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Die diesjährige Tagung über Algebraische Gruppen stand erneut, und in dieser
Besetzung zum letzten Male, unter der Leitung von T. A. Springer (UtrechtL P.
Siodowy (Hamburg) und J. Tits (Paris). An ihr nahmen 39 Mathematiker aus
13 Ländern teil. Einige der jüngeren Teilnehmer wurden dabei durch EU.;.Mittel
unterstützt.

In 25 Vorträgen wurde über Fortschritte auf dem sich weit verzweigenden
Gebiet der Theorie der algebraischen Gruppen berichtet. Neben den auch auf
den let.zten Tagungenim mittelpunkt stehenden Schwerpunkten

• Struktur- und Darstellungstheorie

• Algebraische Transformationsgruppen

• Schubertvarietäten

• Quantengruppen und Heckealgebren

galt diesmal auch den neuen Entwicklungen in den Bereichen

• Theorie der Gebäude

• Galoiskohomologie

besondere Beachtung (Einzelheiten entnehme man den folgenden Vortragsauszügen).
Zu Ende der Tagung sprachen die Teilnehmer den sheidenclen Organisatoren t

T. A. Springer und J. Tits, ihren Dank für die langjährige, vorbildliche Tätigkeit
im Dienste der mathematischen Gemeinschaft und des mathematischen Forschungsin
stitutes Oberwolfach aus.

Dank einer Unterstützung im Rahmen des EU-Programmes TMR (Training and !\(o
bility of Researchers) konnten zusätzliclY"einige jüngere Mathematiker zu der Tagung
~ingeladen werden. Dies ist einerseit,r eine hervorragende Förderung des wissenschaft
hchen Nachwuchses und gibt andererseits den etablierten Kollegen die Gelegenheit,
besonders begabte junge Mathematiker kennenzulernen.·
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Vortragsauszüge

M. BRION

Criteria for smoothness and rational smoothness

A complex algebraic variety X of dimension d is rationally srnooth if

n() {<Q fOT n =2d
Hz X = 0 otherwise J fOT aLl z E X,

where H;(X) denotes the cohomology with support in 1:, and rational coeffi- __
cients (clearly, smooth varieties are rationally smooth). For Sehubert varieties, ..
criteria for smoothness and rational smoothness have been obtained by Carrell-
Peterson, Kumar and Arabia. Inthis talk I presented generalizations of these
criteria to a variety with an action of an algebraic torus T and an "attractive
" fixed point z (i.e. all weights of T in the Zariski tangent space of X at x are
contained in an open half space). I gave applications of these criteria to dos-
ures of double cIasses 8wB in a "wonderful" compactifieation of a connected
semisimple graupe G ( where B is a Borel subgroup of Cl, and to closures of
orbits of asymmetrie subgroup of G in the fiag manifold G/ B.

A. BROER

Semisimple Lie algebras and hyperplane arrangements

Let g be a semisimple Lie algebra over C, t a Cartan subalgebra, R+ pos
itive roots, A = {Ho,o E R+}, where Ho := ker (0 : t ~ Cl. Fix a subset
Sc R+(arbitrarily), define tI := no~s Ho, A o := {HonO, 0 E R+, Ho 1; o} and
let Q be a defining polynomial in qtlJ ofUHE.A

D
H c tI. Put tl° := D-UHEÄ

ll
H.

LetL be the Levi subgroup of the adjoirtt group G with the Lie algebra Jg(D).
Choose a parabolic subgroup P with the Levi decomposition P = pu .L. Put
n = Liepu, then tI + n is the solvable radical of p. Define:

1J ~ Y := G x P (tJ 11< n) ~ yL ~ 1 • t1 ~ 1)

Restrietion to tI gives gives a graded map of S := qlJ] modules

p : Mor( y, g) ~ Mor(D., 19)

Identify Mor(tI, t1) with Derc(S).
Theorem 1. Morc(Y, g) is a free graded S-module, independent of the choice
of P.
2. p is injective with image {D E DerC(S), DQ C (Q)).
Corollary [Orlik-Terao] The hyperplane arrangement At) in D is free.
Corollary [Broer, Sommers-Trapa] We have

I

LdimHi(tl°,C)t i =n:=o(1 + fit),
i=O
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where s = dirn D and el, e2, ... , e, are the degrees of a homogeneous basis of .
Mora(T·(G/P},ß)·

R. CARTER

Canonical hases and Lusztig's PL-function

Areport was given on joint work by R.W. Garter and R.J. Marsh. This con
cerns the canonicat basis B of the negative part U- =(FI , .•. , F,) of a quantum
group U of type A,.
The longest element Wo of thc Weyt group has a reduced expression of form
j = 135...246...135.. (N terms) where N = 1(1 + 1)/2, and U- has the cor
~esponding PBW-type basis Bi = {FJ;f. = (CI, ... ,CN)} where Ci E Zl,l"i ~ O.

For each bEB there exists a unique-~ such that b == FJmod vI:. where r. is

the lattice Z[v)Bj . In this way canonical basis elements in B can be p~;amet

rised by non-neg~tive integral vectors ~ E ~N. The behaviour of the can"onical
basis vector appears to depend upon the regions of linearity of a PL-function
R : ~N 4> ~N defined by Lusztig.
Each reduced word i. for Wo gives eise to a set. P(i.) of N - I partial quivers, de
termined by the chambers in its braid diagram. Here a partial quiver is a Dynkin
diagram in which certain edges are labelIed by arrows, such that the set of edges
with arrows is non-ernpty and connected. It is shown how to construet, for each
such i, a set of N non-negative integral vectors fa ö ' i = 1, ... ,1; fp, p E P( i) para
metrized by the I simple roots and the N - I partial quivers obtained from 1.
These vectors do not depend on i, but only on Gi and P respeetively. : It is
conjectured that the set of aH non-negative combinations of these vectors form
a region of linearit.y A(i) of Lusztig's function R, and that the canonical basis
veetors bEB eorresponding to veetors ~ in the interior of A(i) are given by
monomials in F 11 ••• , Ei of form Fi~I, ... , Pt: for certain non-negative i~.t~gral

vectors 9. = (al, ... ,aN) which were explieitly described.

E. BAYER-FLUCKIGER

Galois Cohomology of the Classical Groups

Let k be a field, k, a separable closure of k and fk = Gal(k,/k). Let G be
a linear algebraic group over k, smooth. As usual, one defines H1(k, C)
H1(rk,G(k,». The followingconjectures were made by Serre in 1962:
Conjecture 1: Ir cd(k) $ I, G connected, then H 1(k, C) =0
Conjecture 2: If cd(k) $ 2, G semisimple, simply connected, then H I (k, C) =
Q.

Conjecture 1 was proved by Steinberg in 1965. Conjecture 2 is still not proved
in full generality. We have the following:
Theorem [E. B.-Parimala, 1995): If G is of classical type (with the possible
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mod 11'.

except.ion of groups of type triality D4 ), of type G'2 or r1, then conjedure 2
holds.
More recently, Colliot-Thelene and Scheiderer made t.hc following "Hasse Prin
ciple Conjectures". One says that a field k has virtual cohomological dimell
sicm ~ n, written vcd(k) ~ n, if there exists a finite f'xtension k' /k such t,hat
cd(k') ~ n. Let n be.the set of all orderings of k. For lJ E n, let ktl be t.he real
closure of k.
HP Conjecture 1: vcd (k) ~ I, Cconnected, then the naturalll1ap f/1(k,G)---?
nveoH I (kv , C) is injective.
HP Conjecture 2: vcd(k) ~ 2, G semisimple, simply connected, then H 1(k, G) ---?
IlvenHl(kvl C) is injective.
HP Conjecture 1 was proved by Scheiderer in 1996 (after some partial results
by CoHiot-Thelene and Dueros). In the case of classical groups and groups of
type G2 and F4 , HP Conjecture 2 was proved by Parimala and E. B. The proof
makes extensive use of the theorem of Merkurjev-Suslin.

M. ROST

On algebraic cobordism snd the common slat lenuoa for algebras

An important consequence of the recent work of V. Voevodsky is thc following:
Degree formula: Let X, Y be proper smooth varieties over a field k (Char(k) :I
0) ofdimension d = pn_l (p a prime, n ~ 1). Then for any morphism f : .\" ---? Y
one has

Cd~:(») = (degf) Cd~n)

Here I}' C iZ is the ideal generated by the degrees of the closed points on Y. The
characteristic number Sd(X) E Z is given by Sd(X) = Qd(cl(TX), ... , cn (7'X))
where Qd is the d-th Newton polynOlnial. It is known (Milnor) that Sd(X) E pZ.
Corollary 1: ~ E '".f../ I x is abirational invariant of X.

Corollary 2: Ir Iy C piZ and Sd(X) ~ p271, then degf is prime to p.
We discussed an application of Corollary 2 to the common slot lemma for eydic
algebras of degree p.

A major problem is to compute the number Sd(X) for certain X. Here one
uses equivariant resolution of singularities and a theorem of Conner-Floyd on
fixed point free (/Z/p)n-actions.

J.-P. SERRE

On a formula of Kac aod a theorem of Burnside

Let G be a semisimple algebraic group over a field k of characteristic O. Assume
G is of adjoint type. Let 9 E G be an element of G of finite order nI, and ZG (g)
its centralizer.
Theorem: One has dimZG(g) ~ 1+2L~=1 [~], where 1= rank(G) and the
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di are t.he degrees of t.he invariant polynomials for the root system of G (e.g.
di =2,8,12,14, 18,20,24,30 if G is of type Es). Moreover, there is equality if
9 is contained in a principal PSL2 of G.
The praof uses a formula of V. Kac (LN 848) and H. WeyJ. Another application
of this formula is:
Theorem: Let X be an irreducible character of a compact Lie group f{.

Assurne X(I) > 1. Then, there exists x E !{ of finite order, such that X(x) = o.
When 1\" is finite, this is a theorem of Burnside.

O. MATHIEU

Modular representations of GLn

Let k = iFp and let L(A) be the simple GLn(k)-module with hightest weight A.
We have the following facts:
1: For n S p, there is a conjecture (Lusztig) for eh( L( A)).
2: For n «p, the Lusztig conjecture is proved (Andersen, Jantzen, Soergel).
However, for the stable modular theory, i.e. the modular theory of GLn (iFp )

when n --+ 00 (p is fixed) there are very few resuJts and 00 conjectures. Denote
by h 1 • h21 ... the simple coroots, and set hij := hi + .,. + h j . We will explain a
formula of a joint work with G. Papadopoulo for the ch(L(A)) for all A of the
form:

).::: L aiWi, with (A + p)(hij) $ p
i$l$i

As a consequence we get. an explicit eharacter formuJa for L( mWj) for all n, p, In, i
(w; is the i-th fundamental weight). We will also mention recent joint work with
J . .Jensen abaut modular representations of the symmetrie group.
The proof of the results is based on a modular version of VerJinde's formula (G.
Georgiev and O. M. 1992).

P. LITTELMANN

Frobenius splitting and the quantum Frobenius map

Let 9 be a semisimple eomplex Lie algebra l 9 = n- EB~EBn+ the triangular decom
position, Z =Z(all roots of unity] and Uj(g) a Kostant.-form of the enveloping
algebraover Z. The pairing Uz(b-) xEIh.EP VZ(A)" --+~, (u l L JA) ~ L fA(UVA)
is non degenerate l where VA is the highest weight vector. A similar pairing can
be defined for quantum groups at i-th roots of unity. The Frobenius maps
of Lusztig Fr : U((b-) --+ Ui(b-L Fr' : Uz(b-) --+ Udb-) induce dual maps
Fr" : EBAEP+ V(A)" --+ E9.\EP+ Vd IA )", Fr l

" : EBAEP+ V((l.\)* -+ EDAEP+ V(A)*
Theorem [Po L" S. Kumar] Let 9 be simply laced and k an algebraically elosed
field of characteristie p =I. Then Fr l

" specializes to a splitting of the Frobenius
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rnap:

Further, the splitting is the same as the one iuduced by the sedion of L21'

corresponding to the divisor consisting of the Schubert varieties of codiml and
thc opposite Schubert. varieties of codim 1.

G. RÖHRLE

Recent results on the action of parabolic groups

Let k be an infinite field and let V be a finite-dimensional k-space. Furt.h~r let.
GL(V) be the linear group of V and let P be a stabilizer of a flag F in V. By Pu
we denote the unique maximal unipotent normal subgroup of P, the unipotent
radical of P. Now P acts on Pu via conjugation and on Pu, the Lie algebra
of Pu via the adjoint action. We describe same recent results c1assifying all
instances when P acts on Puor Pu with a finite number of orbits. Furthermore.
in t,his instance we obtain a combinatorial formula for the number of orbits in
the finite cases. This c1assification result for CL(V) involves a detailed st.udy
of the representation theory of a particular quiver with certain relations. For k
algebraically closed, we shall provide a complete description of the partial order
given by orbit closures on the set of P-orbits on Puin the finite instances. It. t.urns
out t.hat this partial order is equivalent to one given by purely combinat.orial
rneans and thus can be computed easily.

For k algebraically closed, we also present the classification of all parabolic
subgroups P in any simple algebraic group of c1assical type with a finite number
of orbits on Pu-

This is areport on various parts of joint work with T. Brüstle, L. Hille and
G. Zwara.

L. HILLE

Actions of parabolic subgroups of GLn

Let P(d) ~ CLn be a parabolic subgroup, which is the stabilizer ofsome flag 0 C
VI C V2 C ... C ~ of vector spaces of dimension vector d = (dimVI, ... , dim\/t).
Theorem [H.-Röhrle] P acts on the unipotent radical with finitely manny or
bits if and only if t ~ 5 for a proper flag as above.
More generally we consider the action of P on pJ'}, where pJ'+I) := [PUl pJ')]
and pJO) = Pu.
Theorem [Brüstle-H.] P acts on pJl) with tinitely manny orbits precisely if
1. 1 = 1, 0 and t ~ 5 + 3/.
2. 1 = 1,2, ... and t ~ 6 + 2/.
Let Q be a directed biquiver, that is an oriented graph with tWQ types of arrows:

6
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Solid and dotted arrows. Assurne that Q is a directed finite and connected bi
quiver. Wedefine an algebraic variety P(d) := nCL(\I;)X(BwHom(Vi, Vj), where
w runs over all dotted path (consisting of dotted arrows in Q) and dirn \ti =d•.
This algebraic variety is a group with natural multiplication given by concaten
ation of paths. Let R(d) be an algebraic su bvariety of

where tlJ, w' are dotted paths and Q is asolid arrow. Moreover, assurne P(d)
acts on R(d) via conjugation in the natural way given by the biquiver Q.
Theorem [Bruüstle-H.] There exists a quasi-hereditary algebra A together with
modules ß(i) (calIed st.andard modules) such that the orbit of the action of G(d)
on R(d) are in natural bijection with the modules over A having a ,6-filtration.
In particular we can replace the action of P(d) on R(d) by an equivalent one-of
a reductive group.

H. KRAFT

Jordan's work on invariants and covariants of binary forms

In 1868 Paul Gordan proved that invariants and covariants of binary forms
are finitely generated. His method was "constructive" and leads to explicit
construction of these generators. Less known is a subsequent paper of C. Jordan
(1876/79) where he gives explicit degree bounds for the generators.
80th results and in part.icular the technique called "symbolic method'~ were
complet.ely forgotten after Hilbert's famous paper (1890/93). But there are
several reasons to look more -closely at these old resul ts:
I. Jordan 'sbounds are by far the best we have, and cannot be reproduced by
our 'I modern" tools from representation theory.
2. The symholic method leads to the explicit construction and description of
covariants.
3. There is hope to generalize this to other groups than SL2 .

In joint work with J. Weyman (Northeastern University) we have been able to
understand Jordan 's proof (and verify the bounds). Moreover, we we were able
to work out the cases of binary cubics and quartics which were not completely
known by the classics. We also developed some "straightening law" technique
for the symbolic methods, for handling the symbolic expressions. The talk was
areport on Jordan 's result and a modern way how to understand his proof.
Theorem: Let W be a representation of SL2 (C). Assume that all irreducible
components of W have dimension :s N + 1. Then the covariants (=U-invariants)
are generated by covariants of degree :s N 6 and order :s 2N2

.

Example : Let \/d denoLe the (d + l)-dimensional irreducible representation
of SL2 • Consider the representation M 0 V3 = V3 EB .. , ffi V3- Then the ring of
U-invariants of A-l 0 V'3 is generated by 10 types of covariants corresonding to
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the irreducible representations (of GL(M) x SL2 ) of the following list:

A2M0Va
S2,1M0V1

S2M QJ V2

AI G V3

S4M 0 Va 8 3 ,3M 0 Va
54 ,1M (9 VI
S3,lM0V2

S3 0 V3 A2 M Gy V4

C. DE CONCINI

Cohomology of Coxeter groups and braid groups

Uoint work with M. Salvetti) e
In the talk we have explained the eonstruction of eertain algebraie complcxes
for computing the cohomology of a finite Coxeter group W with coefficients in
a Z(W]-module M. Similarily: If Bw is the assoeiated Artin-Tits braid group
we have decribed similar complexes for computing the cohomology of Bw wit,h
coefficients in a &:[Bw]-module N. In the case in which a ~[W]-module· M is
considered as a Z[Bw]-module , we have defined a map i of complexe.s indu-
cing the map .( : H·(W, M) -+ H·(Bw, M) eorresponding to the quotient
J : Bw -t W. Using this in the case M = Z(-l), the sign module, we have
deduced that if (W, S) is irredueible and not of type An-I, with n having two
distinct prime divisors, then the genus of the fibration K (Pw , 1) -+ 1\' (Bw , 1),
Pw = ker"Y, is equal to n + l.

J. CARRELL

Singular loci of Schubert varieties

We decribe the singular loeus of a Schubert variety X(w) in GI B. Let SingX(w)
have irreducible decomposition X(xdU ... UX(Xk) where Xl, ..• ,Xk < w in lt'V.
The problem is to identify these Xi. The point is that there exists a degen
eration of the tangent space (a la Zariski) Trr X (w) to a su bspaec of 'Fr .\ (w)
along a curve running from TX to X and eontained in X(w), for any reflection
r E W so that x < TZ ~ w. The Inain tool is a theorem of Dale Pet.erson:
Suppose X(w) is nonsingular at TX for each r so that x < rx ~ w, and suppose
also that the degenerations from T,.rX(w) inta TxX(w) give the same result
for all such r. Then X(w) is nonsingular at x. Therefore x determines an ir
reducible component of SingX(w) if and only if X(w) is nonsingular at each
TX as above and there exist two degenerations that give different results. We
can give an (interesting) dsecription of when this oceurs in terms of root strings.
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P. POLO

Generic singularities of certain Schubert varieties

The results presented in this talk are from joint work with M. Brion. Let k be

an algebraically elosed field , G a connected semi~simplealgebraic group over k,

T C B C Q a maximal torus inside a Borel subgroup inside a parabolic sub

group Q. Let W be tbe Weyl graup, R the root system, R+ the positive roats

aod ß the simple roots. Far w E W let CwQ =BwQ/Q and XUIQ =CwQ. It is

known that when CyQ C XwQ, there exists a T-stable locally closed subvariety

NyQ.wQ of XwQ such that XwQ ~ CyQ x NyQ,wQ' We study NYQ,wQ in eertain

cases.
First let P be a parabolic subgroup containing B, L the Levi subgroup of P

containing T and ß a simple root not in L. Let VL (-ß) be the Weyl module for

L with highest weight -ß and CL( -ß) the orbit closure of the highest weight

vector. Also, let Up be the unipotent radieal of the parabolic opposed to P.~·

Theorem 1: Upp/pnpsßP/p is L-isomorphie to CL(-ß). '.'.

We then ex'tend this result to show that uoder certain hypotheses on y, 'U1,

NyQ,wQ is also L-isomorphie to a eertain orbit closure of a highest weight vec

tor. Finally, we show that the hypotheses are satisfied if G has only components

of type At D, E aod Q is a maximal parabolie corresponding to a nlinuscule

fundamental weight.

Theorem 2: Let G, Q be as above, w E W. Let P(w) =StabG(.XwQ), then:

1. 'The singular loc.us of XwQ, Sing(XwQ), equals XwQ\P(w)ewQ (heuce is as

large as possible).
2. For every irreducible component XyQ of Sing(Xwq ), the hypotheses meo

tioned above are satisfied. Therefore NyQ,wQ is isomorphie to a certalll orbit

closure of a highest weight vector.

This result ean be extended to eover also the ease of Schubert varieties in tbe

Grassmannian of lagrangian subspaces in a sympleetic vectaT space.

V. LAKSHMIBAI

Degeneracy schemes and Schubert varieties

Let G be a semisimple algebraic graup aver a field k. For a Schubert variety

...Y(w) C G/Q, Q being a parabolic subgroup of G, let Y(w) := X(w) n 0-,

where 0- is the opposite big cell in G/Q. Note that Y(w) is normal, Cohen

Macauley and has rational' singularities in aH characteristics. We exhibit two

classes of affine varieties:

1. Ladder determinantal varieties

2. Quiver varieties (orbit closures in the space of representations of equioriented

quivers of type A),
for bath of which the normality and Cohen-Macauley properties are concluded

by identifying them with Y(w)'s for suitable X(w)'s in suitable SLn/Q. As a

9
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consequence we obtain that the degeneracy schemes nUt constructed by Fulton
(in the context of universal Schubert polynomials) are reduced, Cohp.n-Macauley
alld normal in aJl eharacteristics.

J. TITS

Aigebraic simple groups of rank two aud Moufang polygons

Let (W, S) be a Coxeter system. A building of type (W, S) is a set ß endowed
with a "distance function" d : d x ß ~ W satisfying certain axioms which will
not be recalled here but which roughly mean that ß contains "many" subsets
isometrie to W itself (endowed with the metrie (w, w')...-+ w-1w'). The building
Ö is said to be thick if Card{z E Ö, d(x, xo) = s} ~ 2 for all Xn E ß and sES.

Ir k is a field, Q. a simple k-group, G the group Q(k) of its k-rational points,
E a minimal k-parabolic subgroup of Q, P =E(k), W the relative Weyl group
of G and S the generating set of W eanonically associated. to P, then the set
Ö = GI P endowed with the W-metric d defined (via Bruhat decomposition) by
Pg-1g'P = Pd(gP,g'P}P for 9,9' E G is a building oftype (W,S). Thus, to
every k-group Q. ~ above there is naturally associated a building of spherical
type (i.e. Card(W) < (0). As is shown in the Springer LNM 386, the converse
is true for thick buildings of irreducible type and rank ~ 3, provided that Olle

suitably extends the notion of algebraic group: One must admit as such c1as
sical grollps over arbitrary division rings and also the "mixed groups" of type
f 4(k, [{) (see loc.eit.) to which are associated buildings of type F4 .

The analogous result is definitely false in rank 2; indeed, for any int.eger
ln ~ 3, "generalized rn-gons" I i.e. buildings of type of the dihedral grotlp
of order 2m, are totally "unclassifiable". However, in 1974, the speaker conjec
tured that one could characterize the generalized polygons arising from algebraic
silnple groups (of relative rank 2) by imposing a certain geometrie condition, the
" Moufang property" I which roughly means the existence of "sufficiently many
transvections". This again supposes a suitable extension of the notion of al
gebraic groups; in pai't;)the Ree groups of type 2 F. (corresponding to thc
diagram - or index - ) are "responsible" for the existence of Moufang
octagons. That conjec ure covers a great variety of statements which were
progressively established in the course of the recent years. An important. break
through was achieved by the speaker and shortly after, with a shorter proof,
by R. Weiss; namely, both of them showed in the early '80's that Moufang 111

gons exist only for m = 3,4,6,8. The classification of Moufang quadrangles,
the only remaining problem in 1997 was completed by R. Weiss (see below the
summary of his lecture) who inexpectedly discovered in so doing, a new family
of Moufang quadrangles, but it was shown by B. Mühlherr and H. vanMalde
ghem (see summary of the latter's lecture)that those "new" quadrangles were
in fact associated with rorms of mixed groups of type F4 (forms corresponding
to the index~); in trying to give an explicit formulation of his conjecture
in 1974, the speaker had overlooked the possible existence of such forms.

10
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The c1assification of Moufang polygons

(joint work with J. Tits)
Moufang n-gons exist only for n = 3,4,6,8. Moufang triangles are parametrized
(in a precisely defined way) by alternative division rings (c1assified by Bruek and
KleinfeldL Moufang hexagons by anisotropie eubic norm structures (classified
by Petersson and Racine) and Moufang octagons by pairs (K, (T), where ]f is
a field of characteriste 2 and u an endomorphism of K whose square is the
Frobenius map. Let V1 ,1J2, V3, V4 be root groups of a Moufang quadrangle f.
If [VI, Ua] = 1 or [U2 , U4 ] = 1, then r is parametrized by a pair (K, u), where
K is a skew-field and q an involution of K, or a tripie (I<, L, q), where L is
a vector space over 1\, a eommutative field, and q is an anisotropie quadratic
form on L, or [VI, Ua] = [U2, U4] = 1 and r is parametrized by a field K·.of ehar
aeteristic two and two additive subgroups having certain properties. Suppose
[UI, U3] f; 1 and [[12,['4] #= 1. then r has a eertain eanonical subquadrangle
roof involution type or of quadratic form type as just described. In the first
case, r is paranletrized by a pair (X, q), where X is a right vector spaee over
the skew fjeld !{ and q an anisotropie pseudo-quadratic form on X with respect
t.o the involution (T. lf f o is parametrized by a tripie (K, L, q), then q must
have certain properties~ in particular, dimK Lo = 6,8 or 12 and in each of these
three casp.s, r i8 uniquely determined, or char(K) =2, then there exists a field
F such that 1\ 2 F 2 J{2, Lo == J{4 $ F t F = rad(q) and again f is uniquely
determined. These are the quadrangles of type E 6 , E7, Es or F4 •

Theorem Every Moufang polygon is isomorphie to one of the polygons de
scribed above.

H. VAN MALDEGHEM

Quadrangles of type F1

(joint work with B. Mühlherr)
In this talk~ I explained, how the reeently discovered Moufang quadrangles were
proved to be, after all, of "algebraie origin" by showing that they arise as cer
tain "forms" (or equivalently as structure of fixed points'of an involution u) in
a mixed group of type F4 (or building of that type). Over the field with one
element., the situation can be explained with the following figure (I drew an
apartment, or Coxeter complex of type F4 , the 24-cell, explaining the involu
tion (T. There are exactly four fixed points and four fixed octahedra, forming
a quadranglc , there are no fixed edges, nor fixed triangles) . Certain lines form
a hypercube (a c:»-+H-subdiagram of~ and a subquadrangle of the new
Moufang quadrangle is formed by the fixed squares together with four cubes.
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B. MÜHLHERR

Quadrangles of type EN

The classifieation of Moufang quadrangles due to Tits and \Veiss provides as

a by-product the commutation relations for a11 Moufang quadrangles. It was

observed by Weiss that eaeh quadrangle of type Es (resp. E7 ) contains a quad

rangle of type E7 (resp. E6 ) as a subquadrangle. Using the fact that alJ these

quadrangles arise as sets of fixed points of involutions acting on the appropriate

buildings, we have a geometrie proof of this fact. As a further result we hav~ a

geometrie proof for the existence of the quadrangles of type En . This praof i~

based on the "Local to Global Theorem" for twin buildings. We illustrat.e t.he

idca at an example: Given an involution of E7 (k) we eonstruet the twin building

Es{k}. Now we obtain an involution of Es(k(t)) by looking at the building at

infinity.

P. ABRAMENKO

Finiteness properties of Kac-Moody groups over finfite fields

Let Q. be a Kae-Moody group functor in the sense of Tits C' minimal version",

spJitL (W, S) the assoeiated Coxeter system and diag(Q) := diag(W, S) its

Coxeter diagram. Suppose eard(S) < 00 and eard(W) = 00. We say that

diag(Q) is n-spherical if WJ :=< J > is finite fur all J ~ S with card(J) S-u.

Given a finite field ll'q, we set G = Q{IFq) and denote by (C, 8+,8_, N,S) the

standard twin BN-pair associated to G. The main result discussed in the talk

was thc folJowing:

Theorem 1: Assume that diag(Q) is n-spherical, diag(Q) does not contain any

subdiagram of rank ~ n of type F4 , E6, E7 , Es, and q ~ 22n - 1, then the para

bolie subgroup P; :::: BtWJBt of G =Q(lFq ) is of type Fn - 1 for any J ~ S,

t:E{+,-}.
If additionally eard(Wj) < 00 and diag(Q) is not (n + l)-spherical, then p/ is

not of type Fn .

, The proof of this result uses decisively the action of G fand its parabolic sub

groups) on the twin building associated to the t wi n B N -pai r (C, B+, B_ , N, S) .

Für some other groups admitting twill B N-pairs, analogous results can be de

rived in a simi"lar way, e.g. the following:

Theorem 2: Let H... be a simple IFq-group of classical type, n := rk'q(lU 2: 1

and q ~ 22n - 1. Then ll(IFq [tJ), 1l(IFq [t,t- 1]) are of type F71 - 1 and li.{lFqftJ) is

not of type Fn .

Note that Theorem 2 is just a specializati~n of Theorem 1 in the case 11 sprits

over IFq sinee then H(lFq[t, t-1J) =Q(ll'q) for some Kac-Moody group Q of affine

type. .
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E. SOMMERS

A new approach to computing the fundamental group of a nilpotent
orbit

Let G be a connected, simple algebraic group over C with Lie algebra g. Let N
be a nilpotent element in 9 and let ZG(N) be the centralizer of N inG. When
G is adjoint, we give a unified description of the conjugacy classes inthe (finite)
group ZG (N) / Z~;(N) I generaJizing the Bala-Carter classification of nilpotent
orbits in g. Dur result turns out to be enough to determine these groups.

We also state a conjecture for the G-module structure of the global functions
on the universal cover of the orbit through N.

V.L. POPOV

Reductive subgroups of Aut(A3
) and Aut(A4

)

Let k he an algebraically elose<! field of characteristic 0.' All varieties, morphisms
etc. below are defined over k.
Theorem 1: Let G be a connected reductive subgroup of Aut(A3 L then G is
cOllj ugatc to a su bgrou p of GL3 . .

Theorem 2: Let G be connected reductive subgroup of Aut(A4
) which is not

a one or two dimensional torus, then G is conjugate to a subgroup of GL4 •

Renlsrks: 1. It is an open problem whether one can drop the assumption that
G is connected in Theorem 1.
2. Since t.here are nonlinearizable actions of O2 = k* :xl 7l/2 on A,4, one cannot
drop this assumption in Theorem 2.
In the proofs some general statements are used, namely:
Theorem 3: Let G be a connected semisimple group and V = (LI $ ... $

LI) EB '" EB (L J $ ... EB LJ ), where each Li appears mi-times and where the Li
are simple G-modules, Li f:. Li for i # j. Assume that k[V]G = k. Irfor 'all i
wc have mi =dimLp 1 where H is the generic stabilizer for G on V, then any
G-equivariant alltomorphisrn of V (as algebraic variety) is linear.
Theorem 4: Let G be a reductive algebraic groupl V a simple G-module and
H a reductive group acting by G-automorphisms of the algebraic variety V.
Then the natural action of G x H on V is linearizabie.
Theorem 5: Let G be an algebraic group, VaG-module and X an irreducible
algebraic variety. Let Y = V x X and H be an algebraic group acting on Y by
G-automorphisms (G acts on Y via V). Assume that:
1. For all v E V we have 0 E G.v,
2. k[X]* C k[X]H, where k[X]* stands for the invertible functions in k[X].
3. The group of all G-equivariant automorphisms of V is k*idv.
Then there is a character X : H -7 k* and an act.ion of H on X such that the
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natural action of G x H is given by (g, h).(v, x) = (y(h).g.v, h.x) for all .rI E G,
h E 11, v E V and x EX.

M. GRINBERG

A generalization of Springer theory using nearby cycles

We state a condition on a smooth s!Jbvariety of C", called t.ransversality at
infinity. For.X C ((;1 transverse to infinity, we show that t.he Fourier transform
on the nearby cycles sheaf on the asymptotic cone as(X) C cn is an intersection
homology sheaf on ((;1)*. This result is applied to the following situat.ions:
1. X· C C" is the general fibre of a product of linear forms.
2. X C 9 is a closed adjoint orbit in a semi-simple Lie algebra (this is the
Springer theory case).
3. X C P is a c10sed K -orbit in asymmetrie space.
4. X C V is the general fibre of a quotient map V -+ G\\V for apolar
representation of G on V. This example generalizes many aspects of Springer
theory.

A. HELMINCK

Orbits and invariants associated with a pair of comnlutillg involutions

(joint work with G. Schwarz)
Let u, fJ be commuting involutions of the connected reductive algebraic group G
where u, {J, Gare defined over a (usually algebraically closed) field k, char(k) :f.
2. We have fixed point groups H = GO and K =Ce and an action (H x l{) x G -+
G. where ((h,k),g) t-+ hgk- 1 , h E H, k E l\, 9 E G. Let G//(H x J{) denote
SpecO(G)HxK (the categorical quotient). Let A be maximal among subtori B
of G such that fJ(b) = O'(b) = b- 1 for all bEB. There is the associated Wey)
group W := WHxK(A). We show:
1. The indusion A ~ Ginduces isomorphisms A/W -+ G//{H x J\). In
particular, the closed (H x /{)-orbits are precisely those which intersect A.
2. The fibres of G -+ G//(H x A") are the same as those occuring in certain
associated symmetrie varieties. In particular, the fibres consist.of finitely many
orbits.
We investigate:
1. The structure of Wand its relations to other naturally occuring Weyt group~
and the action of ue on the A-weight space of g.
2. the relation of the'orbit type stratifications of A/W and G//(H x 1\).·

Along the way we simplify some of Richardson 's proofs for the symmet.rie
case fJ =(7, and at the end we quickly recover results of Berger, Flensted-Jensen.
Hoogenboom and Matsuki for the case k = IR.

14
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D. PANYlJSHEV

On comnluting varicties associated with senli-simple Lie algebras

Let 9 be a semi-simpJ~ Lje algebra over k = C, C := {(x, y) E 9 X 9, (x, y] == O}
thc commuting variet.y. Except for irreducibility very little is known about C.
However! in some special cases, more information can be obtained. Consider
tohe following parlicular case:
9 is simple and pis a paraholic subalgebra with abelian nilpotent radical V == pu;
Jet V· be thc nilpotent radicaJ of the opposite parabolic. Define C :== {(z I y» x E
V, y E V· I {x, yJ =O}. The main results are:
1. C = U~=oCi, where r + 1 is the number of G-orbits in V (G == Aut(g)O).
2. Each Ci is normal. with rational singuJarities and the algebra of covariants
k[Ci]U is poJynomial (U the unipotent subgroup of G corresponding to V).
3. There is an explicit construction of an equivariant resolution of singuJaritiesore.

Berichterstatter: Stephan Mohrdieck
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