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The meeting was organized by Walter Gautschi (West Lafayette), Gene H. Golub (Stan­
ford) , aod Gerhard Opfer (Hamburg). There were 46 participants from 13 countries,
more than half coming from Germany and the United States, and a substantial number
from Italy. A total of 23 plenary lectures were presented and 4 short informal lectures.
An evening session was also held dealing with open problems. Problems were posed by
.Laura Gori, Arieh Iserles, Dirk Laurie, Hrushikesh Mhaskar, and Ed Saff. Wednesday
afternoon was set aside for an excursion and a social gathering at the restaurant "Zum
Ochsen" in Schapbach.

The principal scientific areas of attention were:

(a) Computational aspects, including numerical and symbolic computation, matrix in­
terpretation of relevant algorithms, and convergence, perturbation, and stability
analyses;

(b) Generalizations of ordinary orthogonal polynomials, such as s-orthogonal, mat/:ix­
and tensor-valued, Müntz-type, and complex orthogonal polynomials;

(c) Applications to problems in applied mathematics and engineering; prominent among
the former were least squares approximation, Gaussian and related quadrature, it­
erative methods in linear algebra, the detectian of singularities, and integral equa­
tions; the latter included the use of wavelets in medical diagnostics and tbe relevance
of orthogonal polynomials in optimal contral problems, dynamical systems, and gas
dynamics.
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session Peherstorfer Li Fischer, H.-J. Freund Ehrich

Petras Suchy Fuchs Gutknecht Reichel
Afternoon Gori FOllpouagnigni Mbaskar Ripken
session Laurie Milavanovic Skrzipek Runekel
Evening Hanke Open I
session Fischer, B. problems

Gragg ./ session I
Weideman / I
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Abstracts

Algorithms and applications of eigenproblems for Hessenberg
matrices related to Szegö polynomials

Gregory S. Ammar (DeKalb)

Szegö polynomials, i.e., polynomials orthogonal with respect to a measure on the unit cir-
eIe in "the eomplex plane, ean be viewed as the charaeteristic polynomials of a struetured
Hessenberg matrix that is determined by the recurrence coeffieients of the polynomialsA
This is in analogy with the relationship of polynomials orthogonal with respect to a mea-_
sure on the real axis and Jacobi matrices. Similarly, computational problems involving
Szegö poly~omials ean be developed by reeasting the problems in terms of the structured
Hessenberg matrix. _

The struetured Hessenberg matriees can be viewed as submatriees of a larger unitary
Hessenberg matrix. The unitary Hessenberg matrix itself arises in the special ease that
the Szegö polynomials are orthogonal with respect to a singularmeasure. Unitary Hes­
senberg matrices have a structure that is quite amenable to exploitation in eigenvalue .
computations, and a variety of efficient algorithms have recently been developed for solv­
ing unitary Hessenberg eigenproblems. We will give an overview of these points, and give
particular attention to Gragg's unitary Hessenberg QR algorithm. We'll outline a deriva­
tion of the UHQR algorithm using a device for describing the efficient implementation of
single-bulge chasing procedures on unitary Hessenberg matrices.

We then show how our device for deriving the UHQR algorithm can be used to
derive an efficient implementation of a Francis QR step on (real) orthogonal Hessenberg
matrices. In particular, we will see that the double-bulge chasing sweep that arises from
the Francis shift strategy can be implemented by interleaving three single-bulge chasing
sweeps. The resulting OHQR algorithm avoids the additional storage and computation
assoeiated with the complex arithmetic that is required when the single-shift UHQR
algorithm is applied to a real matrix.

We will also outline same current· work on how the QR algorithm ean be efficiently
applied to a submatrix of a unitary Hessenberg matrix. The resulting algorithm, which ia.
being developed in collaboration with William Gragg and Chunyang He, provides a nevw;
approach to computing the zeros of an arbitrary Szegö polynomial.

2

                                   
                                                                                                       ©



Multiple orthogonal polynomials and simultaneous rational ap­
proximation

\'Valter van Assehe (Leuven)

The usual nation of orthogonal polynomials on the real line assoeiated with a positive
measure ean be extended to multiple orthogonality on r sets with respeet to r positive
measures. Usual orthogonal polynomials are eonneeted with Pade approximation of one
(Stieltjes) funetion; multiple orthogonal polynomials are eonneeted with simultaneous
Hermite-Pade approximation of r (Stieltjes) funetions. Not every system of r Stieltjes
funetions gives anormal Hermite-Pade table, hut there are tWQ systems that appear to
be natural: Angeleseo systems where the orthogonality is on r disjoint intervals, an~

Nikishin systems where the orthogonality is on one interval hut the weight funetions~are

recursively defined as Stieltjes transforms of eertain measures on disjoint intervals.
Dur interest is in the eomputation of these multiple orthogonal polynomials. One

ean show that they satisfy a reeurrenee relation of (r + l)st order, extending the well­
known three-term reeurrenee relation for usual orthogonal polynomials. Henee we are
interested in eomputing the reeurrence eoefficients and the zeros of multiple orthogonal
polynomials, which turn out to be eigenvalues of a banded Hessenberg matrix (extending
the tridiagonal Jaeobi matrix for usual orthogonal polynomials).

Orthogonal polynomial v.ectors and discrete least squares approx­
imation

Mare Van Barel (Heverlee)

We give the solution 'of a discrete least squares approximation problem in terms of or­
thonormal polynomial vectors. The degrees of the polynomial elements of these veetors
ean be different. An algorithm is constructed eomputing the coefficients of reeurrence
relations for the orthonormal polynomial vectors. In ease the function values are pre­
scribed in points on the real axis or on the unit circle, variantsof the original algorithm
can be designed which are an order of magnitude more efficient. Although the recurrence
relations require all previous vectors to compute the next orthonormal vector, in the real
or in the unit-circle case only a fixed number of previous vectors are required.

The sensitivity of least squares polynomial approximation

Bernhard Beckermann (Villeneuve cl'Ascq)
Joint work with Ed Saff (Tampa)

We consider the least squares problem of finding the coefficients with respect to a poly­
nomial basis {PO,Pl,'" ,Pn}, 8pj = j, of a polynomial P, 8P ::; n, such that, for a given
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function /, the weighted error E7=olwj(zj)1 2 If(zj) - P(Zj)1 2 is minimized. The maxi­
mal magnification "'n of relative errars in the data f(zo), . .. , f(ZN) equals the condition
number of some rectangular weighted Vandermonde-like matrix. The aim of this talk
is to study the nth root behaviour of ""n for bases of orthogonal polynomials and for
same triangular array of Dorles in the case NIn ~ C > 1. As tools we require compJex
potential theory, such as the constrained energy problem in the presence of an external
field.

Estimation of the L-curve via Lanczos bidiagonalization

Daniela Calvetti (Cleveland)

The L-curve criterion is orten applied to determine a suitable value of the regularization
parameter when soh'ing ill-conditioned linear systems of equations with a right-hand
side contaminated by errors of unknown norm. However, the computation of the L­
curve is quite costly for large problems; the determination of a point on the L-curve
requires that both the norm of the regularized approximate solution and the norm of the
corresponding residual vector be available. Therefore, usually only a few points on the
L-curvc are computed, and these values rather than the L-curve, are used to determine
a value of thc regularization parameter. We describe a new approach to determine a
value of the regularization parameter based on computing an L-ribbon that contains the
L-curve in its interior. An L-ribbon can be computed fairly inexpensively by partial
Lanczos bidiagonalization of the matrix of the given linear system of equations. The
connection bet,veen orthogonal polynomials and quadrature rules is an essential tool in
thc determination of the L-ribbon.

Stieltjes polynomials and interpolation

Sven Ehrich (München)

Stieltjes polynomials are defined by

k = 0,1, ... , n,

where Pn are the Legendre polynomials. The zeros of the Stieltjes and the Legendre poly­
nomials are used by the Gauss-Kronrod quadrature formula. We investigate the quality
of the interpolation processes based on the zeros of the Stieltjes polynomials En+b respec­
tively on the zeros of the product Pn En+1 • We present new inequalities for the Stieltjes
polynomials and show that the Lebesgue constants of both interpolation processes have
the optimal order O(1ogn). Furthermore, we give weighted V error bounds as weIl as
applications to product integratio~ and to the numerical solution of integral equations.

4

                                   
                                                                                                       ©



Polynomial wavelets with application to evoked EEG Oscillations

Bernd R. W. Fischer (Lübeck)

In this talk we present a unified approach for the construction of polynomial wavelets.
Our main tool are orthogonal polynomials. More precisely, our derivations make use of
the general theory of kernel polynomials. This allows us to treat not only weight functions
which are supported on a compact interval (e. g., Jacobi weights) hut also weight functions
\vhich are supported on the realline (e. g., Hermite weight) or on the real half line (e. g.,
Laguerre weight).

Several examples illustrate the new approach. In particular, we apply the polynomial
\vave1E~t scheme to signals obtained by visual cortex reeordings of auditory and visual
evoked potentials in the human brain. Theobtained results strongly support..~he sugges­
tion that alpha oscillations in the corresponding EEG are event-related osciU~tlons.

Fast solution of confluent Vandermonde-like matrices usirig poly­
nomial arithmetic

Hans-Jürgen Fischer (Chemnitz)

If we want to calculate the weights (Ti and Dodes Ti of Gaussian quadrature for same
measure a directly from modi~ed moments J.lk = f Pk(X) da(x) with some given system of
orthogonal polynomials Pk, we have a non-linear system of equations. The implementation
of a Newton method leads to the solution of a confluent Vandermonde-like system with
matrix

(

PO(Tl) PO(Tn) p~(Td P~(Tn) )

P2n-~(Td P:!n-I(Tn) P~n-I(Td P;n-:(Tn)·

We propose a method of solution using only operations like addition, multiplication and
division of polynomials and the evaluation at some points. These operations ean be
efficiently performed in any orthogonal base within O(n2 ) operations. For an appropriate
base (Chehyshev of first or second kind) the algorithm can he speeded up to O(n log2 n)
operations. -

Some remarks on the estimation of linear functionals

Klaus-Jürgen Förster (Hildesheim)

In this lecture, we consider estimates of linear functionals on C(-1, 1] using Peano kerne}
theory. We discuss several applieations of an expansion of Peano kemeIs with ultraspher­
ical polynomials, which has been proved by H. Brass and the author. Same examples
concerning Gaussian quadrature are given.
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Laguerre-Freud equationsapplied to generalized Meixner and
generalized Charlier orthogonal polynomials

l\1ama Foupouagnigni (Berlin)

Let ce (respectively C[x}) be the set of complex numbers (respectively the vector space
of polynomials with complex coefficients). Let l. be a regular linear form from C[x] to
ce satisfying f::1{ljJi:,) == 1/;{, (with (ß L, P) == -(l., \l P), P E C[x}) where 4> and 7/J are
given polynomials. The polynomial family (Pn)n orthogonal with respect to [, satisfies
a three term recurrence relation: Pn+1 == (x - ßn)Pn - rn Pn-l, Po = 1, P-1 == O. When _
the degree of if> is at most 2 and the degree of 'lj; is exactly one, the linear form and the •
corresponding polynomials are said classical and coefficients ßn and rn are well-known.
But if the degree of if> is at least 3 or the degree of 'lj; is at least 2, the linear form and
the corresponding polynomials are said semi-classical and the formula giving ßn and In
in terms of 4> and 'l/J is not valid. In this work, we show that coefficients ßn and ,n are
solutions of t\VO non linear equations

1n+I == FI ('1' ... '1n, ßo, ... , ßn),

ßn+l == F2 (11,' .. , ln+l, ßl,"" ßn)'

A.pplication of this result to generalized Charlier and generalized Meixner. of class one and
use ofsymbolic and numerical computation with Maple V.4 permit us to have information
about the asymptotic behaviour of coefficients ßn and In'

Matrix-valued formally orthogonal polynomials and their appli­
cation in reduced-order modeling of MIMO systems

Roland vV. Freund (Murray Hin)

Matrix Padee approximation of the Laplace-domain transfer function cao be used to con­
struct reduced-order models of large-scale time-invariant linear dynamical systems with
multiple inputs and multiple outputs. It is weIl known that for the case of a single in-
put and a single output, the resulting Pade approximants are intimately connected toe
formally orthogonal polynomials associated with a scalar moment sequence. In this talk,
we present an extension of this connection to the case of multiple inputs and multiple
outputs. In this case, the corresponding polynomials are matrix-valued. We derive recur­
rences for these matrix-valued formally orthogonal polynomials, and we describe some of
their properties. Numerical examples from circuit simulation are presented.
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Discrete polynomialleast-squares approximation in moving time
windows

Erich Fuchs (Passau)

With signal processing in moving time windows one tries to compute characteristic values
of the current time window iteratively taking advantage of already computed values
in previous time windows. It can be shown that this computation method applied in
least-squares approximation on discrete data using orthogonal polynomials leads to fast
algorithms for several discrete weights. Therefore these iterative algorithms providing
signal trend information and estimators in the time domain are suitable for processing
under real-time conditions.

Furthermore these algorithms can be extended to approximation probleIlls. of .the
type "find P E Pn{IR, IR) minimizing E;o{l;(p) - y;)2", where 1; is a linear{form like

lj(p) = J/+ 1 p(x) dx. This allows the interpretation of a measured value as an evaluation
of an integral.

The polynomials {Po, ... ,Pn} orthogonal with respect to the inner product

m

(plq) =L I; (p)lj(q)Wj
;=0

(Wj E ~+ being discrete weights) can be determined by solving systems of linear equations
based on other orthogonal polynomials, which can be computed easier. Due to the
fact that such systems of orthogonal polynomials do normally not fulfill a three-term­
r~currence relation, this way of computing this.kind o( orthogonal polynomials. is a fast
and easy method. .

Same applications of s-orthogonal polynomials

Laura Gori (Rorna)
Joint work with Elisabetta Santi (L'Aquila)

In this talk, after briefly surveying the main properties of s-orthogonal (or power or­
thogonal) polynomials, we present some recent results showing how a particular class
of these polynomials, characterized by a peculiar invariance property of their zeros, can
conveniently be chosen as a base for the construction of certain quadrature rnles, which
turn out to be particularly suitable for approximating singular integrals.
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Stabilization of the uhqr algorithm

William B. Gragg (Monterey)

The unitary Hessenberg QR algorithm is fundamental for statistical signal analysis, as
is the closely related inverse algorithm (iuhqr). These algorithms are analogous with
algorithms, tqr and itqr, for real symmetrie tridiagonal matrices. No claim of numerical
stability for uhqr was made when it was introduced in 1986. Indeed, an open problem
was to make it perform as weil as tqr. We introduce a device which appears, on the basis
of a large numb'er of experiments, to da the job. Indeed, M. Stewart has proved that a_
small variation of our algorithm is numerically stahle. ..

A matrix interpretation of the Euclidean algorithm

Martin H. Gutknecht (Zürich)

We show that the classical Euclidean algorithm for polynomials (or power series) as weIl
as its recently estahlished forward-stable look-ahead version is equivalent to successively
applying matrix multiplications to the Sylvester matrix of the given polynomials. The
factors can be chosen such that the resulting matrix identity links directly the Sylvester
matrix and the coefficients of the quotients in the Euclidean algorithm with six tridiagonal
matrices containing the coefficients of the polynomials generated by the so-called extended
l?uclidean algorithm in its generallook-ahead form.

Semiiterative regularization methods for ill-posed indefinite prob­
lems

Martin Hanke (Karlsruhe)
Joint work with Harald Frankenberger (Kaiserslautern)

We study semiiterative methods for approximating the solution f of linear operator equa­
tions K f = g. We are primarily interested in the case where K is selfadjoint and in­
definite, and where the spectrum of K clusters in the origin. Due to the latter prop­
erty semiiterative methods can only have a sublinear rate of convergence, dependingo~
smoothness properties of the solution Hne f = IKIIIW where IKI = (K· K)1/2 and 11 > O.

Our semiiterative methods construct iterates fk with 9 - K fk = Pk(K)g where Pk
is a polynomial of degree k with Pk(O) = 1, a so-called residual polynomial. Given the
information that the spectrum of K is eontained in [a, 1] with some specified a < 0,
and that f is as ahove, we choose eertain kernel polynomials as residual polynomials.
More precisely, let {un } be the orthonormal polynomials w. r. t. the weight function
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1;\1211 - 2 / y'(1 - A)(" - a), a < A < 1, then we define

k k

Pk(A) =E un(")un(O)/E u;(O).
n=O n=O

Using' asymptotic results by Badkov and Nevai we establish (optimal) convergence rates

for the iteration. The semiiterative methods can be implemented using the short re­

currences for the orthonormal polynomials {un }. For 11 E N those recurrences can be

derived from the recurrence relation of the Chebyshev polynomials (cf. Gautschi or Fi­

scher/Golub) but for arbitrary LI > 1/2 one can also use their exp!icit recurrence relations

which are giyen by Magnus.

Gegenbauer weight functions admitting L2 Duflin and Schaeffer

type inequalities ..

David B. Hunter (Bradford)

Joint work with Ceno. Nikolov (Sofia)

Denote by lln the set of all algebraic polynomials of degree n or less, and let w;\(x) =
(1 - X 2).\-lj2 (A > -1/2). Suppose Qn E Iln has distinct real zeros which interlace

with the extrema t j (j = 0, 1, ... , n) in [-1, 1] of the ultraspherical polynomial pAA)

(-1/2 < ,.\ ~ 1/2). It is shown that if pE lln satisfies Ip(tj )/ :::; /Qn(tj )/ (j = 0, 1, ... , n),

then

and

A number of related results are also obtained.

Two-term recurrences and problems related to Gaussian quadra­

ture formulas

Dirk Laurie (Vanderbijlpark)

The formulation of orthogonal polynomials as two-term rater than three-term recursions

pas theoretical and computational advantages.
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Theoretical: the classical polynomials have slightly simpler coefficients over [0,2] than
the three-term coefficients over [-1,1]; questions relating to whether the leftmost zero of
anti-Gaussian and Kronrod formulas is internal, are easily answered.

Computational: the finding of zeros hecomes a singular value rather than an eigenvalue
problem; recent advantages yield high relative accuracy of even the smallest zeros; uo
snlearing of the zeros near the left end-point.

In particular, I will discuss what happens to mixed moments in two-term recursion,
and ho\v ne\v light is shed on the problem of recovering the recursion coeflicients from
the Gaussian formula.

Construction and computation of a new set of orthogonal poly- •
nomials

Shikang Li (Hammond)

In this talk we will discuss how to construct and compute a new set of orthogonal poly­
nomials from an existing one. For a given pair of po~itive integers (n, r) and a given
positive measure da(t), we will construct a set of orthogonal polynomials corresponding
to the modified measure da*(t) := (1rn (t))4da(t). For r := 2 and the first kind Chebyshev
nleasure we are able to find explicit formulas for the recurrence coefficients for any pos­
itive integer rand the first kind Chebyshev measure. For r := 2 and other measures, a
computational method is proposed. Some other results are also stated.

Fourier transforms of orthogonal polynomials of singular rnea­
sures and wave propagation in almost-periodic systems

Giorgio Mantica (Corno)

I shall discuss the numerical and theoretical problems which have arisen in the description
of quantum and classical motion in almost-periodic systems. 1 show that the common
mathematical nature of these problems lies in the asymptotic properties of the Fourier
transforms of the orthogonal polynomials associated with the spectral measure of the
problem, which is typically singular. I describe some results that can be obtained in thise
approach.

Lagrange interpolation on the real line

Guiseppe Mastroianni (Potenza)

'. ,..' _.' 'I prove that the Lagrange polynomials mainly based on the Laguerre or Hermite zeros are
'convergent in \veighted uniform norm and easy to implement for a wide class of functions.
I sho\v also some results if simultaneous interpolation.
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Polynomial frames and detection of singularities

Hrushikesh N. Mhaskar (Los Angeles)

Let Vn be the class of all polynomials of degree at most 2n , w be a weight function,
and Wn := {p E Vn+1 : JP(t)R(t)w(t) dt = 0 \:IR E Vn }. We construct a variety of
kerneis Kn(x, t) (in Wn as a function of each variable) such that any P E Wn admits a
representation P = Ei:i1 ck,n(P)Kn(x, Xk.2n+d with tbe stability condition

(1)

where tbe constants An, Rn do not depend upon w. In the case when w i~_~a Jacobi
weight, we discuss the V-versions of (1), 1 ~ P ::; 00. In this case, we are afso able to
demonstrate the localization of the kerneis in the following sense. Let f : [-:t; 1] -+ IR,
k ~ 0 be an integer, and the derivative f(k) have a jump discontinuity at Xo -E (-1,1).
Then the function Tn(f, x) := J f(t)Kn(x, t)w(t) dt is "Iarge near xo" and "s~mall away
from xo". This behaviour can be described in a precise quantitative manner. Unlike
classical compactly supported wavelets, our frarnes are able to detect the discontinuities
in the derivatives of an arbitrarily high order.

Müntz orthogonal polynomials and applications

Gradimir V. Milovanovic (Nis)

Let A = {Ao, Al""} be a complex sequence such that ~(Ak) > -1/2 for every k E No.
A linear combination of the system {xAO , x A1 , ••• , x An } is called a Müntz polynomial, or
a A-polynomial. By Mn(A) we denote span{x~O,x~l,... ,x~n} where the linear span is
aver the real (or complex) numbers. Such generalized polynomials cao be orthogonalized
and applied to quadrature problems. We investigate two Müntz systems which are or­
thogonal with respect to some inner products. Beside the general properties including
some representations and recurrence relations, we consider a few interesting special cases
of geoeralized systems. In particular, the systems with real A, as weIl as the case when
SOlDe of the A's are equal, are also considered. Zero distribution is also investigated.

A big problem is how to compute the values of orthogonal Müntz polynomials in a
finite arithmetics. As a rule, such polynomials are ill-conditioned. An approach in nu­
merical evaluation of these polynomials using complex integration is given. A numeric3:~

algorithm for the construction of generalized Gaussian quadratures was originally intro­
duced over three decades aga by Karlin and Studden, and recently investigated by IvIa.,
Rokhlin and Wandzura [SIAM J. Numer. Anal. 33 (1996)]. Using theory of orthogonä~~
ity for Müntz systems, we present an alternatively numerical method for construc.ti·~~
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generalized Gaussian quadrature rules

which are exact for each f E M2n- 1(A). Especially, we consider an important case of
quaclratures with a combined algebraic and logarithmic degree of precision. Our con­
struction is quite different from the corresponding procedure for the classical Gaussian
integration formulae with an algebraic degree of precision.

Numerical resolution of Symm's integral equation on polygons
by means of orthogonal polynomials

Giovanni Monegato (Torino)

Several papers have been devoted to the numerical solution of Symm's integral equation
on a polynomial domain. The main difficulty of this problem is caused by the singular
behaviour that the solution shows at the corners of the polygon. All known numerical
approaches are hased on piecewise polynomial approximations on each side.

We sho\v that by introducing first inta the equation a proper smoothing change of
variable we can always solve the transformed equation by a collacation method, which
approximates the new unknawn on each side of the polygon by a (global) polynomial and
makes use of orthogonal polynomials.

Interpolatory quarlrature formulae on special sets of abscissae

Sotirios E. Notaris (Athens)

We review the existing results, and present some new ones, regarding the interpolatory
quaclrature formulae on special sets of abscissae, particularly, Chebyshev and Bernstein­
Szegö abscissae.

Orthogonal polynomials and dynamical systems

Franz Peherstorfer (Linz)

First the consequences of the Fermi-Pasta-Ulam recurrence phenomenon to nonlinear
lattices and soliton equations are discussed. After a comparison of the chaotic Henon­
Heiles lattice with the integrable Toda lattice it is shown how to get in an easy way the
complete integrability of the Toda lattice with the help of orthogonal polynomials. In
addition it is proved that Stieltjes functions of the form (f - Vii)/p, where H()") =
f1~~1 (.A - .Aj) and f, p are polynomials of degree N and N - 1 resp. which satisfy certain

12
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additional conditions with respect to time t, generate Toda lattices. In the second part
first the connection between soliton equations and eigenvalue problems of systems of
linear differential equations is discussed. More precisely, it is shown that the solutions of
soliton equations (as the solutions of the KdV or of the generalized nonlinear Schrödinger
equation) are potentials of linear systems of differential equations whose eigenvalues do
not depend on time. Then we demonstrate how orthogonal polynomials with periodic
recurrence coefficients can be used to get solutions of the nonlinear Schrödinger equation.
Finally, results on orthogonal and Lq-minimal polynomials on Julia sets, in particular on

dendrites, are presented.

Existence and non-existence of Gauss-Kronrod quadrature

Knut Petras (München)

In numerical software packages, we often find Gauss-Kronrod quadrature formulae. A
classical problem concerning these formulae for weighted integration is "for which ultras-
pheric.al weight functions w..\(x) = (1 - X2)..\-1/2 do Ganss-Kronrod quadrature formulae
exist?". Szegö proved the existence for A E [0,2] and gave a counterexample for A < O.
Gautschi and 'Notaris made numerical tests and conjectured that for given number 2n+ 1
of Dodes, a Gauss-Kronrod quadrature formula exists if and only if 0 ~ A' ~ AO(n).
Assuming the existence of such AO(n), they calculated some of these values numerically.

I present the results of a joint work with Franz Peherstorfer. We have proved that
for A > 3, Gauss-Kronrod quadrature formulae may exist only for sufficiently small
n. Furthermore, for A = 3 and sufficiently large n, Gauss-Kronrod quadrature exists.
Generalizations to Jacob~ weight functions are given.

The considerations are based on a new representation of Stieltjes polynomials, which
also allows to derive an asymptotic expression for Stieltjes polynomials with respect to

Jacobi weights.

Computation of Gauss-Kronrod quadrature rules

Lothar Reichel (Kent)

Recently Laurie presented a new algorithm for the computation of (2n + 1)-point Gauss­
Kronrod quadrature rules with real nodes and positive weights. The algorithm first
determines a symmetric tridiagonal matrix of order 2n + 1 from certain mixed moments,
and then computes a partial spectral factorization. We describe a new algorithm that
does not require the entries of the tridiagonal matrix to be determined, and thereby avoids
computations that can be sensitive to pertubations. Our algorithm uses the consolidation
phase of a divide-and-conquer algorithm for the symmetrie tridiagonal eigenproblem and
is weH suited for implementation on a parallel computer. Numerical examples illustrate
the performance of the algorithm.
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Computation of complex orthogonal polynomials

Wolfgang Ripken (Hamburg)

For computing orthogonal polynomials with respect to a complex inner product (i. e. a
positive definite Hermitean form) we can, in general, not use a three term recurrence
relation. So we have to look for other methods. In the talk I describe an algorithm for
obtaining the coefficients in an expansion with respect to the monomials. The algorithm
proceeds in several steps. In each step orthogonal polynomials for a conveniently chosen I
auxiliary inner product are computed. The idea behind this procedure is to control the" "
condition numbers of the matrices one has to deal with. However, the large number of ..
steps Inay again lead to instability.

On neighbouring orthogonal polynomial sequences

Hans-Joachim Runckel (DIrn)

Given two difference equations

In = a1 (,x, n)Xn-l + a2(n)Xn -2,

Yn = b1 (,x, n)Yn-l + b2(n)Yn-2,

n 2:: 1,

n ~ 1,

(2)

(3)

that define orthogonal polynomials, then for the continued fractions

K ( a2(v) ) = Xn,2 K ( b2(v) ) = Yn,2 hold for n > 1
v=1 a1 (,x, v) X n ,1' v=1 bl (,x, v) . Yn,1 . - ,

where X n ,1, X n ,2 'and Yn,l, Yn,2 are solutions to (2) and (3), respectively, with

(
XO,l XO,2) _ ( YO,l YO,2) _ (1 0)

X-l,l X-l,2 - Y-1,1 Y-l,2 ...,... 0 1

(orthogonal polynomials of first and second kind, respectively).
If a1 (Ä, n) - b1(,x, n) and a2(n) - ~(n) are "sufficiently small" as n --+ 00, 'then using

f(,x) = ~ ( a(2~v))), g(Ä) = ~ (bb(2~1I))), ,x E C \ J, where J is an interval C IR,
v-I al "", v v-I 1 A, V

(4)

the density functions of Xn,l (Xn ,2) can be expressed in terms of the density functions of
Yn,1 (Yn,2). Furthermore, the sequences Xn,b Yn,} and Xn ,2, Yn,2 have "similar" asymptotic
behaviour for ,x E C \ J and (tsimilar" asymptotic zero distribution as n --+ 00. This
generalizes earlier results in the case where Yn,}, Yn,2 are Chebyshev polynomials of first
and second kind.
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An algorithm for the evaluation of linear combinations of Szegö
polynomials

Michael Skrzipek (Hagen)

Let {<I>II }IIEN be a sequence of polynomials orthogonal on the unit circle with respect to
an inner product. It is known that by using their Szegö recurrence a Clenshaw type
algorithm for evaluating polynomials, expanded in terms of the t1'11 can be obtained.
We make another approach which uses a modification of associated Szegö polynomials
(i. e. Szegö polynomials with shifted reflection coefficients). So we derive an alternative
algorithm for evaluating linear combinations of Szegö polynomials. We emphasize that
we can compute the values of the derivatives of these polynomials with this algorithm,
tao.

Asymptotic error estimates for rational best approximants in
H2(D) and HOO(D)

Herbert Stahl (Berlin)

Rational approximants offunctions in the real Hardy spaces H 2(D) and HOO(D) with D ==
{izi < I} are of great interest in contral theory, stochastic modeling, or signal processing.
In the talk we concentrate on tbe approximation of Markov functions f (z) == J(t ­
Z)-l dj.1.(t). Starting from H 2-best rational approximants, where the orthogonality of the
denominators polynomials alows to calculate interpolation points for these approximants,
we come to rational best approximants in the Hoo...norm. Exact asymptotic rates are
proved, and it is shown that interpolation points can be constructed such that the rational
interpolants have asymptotically minimal error in the Hoo-norm..

Applications of tensorial Hermite polynomials in the kinetic t4e­
ory of gases

Kurt Suchy (Düsseldorf)

In the kinetic theory of gases expansions of the velocity distribution function are impor­
tant. About one century ago expansion of the angular part with Legendre polynomials
were introduced, later on generalized to spherical harmonics. Half a century later expan­
sions in the whole velocity space were introduced with tensorial Hermite polynomials for
three variables, since their Gaussian weight function corresponds with the (Iocal) Maxwell
distribution. A generalization of these polynomials with an additional parameter proved
to be useful. Their properties and applications are presented.
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N ew examples of orthogonal polynomials with indeterminate mo­
ment problem and a conjecture on the growth properties of the
N evanlinna matrix

Galliano Valent (Paris)

We consider several examples of orthogonal polynomials related to birth and deat~ pro-
cesses with cubic and quartic transition rates. The corresponding moment problems being
indeterminate we compute their Nevanlinna matrix. These results give further support to . .a;
a conjeeture on the growth properties of the entire functions involved in the Nevanlinna .,
matrix.

Spectral methods based on non-classical orthogonal polynomials

Andre Weideman (Corvallis)

Spectral methods for solving boundary-value problems numerically have traditionally
been based on classical orthogonal polynomials such as those associated with the names
of Chebyshev, Legendre, Laguerre, and Hermite. In this talk we investigate the potential
advantages of spectral methods based on non-classieal orthogonal polynomials.

Numerieal examples include:

1. The solution of the Schrödinger equation on the real line by a spectral method
based on orthogonal polynomials generated by the logistic density weight function.
We show that in the ease of the Morse potential this method is superior to the
Hermite spectral method.

2. The solution of a boundary-value problem with a steep boundary layer by a method
based on orthogonal polynomials generated by a rational weight function. The
method may be viewed as a spectral method based on a rational interpolant with
pre-assigned poles. The poles are chosen to mimic the almost singular behavior
of the boundary layer. We show that this method is superior to the standard
Chebyshev spectral method. e

3. The solution of a Sturm-Liouville problem by the same method as in 2. The ap­
proximate Ioeation of the poles are determined by WKB analysis. This method was
shown to be superior to the Chebyshev method.

16

1I

                                   
                                                                                                       ©



E-mail addresses

Ammar, Gregory s.: ammar@math.niu.edu

van Assehe, Walter: walter@wis.kuleuven.ac.be

Van BareI, Mare: marc.vanbarel@cs.kuleuven.ac.be

Beckermann, Bernhard: bbecker@ano.univ-Iillel.fr

Brezinski, Claude: claude.brezinski@univ-lillel.fr

Buhmann, Martin: mdb@math.uni-dortmund.de

Calvetti, Daniela: dxc57@po.cwru.edu

Ehrich, Sven: ehrich@gsf.de

Fischer, Bernd R. W.: fischer@math.mu-Iuebeck.de

Fischer, Hans-Jürgen: hfischer@mathematik.tu-chemnitz.de

Förster, Klaus-Jürgen: foerster@informatik.uni-hildesheim.de

Foupouagnigni, Mama: foupouag@syfed.bj.refer.org

Freund, Roland W.: freund@research.bell-Iabs.com

Fuchs, Erich: fuchs@fmi.uni-passau.de

Ga.utschi, Walter: wxg@cs.purdue.edu

Golub, Gene H.: golub@sccm.stanford.edu

Gori, Laura: gori@dmmm.uniromal.it

Gragg, William B.: gragg@nps.navy.mil

Gutknecht, Martin H.: mhg@scsc.ethz.ch

Hanke, Martin: hanke@math.uni-karlsruhe.de

Hunter, David B.: d.b.hunter@bradford.ac.uk

Iserles, Arieh: a.iserles@damtp.cam.ac.uk

Laurie, Dirk: dlaurie@na-net.ornl.gov

17

                                   
                                                                                                       ©



Li. Shikang: kli@selu.edu

Mantica, Giorgio: giorgio@fis.unico.it

Mastroianni, Guiseppe: mg039sci@unibas.it

Mhaskar, Hrushikesh N.: hmhaska@calstatela.edu

Milovanovic, Gradimir V.: grade@ni.ac.yu

Monegato, Giovanni: monegato@polito.it

Notaris, Sotirios E.: notaris@eudoxos.dm.uoa.gr

Opfer, Gerhard: opfer@math.uni-hamburg.de

Peherstorfer, Franz: franz. peherstorfer@jk.uni-linz.ac.at

Petras, Knut: k.petras@tu-bs.de

Redivo-Zaglia, Michela: michela@dei.unipd.it

Reichei, Lothar: reichel@mcs.kent.edu

Ripken, Wolfgang: ripken@math.uni-hamburg.de

Runckel, Hans-Joachim: no e-mail address

Ruscheweyh, Stephan: ruscheweyh@mathematik.uni-wuerzburg.de

Saff, Edward B.: esaff@math.usf.edu

Santi, Elisabetta: esanti@dsiaq1.ing.univaq.it

Skrzipek, Michael: michael.skrzipek@fernuni-hagen.de

Stahl, Herbert: stahl@p-soft.de

Suchy, Kurt: no e-mail address

Totik, Vilmos: totik@math.usf.edu

Valent, Galliano: valent@lpthe.jussieuJr

Weideman, Andre: weideman@math.orst.edu

Reported by Wolfgang Ripken

18

-----------

                                   
                                                                                                       ©



!

Tagungsteilnehmer

Prof.Dr. Gregory S. Arnmar
Department of Mathematical Sciences
Northern Illinois University

DeKalb , IL 60115-2888
USA

Prof.Dr. Walter van Assehe
Departement Wiskunde
Faculteit der wetenschappen
Katholieke Universiteit Leuven
Celestijnenlaan 200B

B-3001 Leuven

Dr. Mare Van Barel
Departement Computerwetenschappen
Katholieke Universiteit Leuven
Ceiestijnenlaan 200A

B-3001 Heveriee

Dr. Bernhard Beckermann
Laboratoire ANO
UFR IEEA Informatique (M3)
Universite des Sciences et Techniq.
de LiIle-Flandres-Artois

F-59655 Villeneuve d'Ascq Cedex

Prof.Dr. Claude Brezinski
UFR IEEA - M3

Universite de LilIe 1

F-59655 ViIIeneuve d'Ascq Cedex

- 19 -

Prof.Dr. Martin D. Buhmann
Fachbereich Mathematik
Universität Dortmund

44221 Dortmund

Prof.Dr. Daniela Calvetti
Dept. of Mathematics and Statisties
Case Western Reserve University
10900 Euclid Avenue

Cleveland , OH 44106-7058
USA ~~

Dr. Sven Ehrich
Institut für Biomathematik
und Biometrie
GSF Forschungszentrum Neuherberg
Ingolstädter Landstr. 1

85764 Neuherberg

Prof.Dr. Bernd R.W. Fischer
Institut für Mathematik
Medizinische Universität
zu Lübeck
Walistr. 40

23560 Lübeck

Dr. Hans-Jürgen Fischer
Fakultät für Mathematik
Technische Universität
Chemnitz

09107 Chemnitz

                                   
                                                                                                       ©



Prof.Dr. Klaus-Jürgen Förster
Institut für Mathematik
Universität Hildesheim
Marienburger Platz 22

31141. Hildesheim .

Dr. Mama Foupouagnigni
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Takustr. 7

1.4195 Berlin

Dr. Roland W. Freund
Bell Laboratories
Room 2C - 420
700 Mountain Avenue

Murray HilI I NJ 07974-0636
USA

Erich Fuchs
Fakultät für Mathematik
und Informatik
Universität Passau
Innstr. 33

94032 Passau

Praf.Dr. Walter Gautschi
Department af Computer Sciences
Computer Science Building 164C
Purdue U~iversity

West Lafayette I IN 47907
USA

- 20 -

Prof.Dr. Gene H. Golub
Computer Science Department
Stanford University

Stanford , CA 94305-4027
USA

Prof.Dr. Laura Nicol Gori
Dip. M.M.M.S.A.
Universita di Roma
liLa Sapienza ll

Via Antonio Scarpa 16

1-00161 Rama

Praf.Dr. William B. Gragg
Department af Mathematics
Naval Postgraduate Schaol

Monterey , CA 93943
USA

Prof.Dr. Martin H. Gutknecht
Mathematik Department
ETH Zentrum
HG G33.1
Rämistr. 101

CH-8092 Zürich ~

Dr. Martin Hanke
Institut für Praktische Mathematik
Universität Karlsruhe

76128 Karlsruhe

~I

I

I

                                   
                                                                                                       ©



Dr. David B. Hunter
Department of Mathematics
University of Bradford

GB-Bradford, Yorkshire BD? 1DP

Prof.Dr. Arieh 1serles
Dept. of Applied Mathematics and
Theeretical Physics
University of Cambridge
Silver Street

GB-Cambridge , CS3 9EW

Prof.Dr. Dirk Laurie
Dept. of Math. and Computer Science
pot~hefstroom University

1900 Vanderbijlpark
SOUTH AFR1CA

Prof.Dr. Shikang Li
Department of Mathematics
Southeastern Louisiana University

Hamrnond I LA 70420
USA

Prof.Dr. Giorgio Mantica
Centro Sistemi Dinamici
Universita degli Studi
Via Locini 3

1-22100 Corno

- 21 -

Dr. Giuseppe Mastroianni
Dipartimento di Matematica
Universita degli Studi
della Basilicata
Via Nazario Saure, 85

1-85100 Potenza

Prof.Dr. Hrushikesh N. Mhaskar
Dept. of Mathematics
California State University

Los Angeles , CA 90032
USA

Prof.Dr. Gradimir V. Milovanovic
Department of Mathematics
Faculty of Electronic Engineering
University of Nis
P.O.Box 73

YU-18000 Nis

Prof.Dr. Giovanni Monegato
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi, 24

1-10129 Torino

Dr. Sotirios E. Notaris
Dept. of Communication and Mass
Media
University of Athens
5 Stadion Street

10562 Athens
GREECE

                                   
                                                                                                       ©



Prof.Dr. Gerhard Opfer
Institut für Angewandte Mathematik
Universität Hamburg
Bundesstr. 55

20146 Hamburg

Prof.Dr. Franz Peherstorfer
Institut für Mathematik
Universität Linz
Altenbergerstr. 69

A-4040 'Linz

Prof.Dr. Knut Petras
Mathematisches Institut
Universität München
Theresienstr. 39

80333 München

Prof.Dr. Michela Redivo-Zaglia
Dipartimento di Elettronica e
Informatica
Universita di Padova
Via Gradenigo 6/A

1-35131 Padova

Prof.Dr. Lothar Reichel
Dept. of Mathematics and
Computer Sciences
Kent State University

Kent , OH 44242
USA

- 22 -

Dr. Wolfgang Ripken
Institut für Angewandte Mathematik
Universität Hamburg
Bundesstr. 55

20146 Hamburg

Prof.Dr. Hans-Joachim Runckel
Abteilung für Mathematik IV .Al
Universität Ulm ..

89069 Ulm

Prof.Dr. Stephan Ruscheweyh
Mathematisches Institut
Universität Würzburg .
Am Hubland

97074 Würzburg

Prof.Dr. Edward B. Saff
Dept. of Mathematics
University of South Florida

Tampa , FL 33620-5700
USA

Prof.Dr. Elisabetta Santi
Dip. Energetica
Universita di L'Aquila

I-67100 L1Aquila

I

                                   
                                                                                                       ©



Dr. Michael Skrzipek
Fachbereich MathematIk
Fernuniversität Gesamthochschule

Prof.Or. Andre Weideman
Dept. of Mathematics
Oregon State University
Kidder Hall 368

58084 Hagen

Prof.Dr. Herbert Stahl
Fachbereich 2
Technische Fachhochschule Berlin
Luxemburger Str. 10

13353 Berlin

Prof.Dr. Kurt Suchy
Institut für Theoretische Physik
.(11)

Universität Düsseldorf
Universitätsstr. 1

40225 Düsseldorf

Prof.Dr. Vilmos Totik
Bolyai Institute
Jozsef Attila University
Aradi Vertanuk Tere 1

H-6720 Szeged

Prof.Dr. Galliano Valent
Laboratoire de Physique Theorique
de la matiere condense, T.24
Universite Paris 7 - Denis Oiderot
2, Place Jussieu

F-75251 Paris Cedex 05

- 23 -

Corvallis
USA

OR 97331-4605

                                   
                                                                                                       ©



                                   
                                                                                                       ©


