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The aim of this Arbeitsgemeinschaft was to understand the proof of the following theo-
rem, due to Viadimir Voevodsky:

Theorem. Let k be a field of characteristic # 2 and m,n be positive integers. Then the
norm residue homomorphism

K,'(k)/2™ — Hg (k, u5r)

is an isomorphism.
This had been conjectured by Milnor. More generally one expects:

Conjecture (Kato).For any positive integers m,n with m prime to char(k) the norm
residue homomorphism

Ky (k)/m — Hg (k, u3")

is an isomorphism.

As in the previous cases where this conjecture could be established (Merkurjev, Sus-
lin, Rost), the proof is based on the computation of certain cohomology groups attached
to norm varieties. However, contrary to the former approaches, Voevodsky works with
motivic cohomology rather than algebraic K-theory: for this reason, talks 1 to 12 were
devoted to the construction of this motivic cohomology. Two further key points in the
proof are the existence of a pure motive associated by Markus Rost to certain quadrics,
and Voevodsky’s observation that these quadrics are related to the theory of complex
cobordism (their C-valued points are generators of the mod 2 complex cobordism ring).
In order to exploit this connection he developed (partly together with F. Morel) analogues
of (stable) homotopy theory, Steenrod-algebra, Thom spaces and the cobordism spectrum
in the context of algebraic varieties: Talks 13-14 covered the Rost motive and talks 15 to
19 covered the homotopy part.
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1. Introduction

In 1970, Milnor introduced a map
KM(F)/2 - H(F, Z/2)

for every n > 0 and conjectured that it is an isomorphism. Here F is a field of characteristic
#2, K)(F) = (F*)®"/(...®a®1~a®...)z is its n-th Milnor K-group, and H"(F,-)is
the n-th Galois cohomology. This conjecture was recently proved by V. Voevodsky (after
earlier work of Merkuriev, Suslin and Rost for n < 4). The aim of this talk was to give an
overview, especially on the background. A more general conjecture (stated by K. Kato in
1979) proposes that a similar map

K'(F)/m — H"(F, ug") .

(introduced by Tate in 1976) is an isomorphism for any field F' and any m not divisible
by char(F'). This was proved for n = 2 by Merkuriev and Suslin in 1982. Around 1983
Beilinson and Lichtenbaum (partly independently and partly influenced by each other)
proposed that this map should be regarded as one from “motivic cohomology” to étale
cohomology. They postulated the existence of certain complexes (in the Zariski or the étale
topology) whose cobomology would be the motivic cohomology, and several “axioms”
which would among other things imply the Kato conjecture. For the latter especially
an analogue of Hilbert’s theorem 90 was shown to be crucial. After earlier attempts by
Bloch in 1983, Vioevodsky (partly in joint work with Suslin and Friedlander) defined such
comnplexes with many good properties. By developing a whole arsenal of new techniques
he could prove enough of the “axioms” to get the Milnor conjecture.

UWwWE JANNSEN (Kéln)

2. Closed Model Categories and triangulated categories

For every category and class of arrows there exists an extension called localization in <
which every arrow of the given class becomes invertible. A more precise description of]

the localization can be given when the class of arrows admits a calculus of left or right

fractions. The notion of closed model category is introduced. In that case the localization ‘-
is also the quotient of the subcategory of fibrant and cofibrant objects by an homotopy
relation. Examples of closed model categories are given: topological spaces, chain com-
plexes, simplicial complexes, spectra. If the closed model category is pointed then the
localization can be endowed with a “triangulated structure”. In the additive case it is
the usual notion of triangulated category if the suspension functor is an equivalence. The
notion of total derived functor is introduced.

GEORGES MALTSINIOTIS (Paris)
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3. Pretheories

In this talk the definition and basic properties of pretheories are presented: Let S denote
a smooth scheme over a field k and let p : X — S be a smooth curve over S, then
the group of relative cycles ¢(.X/S) of relative dimension 0 is defined; base change and
push forward morphisms are described. A pretheory (F, @) is a presheaf on the category
of smooth schemes over k& with values in the category of abelian groups, together with
homomorphisms of abelian groups

éx/s : (X/S) = Hom(F(X), F(5))

for each smooth curve p as above such that 1. the behavior of ¢x/s for S-points of p is
induced directly by this S-point, 2. the structure is compatible with pullbacks and 3. the
functor F comments with finite sums.

Each pretheory induces a sheaf Fzag in Zariski-topology on the category of noetherian
schemes over k. When Fyag is restricted to the category of smooth schemes over k it has
an unique structure of a pretheory, if (F, ) is supposed to be homotopy,invariant, i.e.
F(X) = F(X x A}) for all smooth X over k. Furthermore, Fzan is homotopy invariant,
too, and even of homological type, i.e. the push forward on ¢(X/S) is compatible with
the transfer maps.

OTMAR VENJAKOB (Heidelberg)

4. Pretheories 11

This talk continues the technical line of the former talk giving a connection between the
notions of [pretheory] and [presheaves with transfers].

§1. The Nisnevich topology was introduced and illustrated in-the cases of Spec (field) and
Spec (noetherian ring of dim 1).
§2. The category of smooth correspondences; presheaves with transfers are contravariant

- functors from it to Z-modules.

§3. Presheaves with transfer “are” (induce) pretheories of homological type. (This is
the technical translation of structure for further investigations of the HOMOTOPICAL
INVARIANCE of presheaves with transfers.)

§4. Main Theorem: For a presheaf with transfers, which is homotopical invariant, the
associated sheafified versions with respect to the Zariski and Nisnevich topology ( - and
also the corresponding cohomologies of these — ) still are

e homotopical invariant
e are isomorphic and

e in the case of a perfect base field so are also the corresponding cohomologies.
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A proof was sketchy given in §5, §6 investigating separately the Zariski resp. Nisnevich
associated sheaves. The accent was put on the geometrical and functorial character of the
needed (technical) constructions, isolating explicitly the use of the hypothesis “k perfect”.
Main reference of this talk: Cohomological theory of presheaves with transfers, Vladimir
Voevodsky, preprint, 1995.

Dan FuLea (Mannheim)

5. The triangulated category of geometrical motives

The category of smooth schemes over a field & can be turned into an additive category by
taking finite correspondences as morphisms. Voevodsky took the quotient of the homoto-
py category of bounded complexes over this category by a certain thick subcategory (to
impose homotopy invariance and Mayer-Vietoris exact triangles), and defined the trian-
gulated category of effective geometric motives as the pseudo-abelian completion of this
quotient category. By comparing this category to the category of effective Chow motives
it can be shown that the category of geometric motives, obtained by formally inverting
the Tate object is a tensor triangulated category.

JAN NAGEL (Essen)

6. The triangulated category of effective motivic complexes

The main thrust in this talk is to shift emphasis from schemes towards sheaves, thus allo-
wing for more flexibility by the use of the theory of cohomology of sheaves. The category
DM (k) of “effective motivic complexes over K is introduced; it is the subcategory of
the derived category of bounded complexes of Nisnevich sheaves with transfers, consisting
of complexes with homotopy invariant cohomology sheaves.

The “embedding theorem” asserts that there is a full dense embedding of tensor tri-
angulated categories

DM (k) — DM (k)

from effective geometric motives to effective motivic complexes. This is extremel y useful in
understanding the first category: it allows one to “compute”, for instance, the geometric
motive of a projective bundle or a blow-up. It also permits one to prove (under the
assumption of resolution of singularities) that DM;ﬁ,(k) is generated by smooth projective

varieties.

ROBERT LATERVEER (Strashourg)
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7. The cdh topology

The edh topology is the smallest Grothendieck topology on Sch/k, the category of k-
schemes of finite type, which refines the Nisnevich topology and has Y I Z — X as a
covering for each proper surjective f : Y — X and each closed subscheme Z C X" such that
(Y = FYZ)ra = (X = Z)rea. If k has resolution of singularities, this topology is
fine enongh to admit coverings of any scheme by smooth schemes. On the other hand, it
is still sufficiently close to the Nisnevich topology as to yield the same cohomology for the
kind of coefficients one is interested in. This is the content of the main result of this talk:

If k has resolution of singularities, and F is a pretheory, then

Hy (U, Fean) = Hio(U, Frar) Vi, for U smooth.

C

Also. if Feqw = 0 then C.{(F)zar is acyclic.

The talk presented the main steps in the proof of this theorem, due to Friedlander-
Voevadsky. A key point in the proof is the study of sheaves associated “with blowing-
ups of smooth schemes, and of their Nisnevich cohomology. Another key technique is
the description of cohomology by hypercoverings; by resolution of singularities, one can
assume that they consist of smooth schemes, for cdh topology.

CLAUS SCHEIDERER (Regensburg)

8. Moving lemma and duality

We prove the following theorem:

Theorem (Friedlander/Voevodsky) Let k be a field that admits resolution of singu-
larities. If X is a scheme of finite type over k and U is a smooth quasiprojective equidi-
mensional scheme of dimension n, then the canonical map

D: zequi(U, X, 1) = Zequi(X x U, 7+ n)
induces a quasi-isomorphism of complezes of Nisnevich sheaves
D: Qazequi(Ur X, 1‘) - Qtzequi(X xUr+ "')

Furthermore, if both X and U are smooth and projective over k, then the same state-
ment holds without assuming resolution of singularities (in char p) and even gives an

_isomorphism of homology presheaves.

This theorem implies in particular that motivic cohomology groups of smooth k-varieties
agree with higher Chow groups.

STEFAN MULLER-STACH (Essen)
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9. Main properties at the triangulated category of motives

After extending the functors L(—), C,(-) to the categories of schemes of finite type over k
and introducing the functors L%, C¢, one can show that these are the expected distinguis-
hed triangles in the derived category DMeF (e.g. Mayer-Vietoris, blow-up, localization).
This implies that C5(X), C,(X) e DM;‘;l for any X of finite type. Introducing the biva-
riant cycle cohomology one can use the groups Ari(X,Y) to describe certain Hom groups
in DM®T. In particular for X, ¥ of finite type

Hompyer (C(Y)(r)[2r + ], C(X)) = Ari(Y, X).

Furthermore, the embedding of DM;;",, in DMy, is effective and the latter category contains
all internal Hom(A, B). Moreover it is even a rigid tensor category.

RALPH KAUFMANN (MPI, Bonn)

10. Bloch-Kato Conjecture’and the Beilinson-Lichtenbaum Con-
jecture

The Milnor Conjectures are part of the general Bloch-Kato Conjecture which says the
following:
Bloch-Kato Conjecture: For any field F over a field k (ground field), the natural maps
s KY(F) /€ — HL(F, 1)
are isomorphismns for £ a prime different than char(k).
The Beilinson-Lichtenbaum conjecture is the following:

Beilinson-Lichtenbaum conjecture: For any field F' over k, the natural morphism in
DM (k),

Z/t(n) = B/€(n) := Tcn R pud" (here 7 : (Sm/fk)e, — (Sm/k)zar) .

is a quasi-isomorphism of complexes of sheaves.

Suslin-Voevodsky first show that the motivic cohomology groups H™(F, Z[E(n)) ~ KM(F)/¢;

this result has been proved in various guises by others, e. 8. Bloch. The main theorem pro-
ved by Suslin-Voevodsky is the following:

Bloch-Kato conjecture for k = Beilinson-Lichtenbaum conjecture for k.

Deutsche
Forschungsgemeinschaft




Talk # 10 proved the isomorphism H"(F,Z/é(n)) ~ KM (F)/¢ and a few reduction steps
needed for the next talk.

RAMDORAI SUJATHA (TIFR, Bombay, India)

11. BK conj. & BL conj. IT  (following Suslin-Voevodsky)

The talk was devoted to proving the following:

Prop: F a field of char 0. Assume that
‘ e BK holds over F in weight n
e BL holds over F' in weights < n
Then: HI(F.Z/0(n)) -1 HZ(F,p$") is injective for j < n.

Using the reduction of the previous talk this assertion suffices to prove the main
theorem of talk # 10 by induction. :

For the proof of the proposition let « € H* '*1(F,Z/f(n)) with n(a) = 0. Let S' =
affine line with 0,1 identified. It suffices to show that the image of a in H"!(8A* x
S, Z/f(n)) is zcro. We first establish:

Lemma: There is U € 0A' x S containing dA* x {0,1} such that the image of « in
H"+'(U,Z/t(n)) vanishes.

We consider the commutative diagram

H"(Li.B/E(n)) — H;Z“x.‘:l\u(aAixs|‘z/t(")) - H;*l(aA-'xSl,Z/l(n)) - ”"fl'(U,Z/l(n))

1 4 1 1

H(I.BJEn)) — ll;Z}xs,\L,(aAfxs',B/t(n)) -  H"Y(8AIxS',B/é(n)) — H"*Y(U,B/En))

. The middle map can be shown to be an isomorphism using the BL conj. for lower weights.

The left map becomes surjective after passing to a limit of neighbourhoods of vertices z
N sing. pt C A’ x S'. This exploits the BK conj. for weight n. A diagram chase shows the
vanishing of «v.

ANNETTE HUBER (Miinster)
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12. Norm varieties

Let @ = (ay,...,a,) € (k)" be a sequence of elements, Q; : < ay,...,a,_; >= a,t? a
Pfister neighbour of < ay, ..., a, >. Then Q; is called a norm-quadric associated with a.
It has the following property: if for some field extension F/k one has Q;(F) # #, then Qa
is a 2-splitting variety for @, i.e. the symbol {a,...,a,} € KM(F) is 2-divisible. Denote
by H90(n, €) the following statement:

V field k of characteristic zero! and any i < n one has H''(F, Zp (1)) = 0.

Theorem: Let B(3) := 7¢iy Rono*Zg (i), fBi 0 Zy(i) = B(3) the canonical morphism.
Then
H90(n, £) « f; quasi-isomorphisms for all i < 7..

Cor: H90(n, #) implies Bloch-Kato conjecture in weight n: .
KM (F)/€ 25 H(F, 18™)

is an isomorphism.

Main theorem (Voevodsky)

Assume that H90(n—1, ¢) holds in char=0and ¥ a = {ay,...,a,) there exists a £-splitting
variety .X; with the following properties:

(i} Xa Xspectr) Spec k(X;) is rational over k(X;)
(i) H3*' (C(Na), Zgo(m)) = 0
Then H90(n, €) holds in characteristic zero.

VIcTOR BATYREV (Tiibingen)

13. The Rost motive 1

Part I. Injectivity of the norm homomorphism Ay(X, K,) - F* for X/F a norm.
quadric.

Theorem (Rost, 1988) Let X be a norm quadric.
Then the norm homomorphism N : Ag(X, K1) = F* is injective.

Part II. Motivic decomposition of isotropic quadrics and the nilpotence theo-
rem.

We work in the category of Chow motives. The motive of a smooth projective variety X
is denoted also by .X. We write pt for SpecF, F our base field.

Proposition Let ¢ = H L ¢ (p,v quadratic forms, H hyperbolic plane). Write X, (Xy)
for the projective quadric given by ¢ (¢). Then X, = pt @ pt(dim X,) & X, (1).

8
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Theorem Let X be a projective quadric, [ € End(X), E/F an eztension. If fr €
Eund(\Xp) #s nilpotent, then f itself is nilpotent. )

NikiTA KARPENKO (Miinster)

14. The Rost Motive I1

Construction of the Rost motive

We work in the category of the Chow motives. Let ay,az,... € k*, (chark #2).
P =K g,y D>=< T >L @hy Yn = Pnol L< —@n > Xy and Z, denote the v,
. and ¢!, associated projective quadrics.

Theorem: (Rost)

On X, there exists a special projector p, € End(Xy):
(‘\Vnepn) = J\[n
(iy (Xn,idy, —p) & Z,,®L
d"— :
(ii) Zn M,® $l Lot

i=0
where d,, ;= 2"=! = 1 and L is the Tate-motive.

1R

As an implication of the theorems of I and II we get

Theorem:

HY(C(QW),Z(277Y) =0,

where @ = (a1,...,0n), Q= X, and C(Q,) the simplicial scheme.

WIELAND FISCHER (Regensburg)

. ‘ 15. Homotopy theory of schemes (I)

This talk gives a construction of an analogue to the (stable) homotopy category in alge-
braic topology replacing topological spaces by simplicial sheaves of sets on the Nisnevitsh
site over the category of smooth schemes over a field k. This homotopy category should
play the same role for representing (co)homology theories by spectra as in topology.

The construction is based on the language of closed model categories and consists of a
four-step-process:

1. Construct the simplicial homotopy category #5(k) by using the points of the site
to define weak equivalences and cofibrations “pointwise”.

9
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2. The homotopy category HA (k) one gets by making the structure morphism A; —
Spec(k) to an isomorphism.

3.44. Imitate the construction of spectra in topology replacing the suspension functor by
the smash product with 7 = A!/(A'\{0}) and get first the strict and finally the
stable homotopy category (of spectra) SH(k).

ToORSTEN FIMMEL (K&ln)

16. Homotopy theory of schemes (II)

The aim of this talk was to give indications of a proof to the following theorem of Voe- .
vodsky: Let k be a field with resolution of singularities, ¥ a simplicial smooth scheme /k.
Then for all p,¢ we have an isomorphism

Hp(%,Z(q)) = Homsy (S %, E(q)[p])

where E := (E,,e, : T A E, = Enyy) € SH is the “Eilenberg MacLane”-spectrum,
where E, = L(A")/L{A" — {0}), viewed as an object in ’Hfl (k) and where we have set
E(q)[p] := S{ A S&"" AE. I gave a proof for the corresponding statement in the setting of
pointed simplicial sets and gave a construction of a pair of adjoint functors

DM (k) = H (k)
which is analogous to the topological case.

Ivan Kausz (Koln)

17. Steenrod Operations

§1 Topological construction of Steenrod operations '

H"(X,Z/2) - H"(X,Z/2) X a topological space

from a class P, € H*(K,), K.=K(Z/2,n).

Working in the stable homotopy category, we define the Steenrod algebra as the
endomorphism of the Eilenberg-MacLane spectrum. It is a Hopf algebra and we
describe its dual and define the Milnor elements.

§2 Motivic Steenrod operations
We state results listed in Voevodsky’s preprint “The Milnor conjecture”.

10

DFG Deutsche
Forschungsgemeinschaft ©



§3 Margolis cohomology and the Milnor conjecture
We show how the vanishing of certain Margolis groups of the (reduced) simplicial
scheme associated to the Rost motive implies the Milnor conjecture.

FLORENCE LECOMTE (Strasbourg)

. 18. Thom Spaces and Cobordism

This talk provided topological background for the proof of the Milnor conjecture in the
' last talks. The treated topics were:

e Thom spaces of vector bundles.

Orientations of vector bundles in generalised cohomology theories and Thom iso-
morphism.

Characteristic classes of vector bundles and classifying spaces.

e The Thom spectrum and complex cobordism.

e The action of Steenrod operations on the cohomology of Thom spectra.

MICHAEL PUSCHNIGG (Miinster)

19. Thom Spaces and Cobordism II

We complete the proof of the Milnor conjecture by showing the vanishing of the algebraic
Margolin cohomology groups of a certain simplicial sheaves X which is attached to a
quadric.

' In order to do this we have to develop two essential things:
e algebraic cobordism groups MGL, .(—) on #H(k),

e a geometric realization functor tc : #(k) — #, when H is the classical homotopy
category of spaces.

The essential point in the proof is to show that a certain map does not vanish, which can
be seen after geometric realization.

ALEXANDER ScHMIDT (Heidelberg)

Reporting: OTMAR VENJAKOB (Heidelberg)
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