­
racters over Q( l+p ). In Theorem 2 tbe Parity Conjective is needed for curves x 3 +y3 =
A only. The key idea is as follows: Suppose the 3-Selmer rank of x 3 + y3 = A is 1 anel that
the arithmetic rank is also 1, either because in Theorem 2 we assurne tbc Parity Conjecture,
01' because in Theorem 1 we arrange tbe analytic rank to be 1. Tben any ox3 +0- 1y3 = A ,
which ~s everywhere locally solvable, over Q( l+p ), has rational points thcre. This
enables us to get points on PIX3 + P2Y3 = P for suitable primes p. In Theorem 2 wc solve
two equations Plx3 + P2Y3 = P = P3u3 + P4v3 in this way. For Theorem 1 we consider all
fifteen possible pairs of equations. By showing (under GRH) that thc average analytic rank
is at. most 2, we can find one pair where both equations correspond to analytic rank 1, which
suffices.

Partitions into Primes
Adolf J. Hildebrand, University of Illinois, Urbana

Thc ordiuary partition function p(n} denotes thc number of representations of 7L a.~ a

sum of non-increasing positive integers and has a generating fuuction L~=o ]J(n)x H =
n~=l (1 - x H )-l . \Ve consider the functiOIl PA(n) defined by

00 00

2:: PA(n)xn = 11 (1 - xn)-A(u) ,

n=O n=1

where A(n) is the von Mangoldt function. This function represents a weighted count of
thc Ilumber of partitions into prime powers. Since A(n) is 1 on average, one may cxpect.
that tlH~ behavior of PA (n) is similar to that of the ordinary partition function p(n) . This
expectation is confirmed, to some extent, by the following res It of B. Richmond (1975):
Let Ö(n) = logpA(n) - logp(n) . Then

(1) ß(n) « [ii exp (_(logn)4/7-e)

Moreover, under the Riemann Hypothesis, (1) cau be sharpened to

(2) Ö(n) « n 1/
4

.

For comparison, logp(n) has order of magnitude Vii, Recently, my student Vi-Fan Yang
improved these results as folIows:

THEOREM.

( i ) The unconditional estimate (1) can be sharpened to

ß(n) « .jii ex (-c log n )
p (log lognF/3(loglog logn)l/3

(ii) The estimate (2) is best-possible in the sense that ß(71) = O±(n1/4).

(iii) If (2) holds in the weaker form ö(n) = Oe(n 1
/

4
) then the Riemann Hypothesis is

tnLe. Thus (2) is equivalent to the Riemann Hypothesis.
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Integer Points Glose to Curves and Exponential Sums
Martin N. Huxley, University 0/ CardifJ

The methods for bounding an expon~ntial sum

(1)

and estimating R, the number of solutions of

(2)

are compared with analogues for rational points

(3)

. or projective rational points

(4)

R « 61/ 3 AI + M(9-2o)/10,

(Res> 1).

Ncw results include

logN 3
where 0: = log M' 2 ~ 0: < 2 ,

in (2) under standard conditions and abound for (3). There are applications to means of
differcIlccs between square-free numhers

L (SH1 - sd" ~ ß(17) N
Si+l'5: N

anrI to the exponential sums given in (1).

The Mellin Trans/orm. and the Riemann Zeta-Function
Aleksandar lvii, University 0/ Belgrade

Z2(S) = fOI«~+iX)I'x-8dx

By using analytic properties of Z2(S) several results have been obtained. These include
two-sided omega results for JoT E2(t)dt and L(T) , where E 2(T) is the error term in the

asymptotic formula for JoT I«! + it)14 dt and L(T) is the error term in tbe asymptotic

formula for JOT I'(~ + it)1
4
e- t

/
Tdt. It is proved that JoT Ei(t)dt »T2, which comple­

ments the estimate JOT Ei(t)dt « T 2 (log T)C I obtained jointly with Y. Motohashi in 1994.
Mean square estimates for Z2(S) (~< Re (s) < I) and possibiIities to use Z2(S) to hound

JoT Ic(! + it)1
6
dt and JoT I«t + it)1

8
dt are discussed. The latter is joint work with M.

.lutila and Y. Motohashi.
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The Mellin Trans/orm 0/ the Fourth Power 0/ Riemann's Zeta­
Function

Matti Jutila, University 01 Turku

The functiun

Z2(S):= {"I((~+iX)14X-SdX

has been introduced and studied by Y. 1\1otohashi, who showed its meromorphic continuation
and spectral decomposition. In the half-plane Re s > -1/2, this function has poles at
1, ~ ± iK.j and [!/2, where "-j = JAj -1/4 with >'oj standing for eigcnvalllcs of the
hyperbolic Laplacian and [! summing over non-trivial zeros of thc Riemanll zet.a-function.
It is interesting that

(,(s) = L d(n)d(n+/)n- S

n=1

(I # 0),

related to t.he additive divisor problem, has the same poles. l'vloreover, thc latter fllnction
is of polYllomial growth on vertical lines, if neighborhoods -of the poles are cxdllded. By
analogy, one would exp~ct the same to be trlle for Z2(S) a.'i weIl, and a proof of this is in
fact outlined in the lecture. I\10re precisely,

Z2(U + iv) « (v + 1)(7-611)/4 + e

for 11 > -1/2, v ~ o. This should be compared with

(J(u + iv) « (v + 1)1- u+e ,

which may be viewed to represent the conjectured order of Z2(S) , again by thc same analogy.

The basic idea of the proof of the estimate of Z2 (s) is to replac:e 1«( t + ix) 14 in its
definition by a loeal weighted average, for which a spectral decornpositioll due to I\'lotoha.'1hi
is available. Then a correction term ha.." to be added and in the resulting decompositiotl of
Z2(S) into a surn of two functions , hoth of them can be shown to he of polynomial order.
This mcthod works also, at least to some extent, for automorphic L-functiolls.

On the Structure 0/ the Selberg Class
Jerzy Kaczorowski, University 01 Poznan

This is areport on a work in progress. Let Sd denote the set of L-functions from the
Selberg dass S having degree d. Functions from Set are fully charaeterized for d ~ 1
only (Bochner, Richert, Conrey-Ghosh, Kaczorowski-Perelli). The basic conjecture in this
context is the so called Degree Conjecture saying that Sd == 0 unless dEZ. \Ve prove the
following

THEOREM (joint with A. Perelli). There are no F E Set with poles if 1 < d < 2 .

The proof depends on the study of the suitable twist of F(s) = Ln Un1l- S E Sd :

00

P*(s) == L ann- S exp (- 21TiAFn1/(d-l)) ,

n=1
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where .4.F = (d - 1) q;!ed
-

1
) and qF is the modulus of F.

Sums 01 Fourth Powers and Related Topics
Koichi Kawada, [wate University, Morioka

Joint work with Trevor D. Wooley, University 0/ Michigan

\Ve first prove a good lower bound for N(X), the number of natural numbers --: X , which
are the surn of 5 fourth powers. Instead of 5 genuine fourth powers , let ren) be the
number of representations of n in the form n = 2111

2 + u 4 + v4
, where u, v E N and m is

an integer written as m = x 2 + xy + y2 with X, yEN. Then, by a well-known argument,
one can casHy show that #{ n $ X: ren) > O} » ..yl- E. On the other hand, ren) ,> 0
mcans that n is a surn of 5 fourth powers, since """:-",

(1)

Therefore we have N(X»> x 1- E
• Using Tenenbaum's method to estimateL: r(n)2 I we

{urther obtain nS:I:

THEOREM 1. IV{X»> X(log X)-l- E fOT any fixed c> O.

Thc identity (1) is attributed to F. Roth in Dickson's book "History of the Theory of Num­
bers". \Ve can apply this idea to various additive problems involving fourth powers. On
occasion, however, we roust admit that same residue classes modulo 16 are definitely out of
grasp of our method, because the three integers x, y and x + y cannot be odd simultane­
ously. More precisely, one sees that x4 + y4 + (x + y)4 == 0 or 2 (mod 16) , while ~ums of 3
genuine fourth powers represent 0, I, 2 and 3 (mod 16). Anyway, some of our results are:

THEOREM 2. When 4Yk J every sufficiently large integer is the sum 01 10 lourth powers
and a k -th power. When 41 k, every sufficiently large integer == r(mod 16) with 1 ::; r $ 9
is the SU1n 01 10 lourth powers and a k -th power.

THEOREM 3. Every sufficiently largeinteger == r (mod 16) with 1 ~ r ::; 10 is the sum
01 11 lourth powers.

On the Zeros 01 the Hardy Z-function and its Derivatives
Alla Lavrik-Männlin, ETH Zürich

Hardy's Z -function is a real-valued function, whose zeros coincide with those of the llie­
mann zeta-function on the critical line. We discuss the problem of mutual localization of
zeros of Z(t) and its derivatives, as weIl as its connection with a problem of gaps between
consecutive zeros of the Riemann zeta-function on the criticalline.
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On the Number of Good Approximations 0/ Algebraic Numbers
by Algebraic Numbers of Bounded Degree

Helmut Locher, University 01 Marburg

Let 0: E ij, cl E N, 6 > O. Consider thc inequality

ß E ij, <leg!3:S d.

An explicit lower bound in terms of dego, h(o:) and 6 is given, where h(·) denotcs thc
absolute multiplieative height. Also a p-adic version of this result wa."i pn~sentcd.

Arithmetical Results on Certain Functional Equations
Lutz G. Lucht, University 01 Clausthal

Tbc classical system of functional equatiolls

with s E <C is extcnded to

L An(d) F(dx)
d=l

(n E N)

(n E N)

with sequcIlces An: N --t C. \Ve determine the periodic integrable solutians F: rR./'il --t <C
and show tImt, under suitable assumptions eonecrning thc sequence (Au (l)) , apcriodic
eontinuous solutions F: rR.+ --t C can only oeeur in the classical ease. This salve:; an open
problem in the theory of functional equations via arithmetical mcthods.

The Distribution 0/ the Values 01 the Riemann Zeta-Function
in Short Intervals of the Critical Line

Helmut Maier, University 01 Ulm

We study thc behavior of «! +iT) for T E [t, t+ (logt)-O], 0 < 0: < 1, and show that
log « ~ + it) is normally distributed with expectations depending on t for most t-values.
For the proof wc use an approximation formula of Sclberg to show that

log«(! + it) -- L p-! - it

p$:J:

for most t-values and then replace p-it by independent random variables X p .
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Joint work with Emmanuel Kowalski, Rutgers University

Non- Vanishing 0/ Critical Values 0/ L-Functions
Philippe Michel, University Paris ·Sud, Orsay

/or q ~ +00.L ~~1 L(/, s) ~ (c + 0(1») IS~(q)1
IES~(q}

THEOREM 1. There is an absolute constant c> 0 such that

Let q be a prime, and let S~(q) be the set of primitive cusp forms over ro(q). \Ve study
the average order of vanishing of L(/, s) for I E S~(q) at the critical point s = 1. This
can be interpret.ed in terms of the rank of Jo(q) = Jac Xo(q) by the Birch, Swinnerton­
Dyer Conjecture (BSD). \Ve prove

For thc first time such abound is given un"conditionaHy, without GRH like in former_ ~orks
of ßrllnncr or Ram l\1urty. Moreover, one can take c < 10. On the other hand w~' also
prove non-vanishing results:

THEOREM 2. We have

(1) I{I E S~(q): ~~1 L(/,8) =o}! ;:: (i +0(1») ~IS~(q",

(2) l{fES~(q): ~~1L(f,8)=I}I;:: (*+o(l»~IS~(q)l.

There are similar results of Balasubramanian and Murty for the case of Dirichlet L-func­
t.ions exccpt that much better constants are obtained by our method. By works of Grass,
Gross-Zagier, Kolyvagin-Logachev, these imply an arithmetic statement about the existence
of large quotients of Jo{q) satisfying the BSn Conjecture.
In particlllar (1) provides a lower bound for the dimension of the winding quotient of Merel
.Ir which has rank 0, satisfies BSD and dim Je ;:: (k + 0(1)) dim Jo(q). By Gross-Zagier,
(2) provides the lower bound

rank Jo(q) ;:: (H- + 0(1» dirn Jo(q).

These results havc also applications to forms of weight 3/2. Our methods are based on
f~st.imatcs for modified mean squares

L IL(I,s) A1(/,8)1
2

,

I

where /vf(ft s) = L A/(rn) "'m m- s
,

m$.M

and 8 is either 1 or 1 + 1/logq + it. By the estimates in Theore~ 1, we prove an analogue
of an old density theorem of SeIberg to derive our upper bound. These methods generalize
to other families of automorphic L-functions.
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Beyond Pair Correlation
Hugh L. Montgomery, University 0/ Michigan

Assuming thc Riemann Hypothesis, it is known that the Pair Correlation Conjecture is
equivalent to the assertion that

für x~ < h < Xl - e. Since the Cramer model would predict log x on the right-hand side in
place of log(x/h), the distribution of 1/J(x + h) - 'lj;(x) - h is unclear. In joint work with
Soundararajan, we give reasons to believe that this quantity is normally distributed witJ
mean 0 anel variance log(x / h). Equivalently, in terms of zeros, if xe < T < Xl - ~, thcn

L x h

O<1'<T

is distributcd, for X ::; X ::5 2,X, like a surn of N(T) unimodular independent random
variables.

The Complex Binary Additive Divisor Problem and the Spectral
Theory of the Three-Dimensional Hyperbolic Upper Half-Space

Yoichi Motohashi, University 0/ Tokyo

My original motivation was to find something lying inbetween the fourth power and the
cighth power moments of the Riemann zeta-function. One of many possibilit.ies is thc
fourth power moment of the Dedekind zeta-function of a given imaginary quadratic field.
Naturally one may consider the same problem for any real quadratic number fiehl; such
a theory is now under construction. The problem is essentially equivalent to the complex
binary additive divisor problem:

(I f:. 0).

Here n runs over integers of a given imaginary quadratic field; a 0' is the sum-of-powers­
of-divisors function of the field, and w is a smooth weight. The use of Rarnanujan's Fourier
expansion of a. leads us to an expression that is a surn of Kloosterman sums

S(m,n;i) =
h(mod t)
(h,t)=l

hh-=l(mod l)

where as usual e(x) =e21fix
, if the situation is simplified with the assumption that thc field

is Q( J -1) , though the generic case is very similar.
Then, following the example in the case of a rational number field due to Kuznetsov, we are
led to the spectral theory of the upper half-space. \Ve have already proved the corresponding
trace formula. The formula contains an integral transform involvi'lg a p··oduct. of two Bessel
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fUJlctions. Now, the problem has essentially been reduced to the "inversion" of this integral
transform. Here, still a lot of work has to be done.

On an Equation 0/ Goormaghtigh
Yuri V. Nesterenko, University 0/ Moscow

Joint work wit1& T. N. Shorey, Tata Institute, India

Thc equation of Goormaghtigh asks for integers that can be weitten with all digits 1 with
respect to two distinct bases. It has been conjectured that this problem has only finitely
many solutions. For fixed positive integers m > 2 and n > 2 iü the equation

(1)
x m -1

x-I

yn -1

y-I

H.Davcnport, D. J. Lewis and A. Schinzel proved in 1961 that indeed only finitely many
soilltions in integers x > 1 and y > I with x # y exist. This result is extended in the
following quantitative sense:

THEOREM 1. -Let 7n - I = dr, n - 1 = ds J where d, r I s are positive integers, d ~ 2,
gcd (T, s) = 1. Thcn (1) with x < y implies that

Dr = d m I1 pord per!) .

pld

and

(
gDr )x < max 9 I -2- + I I

d+1
d2g

whcrc

The theorem yields all solutions of (1) for small values of d, r anel s. For example

THEOREM 2. Equation (1) with x < y, m == 1 (mod 2) and n = 3 implies that

m ~ 25 unless (x, y, Jn) = (2,5,5) or (2,90,13).

Linear Independence in the Selberg Class
Alberto Perelli, University 0/ Genova

Motivated by the Countability Problem for the Selberg dass S, Le. the dass of Dirichlet
series admitting meromorphic continuation, functional equation and Euler product, we prove
t.hc following theorem, which is essentially a result on multiplicative functions.

THEOREM 1 (joint with J. Kaczorowski). Distinct functions in S are linearly independent
over C.
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Calling two functions f, 9 equivalent if f(pm) = g(pn1) for all Tn and all but finitely many
primes p, we also have

THEOREM 2 (joint with J. Kaczorowski). Pairwise non-equivalent multiplicative functions
are line(lrly independent over C.

In fact, Theorem 1 follows immediately from Theorem 2 by a. result uf l'vlurty-Murty, as­
serting that coefficients of ftinctions in S are non-equivalent.

The Almost Periodicity 0/ the Normalized Sequence
0/ Class Numbers

Manfred Peter, University 0/ Freiburg

Let h(d) be the number of equivalence classes of binary primitive quadratic forms of discrim­
inant d. It is shown tImt the sequence d I--t h( _d)d- 1/ 2 , cl E N, == 0, l(mod 4), uo square,
is almost pcriodic. This can be generalized to sequences d ~ L(s, Xet) with Re s > 1/2
and Xd the J acobi cllaracter associated to d. Other possible generalizations are relatec-l to
Hurwitz' cIa'is numbers and the numbers of representations of natural numbers by a positive
integral ternary quadratic form. As a consequence the existcnce of limit distributions 31ld

mean values of these sequences over certain subsets of N can be shuwn.

Some Remarks on Methods 0/ Diophantine Approximation
Patrice Philippon, Paris

Hoping for a shake-hand between methods from Diophantine Approximation Theory alld
Transcendance Theory, we show how zero estimates from Transcendence Theory imply
Roth's type lemmas (including the Product Theorem), we also recall how t.hc Subspace
Theorem can deal with forms of higher degrees and finally we "rormulate some strong con­
ject.ure on lower bounds for linear forms in logarithms of rational numbers with rational
coefficients, inspired by the Subspace Theorem and which would imply, for cxample, the
abc-Conjecture.

Haar Wavelets and Irregularities 0/ Distribution
A ndrew Pollington, Brigham Young University, Provo

\Ve study the discrepancy function of N points in the unit d-dimensional cube and obtaiIl
lower bounds for the discrepancy with respect to rectangles with sides parallel to the coordi­
nate axes. The method adopted is to use the Haar system, where the fundamental building
blocks are squares. Using this method we obtain lower bounds for IIDlll .
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Heights and Siegel's Lemma
Damien Roy, University 0/ Ottawa

E. Bombieri and J. Vaaler showed that! if V is a subspace of ijn of dimension m defined
over a number field K, then there is a basis h~l"" !~m} of V contained in K n which
satisfies

H(~.)·· ·H(~rn) ~ mm/2IDisc(K)Ii1H(V) ,

where H denotes the absolute Weil's height on ijn, d the degree of K and Disc(K) its
discriminallt. In a joint \Vork with J. Thunder, we prove that a dependence on the field ](
is needed if looking for a basis of V in Kn but not for a basis of V in ijn. In the latter
case, we prove that, for any constant c > c(m)m, where c(m) = J2m-l, there exists a
basis {;fl!'" '~m} of V with

\Ve r.all this an absolute Siegel 's Lemma. Let ]( be a number field and let K Adenote
its ring of adeles. To each element A of GLn(](A), we associate a height function .HA

Oll iju. \Vhen A is the identity, this is the usual absolute height on ijn denoted. H
ahovc. \Ve also define HA(V) for a sllbspace V of ijn and HA{P) for a polynomial
p E ij[X1 , ... ,Xn ) ! and we indicate properties of these. The main one is that, given an
injective linear map <p: ijlU -+ ijn defined over K and an element A of GLn(KAL there
exists an element B of GLm{KA ) such that HA(<p(V)) = HB(V) for any sllbspace V
of ijm. These twisted heights introduced by J. Thunder are an essential ingredient in the
prüof of our absolute Siegel's Lemma.

Additive Completion
lrm'e Z. Ruzsa, Math. Inst. 0/ the Hungarian Academy 0/ Sciences, Budapest

\V~ say that two sets A, ß are additive complements if all except finitely many positive
intcgcrs are of the form a + b, a E A, b E ß. We say that a complement ß of A is
economical, if A{x)B(x) « x, with A(x), B(x) denoting the respective counting functions,
and it is exact, if A(x) B{x)/x -t 1 .
By a result of Narkiewicz for a pair of exact. complements we have A(2x)jA(x) -t 1 and
COJasequently A(x) = O(x~) , oe the analogous statements for ß. Hence in order to have an
exact complement, A must be either very thin or very dense.
\Ve fOllnd that very thin sets automatically have an exact complement. If A = {al, a2, ... } ,

such that an +l/(nan ) -+ 00 , then A has an exact complement. We show with a modifica­
tiOl1 of the method that the same is true for A = {2n : n E N} .
We also prove that the prirnes da not have an exact complement. Every completion ß of
thc set of primes must satisfy lim inf B(x)/ log x ~ e"Y, where 'Y denotes the Euler constant.
We conjecture that it does not even have an economic complement.
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Rational Points on a Class 01 Superelliptic Curves
Jiirgen W. Sander, University 01 Hannover

A famaus Diophantine equation is given by

(1) yk = (x + 1) (x + 2) ... (x + lTl) ,

For k ~ 2 and 1'n ~ 2, all integer solutions of (1) are x = -j (j = 1,." ,ln), y = 0,
by aremarkable result of Erdös and Selfridge in 1975. From the vicwpoint of Algebraic
GeOInetry, cquation (1) represents a plane curve for fixed k and 7n. Thereforc it is natural
to ask for rational solutions. For k ~ 2, 1n ~ 2 and k + 1H > 6 , we kllow frmn Faltings'
prüof of 1\1ordeIl's Conjecture that (1) has at most finitely many rational solutions. In this
talk w~ shall use \Viles' recent method and results, which led to thc cclebrated proof of
Fermat's Last Theorem, in order to deduce the following

THEOREM. For k ~ 2 and 2 ~ 1n ~ 4, all rational points (x; y) on the stLIJe1'elliptic C1L7'Ve

(1) are the l1'iviaI ones with x = -j (j = 1, ... ,171), Y =0, excc[Jt for the case k = 111. = 2,
where 1JJC huve cxactly those satisfying

2ci - c~
x = -2--2- ,

c2 - Cl

with COIJT'irne inte.qers Cl f:. ±C2 •

The Subspace Theorem and Geometry f..)f Numbers
Hans Peter Schlickewei, University Marb1l.ry

Joint work with Jan-Hendrik Euertse, Leiden

Thc dassical Subspace Theorem of \V. M. Schmidt (1972) says the following:

Let LI,'" , Ln be linearly independent linear forms in Xl,'" ,~Yn with algebraic cocffi­
cients. Suppose e5 > O. Then there exist finitely many proper linear subspaces Tl1 ••• ,Tt

of Qn such that the set of solutions ?;. E zn of the inequality ILIÜf)'" Lu(~)1 < I~I-a is
contained in the union Tl U ... U Tt . Here we give a quantitative, parametrie version of this
theorem. A very special version of our result is the following:

Let /( be a number field of degree d. Write 9Jl(.K) for the set of pIaces of !( . Supposc
that for each v E 9J1(1<) we are given linear1y independent linear fonns Li 11

), ••• ,L~lfl) with

coefficients in ](. Assume that we have L~V) = Xl,." , L~V) =X n for almost all v E 9Jl(J() .

Let f = (Civ; v E 9J1(I(), i == 1, ... , n) be a tuple of real Ilurubel's with

for almost all v E 9J1 (/{) .

n

L L Civ = 0,
vE!lJl(K) 1=1

Cl v = ... = Cntl = 0

L mF ctv $ 1
vE~(I\}

For v E 9J1 (I\") write 11 IIv for the absolute valuc corresponding to v, normalized such
that the product formula holds. For a finite extension F of !( anel fur 1lJ E 9J1(F) lyillg
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above v E !Di(K} write;

L~w) = L~v), d(w, v} = [Fw ; Kvl/[F : I<], Ciw = d(w/v} Civ'

Finally, for v E 9Jt(K) put s{v) = 1 if v I00 and s(v) = 0 if v is finite. Now for given
Q > 1 consider the inequalities

w E 9Jl(F), v E 9Jl(K),

wlv, i=l""ln,

o < d < ~ and where ß w = 11 det(L~w), ... , L~w}) 1I w' Let C be defined by

(2)

(1)

-e
THEOREM. Suppose that we haue R systems 0/ /orms {L~l'), ... ,L~o)} such that /or any

v E 9Jl (K) the system {L~v), ... ,L~v)} is a permutation 0/ {L~e), ,L~le)} /or a suztable

() with 1 ::; (l ~ R. Then there e~st proper linear subspaces Tl, ,Tt 0/ ij n I defined
ouer !(,

t ~ 22 (n+4)2 d- n - 4 Iog4R loglog4R

with the /ollowing properly: For euery finite extension F 0/ 1< and /or every Q. with
Q > C und C as in (2) fhe set 0/ solutions ~ E Fn 0/ (1) is containecl in the union

1"1 U ... UTt .

The theorem already has led to applications estimating the number of solutions of Diophan­
t.ine equations. It is a main ingredient in W. 1\.1. Schmidt's prüof that the lllUltiplicity of a
non-degenerate linear recurrence sequence of order k is bounded in terms of k only.
At a crucial point in our proof we use arecent result by R.oy and Thundcr, an absolute
version of l\1inkowski 's Theorem.

The Zero Multiplicity 0/ Linear Recurrence Sequences
Wol/gang M. Schmidt, University 0/ Colorado, Boulder

Consider a linear recurrence sequence {Un}nEZ of order t, so that tLn E C and U n =
Cl tLn-1 + ... + CtUn-t (n E Z) with fixed coefficients Cl I ••• ,Ct. Such asequellee is of the
form U n = 2:~=1 Pä(n)oi, where 0i E CX and Pi E qx} with L~=l (1 + deg Pi) = t.
Thc sequencc is non-degenerate if no quotient ai/oi (i i- j) is a root of 1. The zero­
multiplicity is the number of n with U n = O. Clearly this is the number of solutions x E Z
of the equation

k

L Pä(x)of = 0
i=l

of mixed polynomial-exponential type. According to a classical theorem of Skolem-~llahler­
Lech, a non-degenerate linear recurrence sequence has finite zero-multiplicity. l\1uch progress
has bcen made during the last decade on estimating this multiplicity, with cOlltributions by
Bombieri, Evertse, Faltings, van der Poarten, Roy, Schlickewei, Thundcr , Zagier, ZaIlltier ,
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S. Zhang, and t.he author. I now can prove that a non-degenerate linear recurrence of order
t has zcro-multiplicity below some bound c(t) depending on t only,

On the Gutman-Ivic-Matula Function and Related Topics
Gerald Tenenbaum, University de Nancy I

Joint tlJork with Regis de la Breteche, Orsay

I Thc function rcferred to in the title has first been defined in 1968 by Matula for purposes
in t.heoret.ical chemistry, It is the only completely additive arithmetical function such that
! (Pk) = 1 + ! (k) (k ~ 1), where Pk denotes the k-th prime, We define a vector space
E which eont.ains both, the above function and the logarithm. By means of a general result
which links t.he average of an arbitrary function g(n) to the asymptotic behavior of

R(Xjg) := .! L g(n) - 1. L g(k)[ =-] ,
x n5x x pJ:5% Pk

we obt.aill remainder asymptotic formulae for all functions of E. A quantitative mean value
t.heorem for multiplicativc functions h with certain links betv.'(:en h(k) and h(Pk) en­
ables llS 1.0 obtain convergence to the Gaussian law of elements f in e for (!(n)­
Cllogn)/D1Jlogn for suitable Cl = C I (!) and D 1 = DI(f) > O. An estimate of
t.he rate of cOllvergence is given.

An Old Idea 0/ Hermite Receives New Li/e
Jeff L. Thunder, Northern fllinois University, De Kalb

Joint work with Damien Roy, Ottawa

Let !( denote a number field and let n be a positive integer, For A E GLn(KA ) let HA
be thc twisted height as defined in the abstract of D. Roy. Define minima J.LI (A) ~ J.L2 (A) ~

. , . :::; IL n (.4) as folIows:

\Ve provc the following absolute version of Minkowski's second Convex Bodies Theorem:

THEOHEM, Let k, n and A as above. Then

n

Idet(A)IA ~ II IJi(A) :5 c(n)nj det(A}IA ,
i=l

where c(n) = J2n-l .
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This theorem implies our absolute Siegel 's Lemma stated by Ra)' in his abstract. It can be
shown that this theorem is implied by the inequality

PI (A) :5 c(n) Idet(A)I~n.

\Ve prove this inequality in the case n =2 and then show that

c(n) ~ c(n_l)(n-l)/(n-2)

for n > 2, giving c(n) :5 c(2)n-l. The line of argument is similar to Hermite's method of
bounding the Hermite constant "Y(n) from above by first showing that -y(2) = 2/VJ and
then -yen) :5 -y(n_l)(n-l)/(n.-2) for n > 2.

On the Number 0/ Digit Changes
Robert Tijdeman, University 0/ Leiden

It follows from work of Senge and Straus (1973) and Stewart (1980) that the number of
non-zero digits of a large positive integer can only be small with respect to two hases b1

and b2 if log bI/log b2 E Q. Stewart proved a corresponding result for terms of a linear
recurrence expressed in base b. In a similar way, Blecksmith, Filaseta and Ni('ol (i993)
proved that the number of digit changes of an in base b tends to infinity with n uniess
log a/ log b E Q. In joint work with Barat and Tichy such results have been gcneralized
to linear number system expansions. It turns out that the ineffective Thue-Siegel-Roth­
Schmidt method and the effective Gelfond-Baker method yield results of different types.

Lattice Points in Spheres
Kai-Man Tsang, University Hong Kong

We consider P3(R) , the remainder term in the asymptotic formula for the number of lattice
points inside the three-dimensional sphere of radius R, centered at the origin. The upper
bouud P3 (R) «R21

/16+E was obtained recently by D. R. Heath-Brown. For O-resuJts, it
is known that

\Ve introduce a different approach to prove that

holds.
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On the Number of Polynomials over Z having Bounded Height
and Bounded Mahler Measure

Jeffrey D. Vaaler, University 01 Texas, Austin

Let. Iv!: {RN ~ [0,00) denote the Ivlahler measure of the polynomial having ;f. in IR.N as
its vector of coefficients. So

for ;f E [RN. From this point of view, M is asymmetrie distance function in the sense of ..
thc geometry of numbers and ..

SN = {;f E IRN
: M (;f) < 1 }

is an opell, bOllnded starbody. It folIows, moreover, that

asT~oo.

Note tImt SN is not convex if N ~ 3. \Ve show that

for each N ~ 1 . The proof uses the analytic function

(Re(s) > N)

and the discovery that

ANS[~]+1 rr (s - N + 2m)-1 ,

O~m~[~)

wit.h An E Qx. Similar - but easier - results hold when IR. is replaced by ce or by a non­
archimedean local field.
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Primes in Arithme~ic Progressions
Robert C. Vaughan, University 0/ 1~lichi9an

Let

L A(n) ,
n<%

n:=a(;od q)

q X 2f; Il/J(x,q,a) - </>(q) I
(a,q)=1

U(x,q) = xlogq - :('Y + log2rr + L ~o:~ ) ,
plq

Mk(x,Q) == L IV(x,q) - U(x,q) I
k

•

Q/2<q5.Q

Then the following theorem was obtained.

THEOREM. Suppose that l is a positive number and that k is a positive integer. Then
for every Q and x with X(lOgX)-A $ Q ~ x we have

where, for y ~ 1,

-1/2 ( C(log2 y )3/5)
F(y) « y exp - (loglog3y)l/5

with c a positive constant.

Three Two-Dimensional Weyl Steps in the Circle Problem
Ulrike M. A. Vorhauer , University 0/ Ulm

Joint work with Eduard Wirsing, Ulm

We study the circle problem and its generalization involving the logarithmic mean. 110st
non-trivial results depend on estimates of exponential sums. ehen has carried out such
estimates using three two-dimensional Weyl steps in complicated techniques. Our approach
is simpler and clearer. Crucial is a good understanding of the Hessian determinant in
question and a simple estimate for certain exponential integrals. We determine the order of
magnitude of the Hessian as weil as that of tbe maximum of the second derivatives for the
third order differences of the two-dimensional Euclidean vector norm.
The c1assical tool for estimating two-dimensional exponential integrals is a theorem of Ti tch­
marsh that was refined by Min among others. Apart from its difficult proof and somcwhat
doubtful formulation it has the disadvantage that it requires a system of complex side
conditions that are hard to check or to satisfy. We propose for the same purpose a similar
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theorem which is sOlllewhat weaker but which, on the other hand, needs few and simple
assuwptions and is considerably easier to prove:

THEOREM. Let Q C 1R2 be a convex, compact region 0/ diameter e with boundedly many

al!Jeb7YLic (l7'C$ lor its boundary BQ, Let U be an open neighborhood 0/ 9 and f: U --4 IR
be areal al.qcbraic ftL7lction such that on 9

1/2xl, Ilxyl, I/yyl ::; A2,

-Ifxx/uy - /;yl ~ H > O.

J = !! e(J)dxdy « 5i log(2+~l),
9

WhC7'C, flS 1umal, e(x) = e21r iX, and the 0 -constant depends only on the total degree 0/ the

ulinim,fLl]JOlyn01nial F(x, y, j) 01 fand on the number and degrees 0/ the boundary are,li,

Thc cOllvexity condition can ea.c:iily be relaxed, but it is convenient to assume and suffices for
our a.pplications. This theorem is best possible apart, possibly, from the log-factor. Any
improvcment in the direction of the Titchmarsh-Min lemma must use stronger assumptions.
This can be seen from an instructive example that is given by the function fex, y) =
~ (1' - Rf, r = J x 2 + y2 , on the circular ring RI2 ::; r ~ R - RO with a parameter
~ E (0,1). Here A2 ~ 1, H(x, y) »Ro- I and J::=:: R 1

-
Q

• The same holds for the convex
huH of, say, olle quarter of thc above ring;

A Prime Number Theorem with Weights
Dieter Wolke, University 01 Freiburg

The following wcighted version of the Prime Number Theorem is discussed. There is a

funetiOlI 9: [p ~ IR such that, with numerical constants Cl, C2 > 0

((
(logp)I/3))

g(p) == 1 + 0 exp - Cl (loglogp)l/3 ' L g(p) = lix + O(X I
- C2

).

p<x

As I. Ruzsa and E. Wirsing remark, this can be derived very easily from a Hoheisel-Ingham
type Prime Number Theorem. \Ve get it from an analytic process which may be of interest
in it.self. Consider the partial fraction expansion

(' 1 """ (1 1 )--es) = -- - L...- -- + - + B,
, s-1 ~ s-g {J

where {J r.uns over the trivial and non-trivial zeros of «s). The principal idea is to erase
the poles at fl byadding - (' I(}(s + 1 - 0), As this produces new poles there are severe
convergence problems. However, it can be done by using a generalized form of an approx­
imate fornmla for -('/( due to Selberg. By this we produce a function H(s) such that
H(s) - (s - 1)-1 is regular for Re (s) > O. H(s) = L: A*(n) n- s in Re (s) > I, where A*

is very elose to A, and is of not too large order of magnitude for Re (s) > 1/2.
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Exponential Sums and Diophantine Equations
in Many Variables

'lf-evor D. Wooley, University 0/ AJichigan

" ~ provide estimates for exponential sums over binary forms of strength elose to that
attainable by tbe classical version of 'Veyl's Inequality and Hua's Lemma in the diagonal
situation. Our main results are as follows.

THEOREM 1. Let <I> (x, Y) E Z[x, y] be a non-degenerate binary form 0/ degree d ~ 3, and

let
F(o:; P, Q) = E E e(a<l>(x ,Y)) .

O$z$P O$y$Q

Suppose that .P x Q are large. Let 0 E IR. , and suppose that there exist T E Z and q E N

UJith (T, q) = 1 and 10 - T jql :::; Ijq2. Then

22 - d

F(o; P,Q) « p2+! (q-l + p-l + qp-(t)

THEOREM 2. Let ~(x, y) and F(o; P, Q} be defined as in the statement 0/ Theorem 1.
Whell d = 3 or 4, or when d ~ 5 and j = 1 or 2, one has

When d ~ 5 and 3 $ j :::; d - 2 one has

When d ~ 5 one ha~~ also

11

IF(a;P,Qll!.2
d
-' da « pi 2d - d + 1 +"

und

Thcre are appIications to the solubility of equations of the type

For example with eacb "<I>i a binary form of degree d having intcgral coefficients , one may
establish an asymptotic formula for the number of integral solutions within a box of size B
large.
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On an Extremal Problem Related to Gaussian Sums
Andrtis Biro, Math. Inst. 01 the Hungarian Academy 01 Sciences, Budapest

\Vc prove partial results concerning a modified version of a problem of Harvey Cohn on the
"charaetcrization of charaeters" (see Problem 39 of the book of Hugh L. Montgomery: Ten
Lcctures Oll the Interface Between Analytic Number Theory and Harmonie Analysis). \Ve
considcr the problem only for thc prime field. \Ve show that there are only finitely many
solutions in thc complex case (for a fixed prime p), and salve the problem completely in the
mud p case.

Local Solubility in the Waring-Siegel
M orley Davidson, K ent State University

Reccnt progress on thc analytic side of the Hardy-Littlewood-Siegel drele method for num­
bel' fields, :t."l applied to the generalized Waring problem, has justified a re-examination of
thc algcbraic side, dealing with IDeal solubility. It was proved by Co. P. Ramanujam that , for
exponent k in the Waring problem for a number field K I using at least 8 k5 summands
guaralltees IOC;1} solubility (hence eonvergence of the 'singular series' to a positive number).
We are ahle to improve this to k3 log k for almost aB k with only two distint prime divi~

sors, ami to k 4 log k for almost all squarefree k I by using results of R.-M. Stemmler on the
dcnsity of primes of the form (pr - l)/«(pd - 1) with p prime. We conjecture that there
is a COllst.ant c independent of k and K such that ck summands suffice. (Currently it is
known t.hat 4nk variables are sufficient, due indepedently to Stemmler and O. Körner.)

Reported by: Ulrike Vorhauer, Ulm
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PROBLEMS POSED
Oberwolfach, 10 March 1998

1. (Jörg Brüdern) In IF; we pick vectors (::), 0 $ i :::; p, such that no three are on a
line, which is to say that

Is it true that there exist numbers Ci =0 or 1, not all 0, so that

t Ci (a~) _(0) (modp)?
i=O b1 0

If this is true, is there a generalization to dimension 3 and higher?

2. (Imre Ruzsa) Let aI, 02, ... be real numbers with 0 :::; ai :::; 1 for all i. \Ve consider
the sums ai + aj for 1 :::; i :::; j :::; n, and ask how well-spaced these sums can be. Let
ben) be the minimum dista. ce between any two of these n(n + 1)/2 numbers. We know
t.hat 6(n) :::; 3/n2 . 15 it true that lim infn -+oo n 28(n) =O? It is known that the ai can be
chosen so that ben) » lien logn)2 .

3. (Imre Ruzsa) Let 21 be a set of positive integers, and let ren) denote the IHImber of
ways ofwriting n = a+b2 with a E 21. Can the set 21 be chosen so that Ln::;N Ir(n)-ll =
o(N)?

4. (Imre Ruzsa) Geometrie problem. It is well-known that there is no finite set on the
plane (not all points in aHne) with the property that every line connecting two of the points
passes throught a third. There are finite sets that have the following weaker property. Ir we
connect two points, e;ther this line passes through a third point, or there is a parallelline
that passes through at least three of our points.
J have two exarnples. One has 7 points: the vertices of a triangle, the midpoints of the sides
and the barycenter. The other has eleven: an affine regular pentagon, the crossing poins of·
the diagonals, and the center. Are there any further such configurations?

[) (Jerzy Kaczorowski) Let

r

1'(s) Q8 II r(Aj S + IJ.j)
j=l

be the factor in tbe functional equation for a fup.ction F in the Selberg Class. \Ve call
dF = 2 L;=I Aj the degree of F. The Degree Conjecture asserts that dF is a positive integer
for all F in the Selberg Class. We now formulate three conjectures that are equivalent if
the Degree Conjecture is true.

Con;. 1: For every F in the Selberg dass, the nurnbers Ai are all rational.

Conj. 2: CaB Ai and Aj equivalent if Ai!Aj E Q. For a given F in the SeIberg Class, let
hF be the number of equivalence classes among the Ai. We conjecture that hF = 1.

33
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Con;. 3: Let ~ = (Al"" ,Ar) and pC~) E C an invariant of the functional equation. Then
t.here is a fllnction f: nt -+ <C such that p(~) = f( elF) .

Given a flJuctiona} equation

<1>(8) = w~(l- s)

wc can dr.finc thc associated number

with Iwl = 1,

wherc
r

q = (21r)dQ2 rr A~>'j ,

j=l

r

1J + i(} = ~ := 2L (Jlj - t) .
j=l

sup IL e(no) - L cne(na) I
er E[0,11 n$:t n$x

\Ve COJ1jcctllre that w· is an algebraic number.

David Farmer proposes the problem of showing that if F is in the Selberg Class then
F(l +it) -# O.

5. (Alberto Perelli) Suppose that F is in the Selberg Class, and that F is entire. Put
Fo(s) = F(s + iB). Show that if F is primitive then Fe is primitive for an (). (This would
follow from the Selberg Orthonormality Conjecture.)

\Vc kllow that. members of thc Selberg Class have unique factorization into prinlitive mem­
bers of thc dass. Show that if Fand Gare members of the Selberg Class with (F, C) = 1 ,
thcll thcrc is a complex number g such that mF(O) f. mc(e). Hefe 1nF(g) denote the
multiplicit.y of vanishing of F at f!.

6. (Yoichi Motohushi) Find a direct proof (without using Kloostennan sums) for the
spectral dccornposition of

/

+00

-00 I ( ~ + it) 1
4

g(t) ~t

with suitable weights g.

7. (Aleksandar lvic) Let f! be a simple zero of (s). Bound I('(g) I from below J in
terms of lei.

8. (Aleksundur Ivic) (due to Kuropa, 1971) If p > 2 then

O! + I! + ... + (p - I)! ~ 0 (mod p) ?

True for p < 8 . 106 .

9. (Antal Balog) Let Cn be real or complex numbers such that cnJL(n) = 0 for all 11..

How small can

be? It is known that there exist Cn SO that the above is «X3/ 4 log2 X , and that the above
is »X2 / 3 for any choice of the Cn.
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10. (Trevor Wooley) Let (prad be the maximal radical extension of Q. Thus) if a E Qrad

then "a l/ n E QTl\d for all positive integers n. Let d be a given positive integer. How large
n'ust s be) in order that for any homogeneous FE Qrad [Xl)'" t xsl of degree d, there is
a l!. E (QTad)B\{Q} such that F(ll) = O? For d = 1,2,3)4, s = 2 is enough. For d ~ 5

one needs at least s ~ d + 1. It is also known that s = 22
<1-2 + 1 is enough.

Also) in this connection, find an absolutely irreducible polynornial P in three variables with
coefficients in ((fad such that P has no non-trivial zero in (QTad) 3 .

11. (Trevor Wooley) (due to Novcik) Prove that there is a fJ > 0 such that the number
of solutions of the equation

Xk _ yk pI.

u k _ vk qk

in variables x,y,u,v,p,q satisfyillg 1 ~ x,YtU,V ~ ./Y. I (xtY) = (u,v) = (p,q) = 1,
ITJ/ql ~ 1 is «X2

-
O

•

This would have the following applicatioll: If k is odd thell the Ilumber of lattice points
(u,v) such that lulk + Ivl k ~ T k /2 is cT - bTI/2 -1/k + O+(T 1/ 4 (loglog)1/4) .

12. (Gemld Tenenbaum) 'ls it true that the number of perfeet powers between x and
x + y is « ..jY uniformly in x? Even stranger, is it true that the number of square-full
integers between x and x + y is « .jY uniformly in x? The estimate « .jY + log'x is
trivial.

13. (Dieter Wolke) Let C be a sufficiently large constallt. An odd integer N is called
rieh if for every prime p E (2, N - C) the number lV - P can be written as a sum of two
primes. Da there exist infinitely many rich integers? Ir so, give a lower bound for their
frequency.

14. (Daniel Goldston)
Let

AQ(n)

and set

L #J2(q) L Jl(d) d
q$Q <p(q) dlq

dln

L 1-t(d) log (Q/d) .
dln

d$Q

""" Jl(q)L.-J -(-) cq(n),
q$Q r.p q

We believe that ..\Q(n) and AQ(n) are elose for most n. Graham (JNT 10, 1978) proved
that

L AQ(nf = x logQ + O(x)
n:5z

for 1 ~ Q ~ x. Prove the same for AQ(n).

15. (Yoichi Motohashi) In the notation above, can one show that

L AQ(n)2k « x(logQ)2k-l
n$z
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when k is a fixed integer > 1 ?

16. (Yoichi Motohashi) The Brun-Titchmarsh inequality asserts that if (q, l) = 1 then

71" (x; q, l) :; (2 + 0(1») <p(q) l~(x/q) .

In addition, it is known that if q :; x 1/ 3 then the log(x/q) in the denominator can be
replaced by log(x/q3/16). We have two problems:
(a) Derive this improvementwith the restrietion q :5 x 1/ 3 relaxed, to allow larger values
of q. (b) Replace q3/16 by something smaller, even if only for a more restricted range, say
q < X I /

100
.

Thc Ci Inverse Goldbach Problem" consists in showing that even

At. that occasion I proved

(1)yk = (x + l)(x + 2) ... (x + m).

18. (Jürgen Sander) A result of Erdös and Selfridge from 1975 shows that

has 110 integer solutions x, y # 0 for k ~ 2 and m ? 2. PrOfi the viewpoint of algebraic
geometry, equation (1) represents aplane curve for fixed k and m, which is an elliptic
curve for k = 2 and m = 3. Therefore, it is natural to ask for rational solutions. For
k > 1, 1TL > 1 and k + m > 6, we know from Faltings' proof of Mordell's conjecture that
equation (1) has at most finitely many rational solutions. We have proved that for k ? 2
and 2 ~ 7n ~ 4 , rational points x, y #; 0 on the superelliptic curve (1) exist only for
k = 7n = 2. They are given by

2c~ - ~
x= q_~'

with coprime integers· Cl #; ±C2' We conjecture that for other k ~ 2 and m ~ 2 no
rational points x and y #; 0 on (1) exist.

witlf any n E N is impossible.

IPn [n,oo) = (A + B) n [n,oo), #A ~ 2, #B ~ 2

THEOREM. Let N be a natural number and sets A, B C [0, N] such that A + B C IP.
Then #A· #8 « N .

Thc prüof is a simple application of the Davenport-Halberstam inequality.

The Inverse Goldbach Problem would obviously be settled if one could prove #A· #B =
o( 10;N) instead, provided that #A ~ 2, #B? 2 .

17. (Eduard Wirsing) Among the abstracts of the conference of Nov. 9-15, 1972 one
finds thc following entry:

Jt is easy to see that the set IP of alt primes cannot be represented in the form

IP = A + B with #A, #ß~? 2. Similarly IP \ {2} # A + ß.
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