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Die diesjahrige Tagung iiber Algebraische Gruppen stand erneut, und in dieser
Besetzung zum letzten Male, unter der Leitung von T. A. Springer (Utrecht), P.
Slodowy (Hamburg) und J. Tits (Paris). An ihr nahmen 39 Mathematiker aus
13 Landern teil. Einige der jiingeren Teilnehmer wurden dabei durch EU-Mittel
unterstitzt.

In 25 Vortragen wurde iiber Fortschritte auf dem sich weit verzweigenden
Gebiet der Theorie der algebraischen Gruppen berichtet. Neben den auch auf
den letzten Tagungenim mittelpunkt stehenden Schwerpunkten

e Struktur- und Darstellungstheorie
o Algebraische Transformationsgruppen
e Schubertvarietaten
e Quantengruppen und Heckealgebren
galt diesmal auch den neuen Entwicklungen in den Bereichen
o Theorie der Gebaude
e Galoiskohomologie

besondere Beachtung (Einzelheiten entnehme man den folgenden Vortragsausziigen).
Zu Ende der Tagung sprachen die Teilnehmer den sheidenden Organisatoren,

T. A. Springer und J. Tits, ihren Dank fiir die langjahrige, vorbildliche Tatigkeit

im Dienste der mathematischen Gemeinschaft und des mathematischen Forschungsin-

stitutes Oberwolfach aus.

Dank einer Unterstiitzung im Rahmen des EU-Programmes TMR (Training and Mo-
bility of Researchers) konnten zusitzlick-einige jiingere Mathematiker zu der Tagung
eingeladen werden. Dies ist einerseits eine hervorragende Forderung des wissenschaft-
lichen Nachwuchses und gibt andererseits den etablierten Kollegen die Gelegenheit,

besonders begabte junge Math iker ken lernen.”

o &




oF

Deutsche
Forschungsgemeinschaft

Vortragsausziige

M. BRION
Criteria for smoothness and rational smoothness

A complex algebraic variety X of dimension d is rationally smooth if

Q forn=2d

n —_
H2(X) = { 0 otherwise

Jforall z € X,

where H;(X) denotes the cohomology with support in z, and rational coeffi-
cients (clearly, smooth varieties are rationally smooth). For Schubert varieties,
criteria for smoothness and rational smoothness have been obtained by Carrell-
Peterson, Kumar and Arabia. In this talk [ presented generalizations of these
criteria to a variety with an action of an algebraic torus T and an "attractive
" fixed point z (i.e. all weights of T in the Zariski tangent space of X at r are
contained in an open half space). I gave applications of these criteria to clos-
ures of double classes BwB in a "wonderful” compactification of a connected
semisimple groupe G ( where B is a Borel subgroup of G), and to closures of
orbits of a symmetric subgroup of G in the flag manifold G/B.

A. BROER

Semisimple Lie algebras and hyperplane arrangements

Let g be a semisimple Lie algebra over C, t a Cartan subalgebra, Rt pos-
itive roots, 4 = {Hq,a € R*}, where H, := ker (@ : t = C). Fix a subset
S C R*(arbitrarily), define d := (), s Ha, Ao := {HaNd,@ € R* Ho P 0} and
let Q be a defining polynomialin C[d] of | Jy¢ 4, # C 0. Put d? := 2-Upyea, H-
LetL be the Levi subgroup of the adjoirit group G with the Lie algebra 34(2).
Choose a parabolic subgroup P with the Levi decomposition P = P*.L. Put
n = LieP*, then ? + n is the solvable radical of p. Define:

VY =GxP(Jsn) =Y oiro=y

Restriction to d gives gives a graded map of S := C[?] modules
p : Mor(Y, g) — Mor(2,9)

Identify Mor(d, ¥) with Derc(S).
Theorem 1. Morg(Y,g) is a free graded S-module, independent of the choice
of P.
2. p is injective with image {D € Der¢(S), DQ C (Q)}.
Corollary [Orlik-Terao] The hyperplane arrangement A, in ? is free.
Corollary [Broer, Sommers-Trapa] We have

3
S dimH (2%, O)fF = Moo (1 + eit),

i=0
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where s = dim 0 and e, e2,...,e, are the degrees of a homogeneous basis of

Morg(T"(G/P),g)-

R. CARTER
Canonical bases and Lusztig’s PL-function

A report was given on joint work by R.W. Carter and R.J. Marsh. This con-
cerns the canonical basis B of the negative part U~ = (Fy, ..., F]) of a quantum
group U of type A;.

The longest element wp of the Weyl group has a reduced expression of form
J = 135...246...135.. (N terms) where N = (I + 1)/2, and U~ has the cor-
responding PBW-type basis B; = {Ff;g = (¢1,...,cn)} where ¢; € Z,¢; > 0.
For each b € B there exists a unique ¢ such that b = F;‘mod vl where £ is
the lattice Z[v]B;. In this way canonical basis elements in B can be paramet-
rised by non-negative integral vectors ¢ € RY. The behaviour of the canonical
basis vector appears to depend upon the regions of linearity of a PL-function
R :RN - B defined by Lusztig.

Each reduced word i for wo gives rise to a set P(i) of N — [ partial quivers, de-
termined by the chambers in its braid diagram. Here a partial quiver is a Dynkin
diagram in which certain edges are labelled by arrows, such that the set of edges
with arrows is non-empty and connected. [t is shown how to construct, for each
such i, a set of N non-negative integral vectors ¢,,,i =1, ..‘,l;gp,p € P(i) para-
metrized by the { simple roots and the N — ! partial quivers obtained from i.
These vectors do not depend on i, but only on a; and P respectively. "It is
conjectured that the set of all non-negative combinations of these vectors form
a region of linearity A(i) of Lusztig’s function R, and that the canonical basis
vectors b € B corresponding to vectors ¢ in the interior of A(i) are given by
monomials in Fy,...,Fy of form FJ,..., F{Y for certain non-negative integral
vectors a = (@y,...,any) which were explicitly described. o

E. BAYER-FLUCKIGER
Galois Cohomology of the Classical Groups

Let k be a field, &, a separable closure of k and T« = Gal(k,/k). Let G be
a linear algebraic group over k, smooth. As usual, one defines H'(k,G) =
H'(Tx,G(k,)). The following conjectures were made by Serre in 1962:
Conjecture 1: If cd(k) < 1, G connected, then H'(k,G) =0

Conjecture 2: If cd(k) < 2, G semisimple, simply connected, then H'(k,G) =
0. . :

Conjecture 1 was proved by Steinberg in 1965. Conjecture 2 is still not proved
in full generality. We have the following:

Theorem [E. B.-Parimala, 1995]: If G is of classical type (with the possible
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exception of groups of type triality Da), of type G2 or Fy, then conjecture 2
holds.

More recently, Colliot-Théléne and Scheiderer made the following "Hasse Prin-
ciple Conjectures”. One says that a field & has virtual cohomological dimen-
sion < n, written ved(k) < n, if there exists a finite extension k'/k such that
cd(k') < n. Let Q be the set of all orderings of k. For v € Q, let k, be the real
closure of &.

HP Conjecture 1: ved (k) < 1, G connected, then the natural nap H'(k,G) —
NyeaH'(k,, G) is injective.

HP Conjecture 2: ved(k) < 2, G semisimple, simply connected, then H!(k, G) —
MyenH(ky, G) is injective.

HP Conjecture 1 was proved by Scheiderer in 1996 (after some partial results
by Colliot-Théléne and Dueros). In the case of classical groups and groups of
type G2 and Fy, HP Conjecture 2 was proved by Parimala and E. B. The proof
makes extensive use of the theorem of Merkurjev-Suslin.

M. RosT
On algebraic cobordism and the common slot lemma for algebras

An important consequence of the recent work of V. Voevodsky is the following:
Degree formula: Let X, Y be proper smooth varieties over a field k (Char(k) #
0) of dimension d = p™"—1 (p a prime, n > 1). Then for any morphism f : X — ¥’

one has o Su(y
(b—d(p—)) = (degf) ('d—’()—)-) mod [y.

Here Iy C Zis the ideal generated by the degrees of the closed pointson Y. The
characteristic number S4(X) € Z is given by Sq(X) = Q4(c1(TX), ..., cn(T'X))
where Qg is the d-th Newton polynomial. It is known (Milnor) that S4(X) € pZ.
Corollary 1: ST} € Z/Ix is a birational invariant of X.
Corollary 2: If Iy C pZ and Sq(X) ¢ p°Z, then degf is prime to p.
We discussed an application of Corollary 2 to the common slot lemma for cyclic
algebras of degree p.

A major problem is to compute the number S4(X) for certain X. Here one
uses equivariant resolution of singularities and a theorem of Conner-Floyd on
fixed point free (Z/p)™-actions.

J.-P. SERRE

On a formula of Kac and a theorem of Burnside

Let G be a semisimple algebraic group over a field k of characteristic 0. Assume
G is of adjoint type. Let g € G be an element of G of finite order m, and Z¢g(g)
its centralizer.

Theorem: One has dimZg(g) > l+?Z'.-=1 [¢i=L], where { = rank(G) and the
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d; are the degrees of the invariant polynomials for the root system of G (e.g.
d; = 2,8,12,14,18,20,24,30 if G is of type Eg). Moreover, there is equality if
¢ is contained in a principal PSL, of G.

The proof uses a formula of V. Kac (LN 848) and H. Weyl. Another application
of this formula is:

Theorem : Let x be an irreducible character of a compact Lie group K.
Assume x(1) > 1. Then, there exists z € K of finite order, such that x(z) = 0.
When A’ is finite, this is a theorem of Burnside.

O. MATHIEU
Modular representations of GL,

Let k = FF, and let L(A) be the simple GL,(k)-module with hightest weight A.
We have the following facts:
1: For n < p, there is a conjecture (Lusztig) for ch(L(A)).
2: For n < p, the Lusztig conjecture is proved (Andersen, Jantzen, Soergel).
However, for the stable modular theory, i.e. the modular theory of GLa(Fp)
when n — oo (p is fixed) there are very few results and no conjectures. Denote
by hi, ha, ... the simple coroots, and set h;; := h; + ... + h;. We will explain a
formula of a joint work with G. Papadopoulo for the ch(L())) for all A of the
form:
A= )" e, with (A+p)(hij) <p

i<ii
As a consequence we get. an explicit character formula for L(mw;) for all n, p, m, i
(wi is the i-th fundamental weight). We will also mention recent joint work with
J. Jensen about modular representations of the symmetric group.
The proof of the results is based on a modular version of Verlinde’s formula (G.
Georgiev and O. M. 1992).

P. LITTELMANN

Frobenius splitting and the quantum Frobenius map

Let g be a semisimple complex Lie algebra, g = n~ @h@n* the triangular decom-
position, Z = Z[all roots of unity] and Ujz(g) a Kostant-form of the enveloping
algebra over Z. The pairing Uz (b~ ) x®aep Va(A)" = Z, (1, T f2) = T2 A (uvy)
is non degenerate, where v, is the highest weight vector. A similar pairing can
be defined for quantum groups at I-th roots of unity. The Frobenius maps
of Lusztig Fr : Ug(b™) — Uz(b™), Fr' : Uz(b~) — Ug(b~) induce dual maps
Fr* i @aep+ V(A)" = @aep+ Ve (1), Fr” - @aep+ Ve(IA)" = @pep+ V(A)

Theorem [P. L., S. Kumar] Let g be simply laced and & an algebraically closed
field of characteristic p =I. Then Fr™ specializes to a splitting of the Frobenius
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map:
HO(G/B, L2) = HYG/B,Lpx) ™5 HO(G/B, C»).

Further, the splitting is the same as the one induced by the section of La,
corresponding to the divisor consisting of the Schubert varieties of codiml and
the opposite Schubert varieties of codiml.

G. ROHRLE
Recent results on the action of parabolic groups

Let k be an infinite field and let V' be a finite-dimensional k-space. Further let
G L(V) be the linear group of V and let P be a stabilizer of a flag F in V. By P,
we denote the unique maximal unipotent normal subgroup of P, the unipotent
radical of P. Now P acts on P, via conjugation and on p,, the Lie algebra
of P, via the adjoint action. We describe some recent results classifying all
instances when P acts on p,or P, with a finite number of orbits. Furthermore,
in this instance we obtain a combinatorial formula for the number of orbits in
the finite cases. This classification result for GL(V) involves a detailed study
of the representation theory of a particular quiver with certain relations. For k
algebraically closed, we shall provide a complete description of the partial order
given by orbit closures on the set of P-orbits on pyin the finite instances. It turns
out that this partial order is equivalent to one given by purely combinatorial
means and thus can be computed easily.

For k algebraically closed, we also present the classification of all parabolic
subgroups P in any simple algebraic group of classical type with a finite number
of orbits on p,.

This is a report on various parts of joint work with T. Briistle, L. Hille and
G. Zwara.

L. HILLE
Actions of parabolic subgroups of GL,

Let P(d) C GL, be a parabolic subgroup, which is the stabilizer of some flag 0 C
Vi C Vo C ... C V; of vector spaces of dimension vector d = (dimV/, ...,dimV}).
Theorem [H.-Rohrle] P acts on the unipotent radical with finitely manny or-
bits if and only if ¢ < 5 for a proper flag as above.

More generally we consider the action of P on P, where PtV = [Py, P.E”]
and P{” = P,.

Theorem [Briistle-H.] P acts on P with finitely manny orbits precisely if
1./=1,0and t <5+ 3l

2.0=1,2,..andt <6+ 2.

Let @ be a directed biquiver, that is an oriented graph with two types of arrows:
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Solid and dotted arrows. Assume that Q is a directed finite and connected bi-
quiver. We define an algebraic variety P(d) := [1G L(Vi)x®, Hom(V;, V;), where
w runs over all dotted path (consisting of dotted arrows in @) and dimV; = d;.
This algebraic variety is a group with natural multiplication given by concaten-
ation of paths. Let R{d) be an algebraic subvariety of

R(d) := @ Hom(V;, V;)

waw
e

where w, w’ are dotted paths and a is a solid arrow. Moreover, assume P(d)
acts on R(d) via conjugation in the natural way given by the biquiver Q.
Theorem [Bruiistle-H.] There exists a quasi-hereditary algebra A together with
modules A(i) (called standard modules) such that the orbit of the action of G(d)
on R(d) are in natural bijection with the modules over A having a A-filtration.
In particular we can replace the action of P(d) on R(d) by an equivalent Sne-of
a reductive group. :

H. KRAFT

Jordan’s work on invariants and covariants of binary forms

In 1868 Paul Gordan proved that invariants and covariants of binary forms
are finitely generated. His method was "constructive” and leads to explicit
construction of these generators. Less known is a subsequent paper of C. Jordan
(1876/79) where he gives explicit degree bounds for the generators.

Both results and in particular the technique called "symbolic method” were
completely forgotten after Hilbert’s famous paper (1890/93). But there are
several reasous to look more closely at these old results:

1. Jordan’s bounds are by far the best we have, and cannot be reproduced by
our "modern” tools from representation theory.

2. The symbolic method leads to the explicit construction and description of
covariants.

3. There is hope to generalize this to other groups than SL,.

In joint work with J. Weyman (Northeastern University) we have been able to
understand Jordan’s proof (and verify the bounds). Moreover, we we were able
to work out the cases of binary cubics and quartics which were not completely
known by the classics. We also developed some "straightening law” technique
for the symbolic methods, for handling the symbolic expressions. The talk was
a report on Jordan’s result and a modern way how to understand his proof.
Theorem: Let W be a representation of SL,(C). Assume that all irreducible
components of W have dimension < N +1. Then the covariants (=U-invariants)
are generated by covariants of degree < N°® and order < 2N2.

Example : Let Vy denote the (d + 1)-dimensional irreducible representation
of SLi. Consider the representation M @ V3 = V3@ ... & V3. Then the ring of
U-invariants of M ® V3 is generated by 10 types of covariants corresonding to
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the irreducible representations (of GL{(M) x SLa) of the following list:

NMoV, SMeV, S5*PMoWw
S*Mev, S*'Mew
S2M &V, 53’1M®V2

MoVs SFov; AMoV,

C. DE CONCINI
Cohomology of Coxeter groups and braid groups

(joint work with M. Salvetti}

In the talk we have explained the construction of certain algebraic complexes
for computing the cohomology of a finite Coxeter group W with coefficients in
a Z[W]-module M. Similarily: If By is the associated Artin-Tits braid group
we have decribed similar complexes for computing the cohomology of Bw with
coefficients in a Z[Bw]-module N. In the case in which a Z{W]-module M is
considered as a Z[Bw]-module , we have defined a map ¥ of complexes indu-
cing the map v* : H*(W,M) — H*(Bw, M) corresponding to the quotient
v : Bw — W. Using this in the case M = Z(-1), the sign module, we have
deduced that if (W, S) is irreducible and not of type A, 1, with n having two
distinct prime divisors, then the genus of the fibration K(Pw,1) = K (Bw, 1),
Pw = kerv, is equal to n + 1.

J. CARRELL

Singular loci of Schubert varieties

We decribe the singular locus of a Schubert variety X(w) in G/B. Let Sing X (w)
have irreducible decomposition X(z1) U ... U X(zx) where zy,...,zx < w in W.
The problem is to identify these z;. The point is that there exists a degen-
eration of the tangent space (& la Zariski) T, X (w) to a subspace of T..X{w)
along a curve running from rz to z and contained in X(w), for any reflection
r € W so that z < rz < w. The main tool is a theorem of Dale Peterson:
Suppose X(w) is nonsingular at rz for each r so that z < rz < w, and suppose
also that the degenerations from T,;X(w) into T; X(w) give the same result
for all such r. Then X(w) is nonsingular at z. Therefore £ determines an ir-
reducible component of Sing X{w) if and only if X(w) is nonsingular at each
rz as above and there exist two degenerations that give different results. We
can give an (interesting) dsecription of when this occurs in terms of root strings.
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P. POLO

Generic singularities of certain Schubert varieties

The results presented in this talk are from joint work with M. Brion. Let k be
an algebraically closed field, G a connected semi-simple algebraic group over k,
T ¢ B C Q a maximal torus inside a Borel subgroup inside a parabolic sub-
group Q. Let W be the Weyl group, R the root system, Rt the positive roots
and A the simple roots. For w € Wlet Cug = BwQ/Q and Xuwg = Cuq- It is
known that when Cyq C Xug, there exists a T-stable locally closed subvariety
Nyg.wg of Xuwq such that Xuq = Cyq x Nyq.wg- We study Nyo,uq in certain
cases.

First let P be a parabolic subgroup containing B, L the Levi subgroup of P
containing T and § a simple root not in L. Let Vi (—B) be the Weyl module for
L with highest weight — and C(~p) the orbit closure of the highest weight
vector. Also, let Up be the unipotent radical of the parabolic opposed to B
Theorem 1: U5 P/POPsgP/Pis L-isomorphic to Cr{—B).
We then extend this result to show that under certain hypotheses on y, w,
Nyq.wq is also L-isomorphic to a certain orbit closure of a highest weight vec-
tor. Finally, we show that the hypotheses are satisfied if G has only components
of type A, D, Eand Q is a maximal parabolic corresponding to a minuscule
fundamental weight.

Theorem 2: Let G, Q be as above, w € W. Let P(w) = Stabg(Xwq), then:
1. The singular locus of Xuq, Sing(Xwg). equals Xuw@\P(w)ewq (hence is as
large as possible).

2. For every irreducible component Xyq of Sing(Xwq), the hypotheses men-
tioned above are satisfied. Therefore Nyguq is isomorphic to a certain orbit
closure of a highest weight vector.

This result can be extended to cover also the case of Schubert varieties in the
Grassmannian of lagrangian subspaces in a symplectic vector space.

V. LAKSHMIBAI

Degeneracy schemes and Schubert varieties

Let G be a semisimple algebraic group over a field k. For a Schubert variety
X(w) C G/Q, Q being a parabolic subgroup of G, let Y(w) = X(w)nO~,
where O~ is the opposite big cell in G/Q. Note that Y (w) is normal, Cohen-
Macauley and has rational singularities in all characteristics. We exhibit two
classes of affine varieties:

1. Ladder determinantal varieties

2. Quiver varieties (orbit closures in the space of representations of equioriented
quivers of type A),

for both of which the normality and Cohen-Macauley properties are concluded
by identifying them with Y (w)’s for suitable X (w)’s in suitable SL./Q. Asa
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consequence we obtain that the degeneracy schemes Q. constructed by Fulton
(in the context of universal Schubert polynomials) are reduced, Cohen-Macauley
and normal in all characteristics.

J. TITS

Algebraic simple groups of rank two and Moufang polygons

Let (W, S) be a Coxeter system. A building of type (W, S) is a set A endowed
with a "distance function” d: A x A = W satisfying certain axioms which will
not be recalled here but which roughly mean that A contains "many” subsets
isometric to W itself (endowed with the metric (w, w’) = w='w'). The building
A is said to be thick if Card{z € A,d(z,2¢) = s} > 2forallzp € Aand s € S.

If k is a field, G a simple k-group, G the group G(k) of its k-rational points,
P a minimal k-parabolic subgroup of G, P = P(k), W the relative Weyl group
of G and S the generating set of W canonically associated to P, then the set
A = G/P endowed with the W-metric d defined (via Bruhat decomposition) by
Pg~'g’P = Pd(gP,g'P)P for g,¢’ € G is a building of type (W, S). Thus, to
every k-group G as above there is naturally associated a building of spherical
type (i.e. Card(W) < o0). As is shown in the Springer LNM 386, the converse
is true for thick buildings of irreducible type and rank > 3, provided that one
suitably extends the notion of algebraic group: One must admit as such clas-
sical groups over arbitrary division rings and also the "mixed groups™ of type
Fa(k, K} (see loc.cit.) to which are associated buildings of type Fy.

The analogous result is definitely false in rank 2; indeed, for any integer
m > 3, "generalized m-gons”, i.e. buildings of type of the dihedral group
of order 2m, are totally "unclassifiable”. However, in 1974, the speaker conjec-
tured that one could characterize the generalized polygons arising from algebraic
simple groups (of relative rank 2) by imposing a certain geometric condition, the
"Moufang property”, which roughly means the existence of "sufficiently many
transvections”. This again supposes a suitable extension of the notion of al-
gebraic groups; in particular, the Ree groups of type 2Fy (corresponding to the
diagram - or index »@) are "responsible” for the existence of Moufang
octagons. That conjecture covers a great variety of statements which were
progressively established in the course of the recent years. An important. break-
through was achieved by the speaker and shortly after, with a shorter proof,
by R. Weiss; namely, both of them showed in the early '80’s that Moufang m-
gons exist only for m = 3,4,6,8. The classification of Moufang quadrangles,
the only remaining problem in 1997 was completed by R. Weiss (see below the
summary of his lecture) who inexpectedly discovered in so doing, a new family
of Moufang quadrangles, but it was shown by B. Miihlherr and H. van Malde-
ghem (see summary of the latter’s lecture)that those "new” quadrangles were
in fact associated with forms of mixed groups of type F; (forms corresponding
to the index @-@»£®); in trying to give an explicit formulation of his conjecture
in 1974, the speaker had overlooked the possible existence of such forms.
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R. WEISS
The classification of Moufang polygons

(joint work with J. Tits) )

Moufang n-gons exist only for n = 3, 4, 6, 8. Moufang triangles are parametrized
(in a precisely defined way) by alternative division rings (classified by Bruck and
Kleinfeld), Moufang hexagons by anisotropic cubic norm structures (classified
by Petersson and Racine) and Moufang octagons by pairs (K, ), where K is
a field of characteristc 2 and o an endomorphism of K whose square is the
Frobenius map. Let Uy, Uz, Us, Uy be root groups of a Moufang quadrangle T'.
If [(U1,Us) = 1 or [Uz,Us) = 1, then T is parametrized by a pair (K, o), where
K is a skew-field and ¢ an involution of A, or a triple (K, L,q), where L is
a vector space over K, a commutative field, and ¢ is an anisotropic quadratic
form on L, or [Uy,Us] = [Uz,Us] = 1 and T is parametrized by a field K.of char-
acteristic two and two additive subgroups having certain properties. Suppose
[U1,Us] # 1 and [Ua, U] # 1, then T has a certain canonical subquadrangle
To of involution type or of quadratic form type as just described. In the first
case, T is parametrized by a pair (X, q), where X is a right vector space over
the skew field K and ¢ an anisotropic pseudo-quadratic form on X with respect
to the involution . If T'g is parametrized by a triple (K, L,q), then ¢ must
have certain properties; in particular, dimg Lo = 6,8 or 12 and in each of these
three cases, ' is uniquely determined, or char(R’) = 2, then there exists a field
F such that K D F D K2, Ly = K*@ F, F = rad(g) and again T is uniquely
determined. These are the quadrangles of type Es, E7, Eg or Fj.

Theorem Every' Moufang polygon is isomorplic to one of the polygons de-
scribed above.

H. VAN MALDEGHEM
Quadrangles of type Fy

(joint work with B. Miihlherr)

In this talk, I explained, how the recently discovered Moufang quadrangles were
proved to be, after all, of "algebraic origin” by showing that they arise as cer-
tain "forms” (or equivalently as structure of fixed points'of an involution o) in
a mixed group of type Fy (or building of that type). Over the field with one
element, the situation can be explained with the following figure (I drew an
apartment, or Coxeter complex of type Fs, the 24-cell, explaining the involu-
tion 0. There are exactly four fixed points and four fixed octahedra, forming
a quadrangle, there are no fixed edges, nor fixed triangles). Certain lines form
a hypercube (a €»-e+¢-subdiagram of e—e=»—4 and a subquadrangle of the new
Moufang quadrangle is formed by the fixed squares together with four cubes.

11
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B. MUHLHERR
Quadrangles of type En

The classification of Moufang quadrangles due to Tits and Weiss provides as
a by-product the commutation relations for all Moufang quadrangles. It was
observed by Weiss that each quadrangle of type Ejg (resp. E7) contains a quad-
rangle of type E7 (resp. E¢) as a subquadrangle. Using the fact that all these
quadrangles arise as sets of fixed points of involutions acting on the appropriate
buildings,we have a geometric proof of this fact. As a further result we have a
geometric proof for the existence of the quadrangles of type En. This proof is
based on the ”Local to Global Theorem” for twin buildings. We illustrate the
idea at an example: Given an involution of E(k) we construct the twin building
Es(k). Now we obtain an involution of Eg(k(t)) by looking at the building at
infinity. .

P. ABRAMENKO
Finiteness properties of Kac-Moody groups over finfite fields

Let G be a Kac-Moody group functor in the sense of Tits (" minimal version”,
split), (W, S) the associated Coxeter system and diag(G) = diag(W, S) its
Coxeter diagram. Suppose card(S) < oo and card(W) = oo. We say that
diag(G) is n-spherical if Wy :=< J > is finite for all J € S with card(J) <-n.
Given a finite field Fq, we set G = G(F,) and denote by (G, B4, B-, N, 5) the
standard twin BN-pair associated to G. The main result discussed in the talk
was the following:

" Theorem 1: Assume that diag(G) is n-spherical, diag(G) does not contain any

subdiagram of rank < n of type F4, E¢,E7,Es, and ¢ > 22=1 then the para-
bolic subgroup P/ 1= BW;B, of G = G(F,) is of type Fn_y for any JCS,
€€ {+v _}~

If additionally card(W) < oo and diag(G) is not (n+ 1)-spherical, then Pl is
not of type F.

. The proof of this result uses decisively the action of G (and its parabolic sub-
groups) on the twin building associated to the twin BN-pair (G, B+, B_. N, S).
For some other groups admitting twin BN-pairs, analogous results can be de-
rived in a similar way, e.g. the following:

Theorem 2: Let H be a simple Fq-group of classical type, n = rkg (H) 21
and g > 221, Then H(Fq[t]), H{([Fg[t,t™']) are of type Fn_1 and H(F,{t]) is
not of type Fn. ~

Note that Theorem 2 is just a specialization of Theorem 1 in the case H splits
over Fg since then H(F,ft, t™]) = G(Fg) for some Kac-Moody group G of affine

type.
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E. SOMMERS

A new approach to computing the fundamental group of a nilpotent
orbit .

Let G be a connected, simple algebraic group over C with Lie algebra g. Let N
be a nilpotent element in g and let Zg(N) be the centralizer of N inG. When
G is adjoint, we give a unified description of the conjugacy classes in the (finite)
group Zg(N)/ZZ(N), generalizing the Bala-Carter classification of nilpotent
orbits in g. Our result turns out to be enough to determine these groups.

We also state a conjecture for the G-module structure of the global functions
on the universal cover of the orbit through N.

V.L. POPOV
Reductive subgroups of Aut(A%) and Aut{A*)

Let & be an algebraically closed field of characteristic 0. All varieties, morphisms
etc. helow are defined over k. )
Theorem 1: Let G be a connected reductive subgroup of Aut(A3), then G is
conjugate to a subgroup of GL3.

Theorem 2: Let G be connected reductive subgroup of Aut(A*) which is not
a one or two dimensional torus, then G is conjugate to a subgroup of GL4.
Remarks: 1. It is an open problem whether one can drop the assumption that
(7 is connected in Theorem 1.

2. Since there are nonlinearizable actions of Oy = k* >a Z/2 on A*, one cannot
drop this assumption in Theorem 2.

in the proofs some general statements are used, namely:

Theorem 3: Let G be a connected semisimple group and V = (L1 & ... ®
L)®..@®(L,®..® L,), where each L; appears m;-times and where the L;
are simple G-modules, L; # L; for i # j. Assume that k[V]® = k. If for all i
we have m; = dimL,-" , where H is the generic stabilizer for G on V, then any
G-equivariant automorphism of V (as algebraic variety) is linear.

Theorem 4: Let G be a reductive algebraic group, V a simple G-module and
H a reductive group acting by G-automorphisms of the algebraic variety V.
Then the natural action of G x H on V is linearizable.

Theorem 5: Let G be an algebraic group, V a G-module and X an irreducible
algebraic variety. Let Y = V x X and H be an algebraic group acting on Y by
G-automorphisms (G acts on Y via V). Assume that:

1. For all ve V we have 0 € G.v.

2. k[X]}* C k[X]#, where k[X]" stands for the invertible functions in k[X].

3. The group of all G-equivariant automorphisms of V is k*idy.

Then there is a character x : H — k* and an action of H on X such that the

13
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natural action of G x H is given by (g, h).(v,z) = (x(h).g.v,h.z) for all g € 7,
heH veVandze X.

M. GRINBERG
A generalization of Springer theory using nearby cycles

We state a condition on a smooth subvariety of C*, called transversality at
infinity. For X € C" transverse to infinity, we show that the Fourier transform
on the nearby cycles sheaf on the asymptotic cone as(X) C € is an intersection
homology sheaf on (C*)*. This result is applied to the following situations:

1. X C C is the general fibre of a product of linear forms.

2. X C gis a closed adjoint orbit in a semi-simple Lie algebra (this is the
Springer theory case).

3. X Cpisaclosed K-orbit in a symmetric space.

4. X C V is the general fibre of a quotient map V — G\\V for a polar
representation of G on V. This example generalizes many aspects of Springer
theory.

A. HELMINCK

Orbits and invariants associated with a pair of commuting involutions

(joint work with G. Schwarz)

Let o, 8 be commuting involutions of the connected reductive algebraic group ¢/

where o, 8, G are defined over a (usually algebraically closed) field &, char(k) #

2. We have fixed point groups H = G° and K = G® and an action (H x K)xG —

G, where ((h,k),g) > hgk™', h € H, k€ K, g € G. Let G//(H x K) denote

SpecO(G)#*¥ (the categorical quotient). Let A be maximal among subtori B

of G such that 8(b) = o(b) = b~! for all b € B. There is the associated Weyl

group W := Wy k(A). We show:

1. The inclusion A — G induces isomorphisms A/W — G//(H x K). In

particular, the closed (H x R')-orbits are precisely those which intersect A.

2. The fibres of G = G//{H x K} are the same as those occuring in certain

associated symmetric varieties. In particular, the fibres consist.of finitely many

orbits.

We investigate:

1. The structure of W and its relations to other naturally occuring Wey! groups

and the action of o6 on the A-weight space of g.

2. the relation of the orbit type stratifications of A/W and G//(H x K).
Along the way we simplify some of Richardson’s proofs for the symmetric

case § = o, and at the end we quickly recover results of Berger, Flensted-Jensen,

Hoogenboom and Matsuki for the case k = R.
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D. PANYUSHEV
On commuting varieties associated with semi-simple Lie algebras

Let g be a semi-simple Lie algebra over k = C C:={(zr,y) €gxg, [z,4] = 0}
the commuting variety. Except for irreducibility very little is known about C.
However, in sonie special cases, more information can be obtained. Consider
the following particular case

g is simple and p is a parabolic subalgebra with abelian nilpotent radical V = pY;
let V* be the nilpotent radical of the opposite parabolic. Define C := {(z,y),z €
V.y € V°,[z,y] = 0}. The main results are:

1. € = U;_(Ci, where r + 1 is the number of G-orbits in V (G = Aut(g)").

2. Each C; is normal with rational singularities and the algebra of covariants
k[C:]Y is polynomial (U the unipotent subgroup of G corresponding to V).

3. There is an explicit construction of an equivariant resolution of singularities
of C.

Berichterstatter: Stephan Mohrdieck
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