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Organized by lvlichael Baake (Tubingen), Lud\\ig Danzer (Dortmund) and Robert Moody (Ed­
monton) the workshop on Aperiodic Order 30t Oberwolfach was by all counts 30 great success. The
wann open 3otmosphere of the conference and the extensive mutual interaction of the participants
together with the e"ident emerging cohesion and depth of the subject left us a1l with a keen sense
of excitement and optimism.

'''hat makes the subject of 3operiodic order so appealing is the extraordinary range of mathe­
matical ideas that converge so beautifully around it and the' genuine promise of rnathematics to
shed light on the significant problems of understanding "the physical properties of real quasicrys­
talline materials.

The schedule was arranged to leave enough space for intensive discussion in various small groups
besides the two plenary "Problem and Discussion:'-sessions. Among the key ideas discussed and
lucidly exposited in talks 30t the workshop we might mention:

• the gradual classification of the hierarchy of discrete geometrical structures that lead from
strict periodic to 3operiodic order

• the role of autocorrelation rneasures and diffraction in relation to long-range order

• the irnportant connection between the theory of ergodic dynamical systems and diffraction,
in particular for systems with pure point spectra

• the deep way in which C*-algebras enter into the band structure in the electronic theory of
quasicrystals

• the considerable and various rel3otionships of number theory to the subject, Le., through
algebraic nurnber fields, zeta functions, or maxim~ orders in quaternionie algebras

• the first good intirnations of an irrational wavelet theory

• the first rigorous results on stochastic model sets and random tilings and their connection
to statistical rnechanics and potential theory.

Part of the plan of the workshop has been to invite several experts in fields we knew ought
to be part of the subject hut who thought little about it. Without exception these people were
entranced by the diversity and wealth of new ideas involved. There were numerous enthusiastic
comments, even frorn seasoned "Oberwolfachers:'.

Part of the success of the workshop has to be attributed to the wondernIl way in which the
Institute is operated. The organizers are very gratenIl for having had' the opportunity 10 hold this
workshop under ideal conditions.

Author of the report: Gerrit van Ophuysen
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VORTRAGSAUSZÜGE
(in chronologischer Reihenfolge)

On model sets
Robert V. Moody

The mathematics of aperiodic order eoncerns itself with extended geometrie structures that are
essentially discrete and exhibit long-range order, usually evidenced by discrete-like diffraction
patterns. Of particular interest is the possibility of such structures to possess non-crystallographic
symmetries.

One way of constructing point-sets with such properties is the eut and project formalism. In
the setting originally devised by Y. Meyer (for entirely different reasons!) this looks like this:

IRm ? lRmxH ~ H
u

~ L den~.p

where l1F is the space of interest (physical space) , H is a loeally compact Abelian group,
L c IRm x H is a lattice, and the projection maps 1r and 1rint, when restricted to L, are respec­
tively 1- ~ and have dense image in H. Given a subset W of H which satisfies W is compaet,
int(W) :I- b: we construct the model set

A := {1T(X) E IRm I x c L, 1Tint(X) E IV}.

A is a Delone set, is (generically) repetitive: and displays strong diffractive properties (see!'.IL
Schlottmann:s contribution). \Ve give two examples.

(1) Based on the maximal order of the quaternion algebra IHl(Q(v'S))
we eonstruct the Elser-Sloane model sets. These exhibit the sym­
metry of the non-crystallographic Coxeter group H4 and the lattice
L :::: Es, m = 4: H ~ JR4 .

(2) Starting with the weIl knOl\'ll chair tiling we detennine a model set
interpretation of it where m =2 and H = (Z2)2 ,... the plane over
the 2-adic integers.

Model sets and dynamical systems
Martin Schlottmann

Model sets can be generated by a cut and project scheme for arbitrary loeally compact Abelian
groups. There is a eriterion formulated exclusively in terms of the "physical" space for a point set
to be a regular model set. This eriterion is highly non-Ioeal, i.e., eannot be checked on the set of
finite patches.

Using the so-ealled torus parametrization, the dynamica1 system induced by a model set can
be shown to be metrically ....equivalent to the action of a dense subgroup on a compact Abelian
group. The pure point character and, by Dworkin's argument, the pure point diffraction is thereby
established.
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Perfect versus entropie order
Michael Baake

Quasicrystals are "real world" examples of structures with long-range orientational order. They
show up by diflraction images containing sharp Bragg peaks (point measures) and usually display
non-crystallographic symmetries. Various mathematical idealizations have been discussed in the
literature. On the one hand, perfect quasicrystals have been described as model sets. Their
structure is rather ""-eIl understood and they show a pure point diffraction spectrum. On the
other hand, random tilings are often considered 10 be a more realistic dass of models. Their
investigation is only in its infancy, and their diffraction properties are largely unknown. As an
intermediate dass, one can consider stochastically occupied model sets. \Vith some standard tool5

_ from stochastics and ergodie theory, it is possible 10 fonnulate and prove a suitable generalization
• of Jattice gases and determine their 'diffraction pattern. Finally, generalizing the usual symmetry

concept to the action of semi-groups of self-similarities, one can connect a scaling symmetry on
average with the existence of a unique invariant measure, determined as the unique solution of
an integral equation Goint work with R. V. Moody). This ShOVlS in particular that there are
many natural structures between lattices and random point sets worth further exploration. So,
the conc1usion is: we don:t know yet what "order" is, neither physically nor mathemaOtiCa.Ily.

Shelling icosahedral quasicrystals
Alfred \\Teiss

There are three non-equivalent Z(T]-submodules of fil3 which are stahle under the \Veyl group of
a root system of type Ha. The usual shelling of a root lattice of type Da induces a shelling on
these and then on the quasicrystal with spherical window of radius r. In terms of the ico~ian ring
Ir these shells can be decomposed into basic chunks.

{~x: x E ll, x 2 = -a, x == c mod 2IT}

with a E Z[r] totally positive and E = 0, I, T, T- 1 . These are analyzed via optimal embeddings of
the Z[r}-orders of Q(r)(v=ä) which contain E+p and turn out to depend on the ideal dass
group of this field.

Dynamics and spectrum for tHings and Delone sets
Boris Solomyak

Delone sets, that is, sets which are uniformly cliscrete and relatively dense in 'IRd , are used to
model atomic structures. The dynamical systems approach starts with a Delone set A, such that
A - A is discrete. Then one can consider tbe orbit closure under the translation action to obtain
aspace =.\. This space is compact in the natural topology. The group rrr' acts by translations.
Various geometrie notions, such as repetitivity, have interpretations in dynamical tenns. We give a
description of eigenvalues with continuous eigenfunctions. Then we proceed 10 measure--preserving
dynamical systems. Under the assumption of uniform patch frequencies, the invariant measure is
unique and the methods of ergodic theory may be applied. The main emphasis in this talk is on
the question when the resulting system has pure point spectrum. A sufficient condition is given
in tenns of "almost periodicity" of the original Delone set A. We then turn 10 the tiling setting
which has much in common with the one based· on Delone sets. H the tiling has the property of
self-similarity, a number of strong conclusions can be made. In particular, aplane tihng dynamical
system has non-trivial point spectrum if and only if the expansion is a complex Pisot number. °

We present a concrete combinatorial algorithm, the "overJap aJgorithm" , which allows one 10
distinguish between pure point and mixed spectrum. Several exarnples are considered, arnong
them the "chair" , 3D chair, and the domino.
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Long-range boundary effect in the lattice dimer model
Richard Kenyon

Joint work with H. Cohn, J. Propp. \Ve eonsider random domino tHings of a large polyomino
P. The boundary eonditions on P have a long-range influence on loeal properties of the tHing,
such as densities of loea" configurations. The inBuenee of the boundary is "computed" via the
average height junction which ean be thought of as a measure of loeal entropy. We show that
the average height function satisfies a 2nd order PDE, arising from entropy maximization subject
to fixed boundary values. This permits us to compute the asymptotie number of tilings of large
regions.

Local rules for quasiperiodic tHings
Franz Gähler

For many quasiperiodic tilings there exist conditions on the loeal tile clusters, which ensure that
the tiling is perfectly ordered and quasiperiodie. Mter a short introduetion to the relevant eoncepts
(Ioeal isomorphism, loeal equivalence, quasiperiodicity), a fairly general theory of such Ioeal mIes
is sketched. This theory, the foundations of which have been developed by A. Katz and L. Levitov,
gives an impression of the kind of eonditions that are necessary and sufficient for the existence of
such loeal rules.

Self-affine digit tiles and their boundaries
Andrew Vince

A self affine digit tile T is the attractor of an iterated function system {!l, 12:"" IN} in the
special case that the affine maps

satisfy

1. Ais an expansive integer matrix;

2. D = {d., d2 , ••. , dN } is a digit set, Le. a set of residues for ~.

Given such a tile T, there a1ways exists a tiling of]Rd by translates of T. Sometimes this tiling
T satisfies a global self-replicating property: the image of each tile in Tunder Ais, in turn, tiled _
by elements of T. We give several eonditions, some algorithmic, equivalent to this self-replicating ..
property.

Hone (henee all) of these conclitions hold, then there is a simple fonnula for the Hausdorff
dimension of the boundary of the tile T in the case that A is a similarity:

dimH(BT) = log..\
loge

where eis the expansion ratio of A and ..\ is the largest eigenvalue of a certain easily computable
matrix.

Also in the self-replicating ease, there is a method, based on Dekking's recurrent sets, for
constructing the boundary of a self-affine cligit tile.
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Average unit cell in diffraction analysis
Janusz \Volny

Average unit cells for the Fibonacci chain, modulated structures, Thue-~Iorsesequence and hexag·
onal layers have been constructed in physical space. The positions of atoms have been replaced
by a statistical probability of atomic displacements from the nearest point of the reference lattice.
Analytical expressions for diffraction peak intensities have been derived.

It has been shown that:

- tbe diffraction pattern can be calculated as a Fourier transform of the probability distribution
of distances from the reference lattice positions

- the diffraction pattern consists of periodic series of peaks which are described by an enve10pe
function

- the reference lattice approach can be successfully used instead of higher-dimensional analysis.

Mathematical quasicrystals ~~.

J efIrey Lagarias 'ßl

This talk describes idealized mathematical structures representing atomic positions for solid state
structures such as quasicrystals. A Deione set or (r: R)-set is a set in an with a finite packing
radius r v.ith equal spheres and a finite covering radius R v.ith equal spheres. A Delone set
X is of finite type if X - X is a discrete closed set, and is a ~Ieyer set if X - X is a Delone
set; cut-and-project sets are special cases of !vleyer sets. Delone sets of finite type have an ad­
ditive address map </> : X ~ Z- C IR- with a projection 7r : IR- ~ an with 1r 0 </> =id. Properties
of such sets can be described by properties of the address map: A Delone set is of finite type if
114>(xt) - </>(X2)!IR· ~ Gllxt - x21IR." for a constant G, and is a Meyer set if there is a linear map
L : Rn ~ IR- with 1Ic/>(x) - L(x)1I :$ C.

Properties of minimality of associated dynamical systems are studied. If a set is linearIy repet­
itive, that is: minimal with all patches of size T represented in any patch of size cT, then it has
limiting patch frequencies and a well·defined diffraction measure. Delone sets of finite type X
have pure point autocorreiation measures '"Y =Lzex-x ex6z. If they have pure discrete diffrac·
tion spectrum i', the Fourier transform of '"Y, then one obtains a summation formula. Poisson's
summation formula is a special case.

Constructing quasicrystals with given symmetry group
Peter Pleasants

In 1987 Fred Lunnon and myself showed that for every finite subgroup G of O(n) there is a G~

invariant cut-and·project quasicrystal (model set) generated by an inflation. In my talk I described
a more direct method of obtaining this result. The method relies on the fact that there is a
representation of G over areal algebraic number field K. AG-invariant O·module can be found,
where 0 is the ring ofintegers of K. The higher~imensionallatticefor the cut-and-project is then
obtained as the image of this O-module in the direct product of the d different homomorphisms of
K into ce, where d is the degree of K. The resulting quasicrystal has an inflation and the multiplier
can be chosen to be any Pisot-Vijayaraghavan-number that takes the O-module into itself. When
K is quadratic the inflation is loeal and can be used to generate the quasicrystal. In other cases
it should be possible to construct a closely related quasicrystal whose inflation is loeal. It should
also be possible, when G has no large crystallographic subgroup, to prove the existence of weak
local rules, that force non-periodicity but not necessarily detennine the Ioeal isomorphism dass.
The natural approach to both these questions seern to be "Ammann hyperplanes:' or BOrne similar
analog of Ammann lines, but the details are not yet worked out. Another construction method
has Teeently been found by N. Cotfas and J.·P. Verger-Gaugry.
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Remarks on the theory of quasicrystals
Peter Kramer

Mathematical concepts for aperiodie orientational long-range order are applied to the physics of
icosahedral quasicrystals. For the root lattice D 6 C JR6, the icosahedral group A(5) detennines an
invariant decomposition JR6 = IRfI ffi IRi· Decompose the lattice points as x= xII + Xl. C D6 and
fix in IRi the compact window W as the projection V1. to lRi of the Voronoi domain V of Da.
Then V1. becomes Kepler's triacontahedron, and the set {xII Ix= XII + X1., Xl. E Vl.} detennines a
tiling T*(De) (Kramer et al. 1992) by six tetrahedral tiles and with global icosahedral orientational
symmetry. To describe atomic models for the physics, we choose module positions !rom three
classes of holes in D 6 and their projections and fix them on the tiles in ~I. The window W for
the bare tiling is now replaced by a composite window in 1R1. for each dass of holes. For the
ieosahedral quasicrystals i-AlFeCu and i-AlMnPd we construet the eomposite windows. Local
atomie neighbourhoods and their frequeneies are obtained by geometrie analysis. They provide
the basis for quantum eomputations of loeal observables like Mößbauer data or the loeal density
of electron states. Perfect quasierystals of type i-AlPdRe (1994) show zero conduetivity at T -+ O.
In the absence of periodicity and henee of electronic band strueture, the eomputation of electronic
structure is a great challenge for the quantum theory of quasierystals. Approximate computations
illustrate the problems. Thnnel mieroseopy was used in 1994 to scan the surface of i-AIPdMn
on the atornic level. It yields a terrace struetu~e in Fibonacci spacing perpendicular to 5-fold
icosahedral axes. The eomposite tiling model }ields a detailed and quantitative explanation of
this terrace structure, based on Kepler's decomposition of triacontahedron into decagonal prism
and two caps. Future efforts in the mathematical physics of quasierystals are needed in order to
pass from the description of the geometrie structure to the quantum theory and thennodynamics
of these systems.

Wulff shape for quasiperiodic arrangements.
Karoly Böröczky

The well-known Wulff-shape construetion for erystais is generalized for the classical quasi-periodic
point sets. This way the "quasi-crystal" growth with icosahedral syrnmetry ean be modeled,
leading e.g. to the regular dodecahedron, which actually appears as the preferred shape of eertain
quasi-erystals.

Wavelets for planar quasiperiodic tHings
Jean-Pierre Gazeau

Wavelet analysis is challenging Fourier analysis because of its better suitability to self-similar
structures. The wavelet approach is based on affine actions in r, and diserete wavelet families
are usually obtained from a probe function through dyadic translations/eontractions eombined
with lattice translations. We shall present a constroction of discrete "r-adie" wavelets, r = ~,
which instead makes use of dilations/contractions by powers of r combined with quasilattice
translations. Ten-fold rotations are also included in these affine actions when dealing with the
planar case. The method is illustrated by considering the elementary example of the so-called
r-Haar family, which is the counterpart of the well-known dyadic Haar basis of L2(lR) or L2(C).

Such wavelet basis with irrational scaling are thought 10 play an important role in quasicrys­
talline studies (image proeessing for diffraction patterns or scanning mieroseopy, spectral prob­
lems).
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Deformation of model sets and icosahedral quasicrystals
Michel Duneau

Icosahedral quasicrystals are ~ently described by model sets as introduced by Y. Meyer. How­
ever, such models can be generalized by small defonnations which preserve the Delone property,
the quasiperiodicity of the autocorrelation function and the icosahedral symmetry. These defor­
mations are analyzed by means of the theory of univariant and covariant polynomials. Theyare
generated by finitely many fundamental modes and it is shown that same of these deformations
could hardly be detected by the analysis of experimental diffraction data.

Group theory and the dynamies of trace maps and cat maps
John A.G. Roberts

In this talk, we review recent work that utilizes the group structure of the integer matrix groups
51(2, Z), GI(2, Z) and their projective counterparts to help prove results conceming the dynamics
of related groups of automorphisms. .-../...

In particular, we consider cat maps, which are hyperbolic toral automoi'phisms
induced by an element of Gl(2, Z) acting mod 1. Also we consider ";. the set
A = {A E qx, y, z]3 : I(A(x, y, z)) = lex, y, zn where lex, y, z) = x2 + ,,2 + z2 - 2xyz ..;.."1. The
set of such 3D polynomial mappings is a group (Peyriere, 'Ven; 'Ven 1992) isomorphie to a
semi-direct product of the Klein-4 group and PGI(2, Z). The mappings have integer coefficients
and so can be considered on IR3 or C3. \Ve call the subgroup G == PG1(2, Z) of such polynomial
maps tmce maps because they arise when we calculate the trace of a ward in two 51(2, Z) matrices
A and B, where the word is (1n(A) and (1 is an invertible tv.."O-letter substitution rule. Various
problems like the ID tight-binding model with quasiperiodic potential can be studied utilizing
the trace map and its dynamics.

'Ve use the free product structure of PSI(2,Z) and the amalgamated free product structure of
PGI(2,Z) to give

1. necessary and sufficient conditions for escaping orbits under related iteration of 9 E G, 9
hyperbolic, which generalize results obtained previously for e.g. the Fibonacci trace map

2. the structure of the reversing symmetry group R(Af) of a cat map M, which c6nsists of
symmetries S which commute with AI and (possibly) reversing symmetries G which conju­
gate AI into AI-1 • \Ve give examples where AI has no reversing symmetry (joint work with
lvl. Baake and 5. 'Vilson).

Finally, we consider the existence for cat maps of generalizations of symmetries and time.
reversal symmetries (called k-(reversing) symmetries). 'Ve show how this problem is equivalent
to t;'e way the cat map induces a partition into periodie orbits of each rational sublattice of the
ton s. We give a number-theoretic solution of this problem.

Inftation centers in the n-dimensional cut and project quasicrystals
Jiri Patera

Cut and project quasicrystals with ,;g irrationality and convex acceptance windows in any dimen­
sion were discussed.

Inflation centers inside and outside of the quasicrystal point set were described for all dimen­
sionS. Minimal distances in 10 quasicrystals were given as functions of the length of the acceptance
window. Expressions for Omin and {lmax, the minimal and maximal acceptance window respec­
tively, which reproduce a given ID quasicrystal fragment, were given.
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Gap labeling theorem for quasicrystals
Jean Bellissarcl

Electronic motion in a quasicrystal ia described accurately through a Schrödinger operator, the
potential of which is modulated according to the position of atoms, located at the vertices of a
quasiperiodic set of points in IRd (d =1,2,3 in practice). The absence of periodicity forbids the
use of Bloch's theorem to analyze the spectrum of such an operator.

We have developed, sinee the early eighties, a formalism based upon non commutative geom­
etry, in which the Brillouin zone admits the strueture of a non commutative manifold.

Most of the models buHt by physicists have in common an intricate band spectrum, sometimes
nowhere dense with zero Lebesgue measure. They may have infinitely many gaps in a finite interval
of the energy spectrum. •.

Ta label these gaps physicists use the so ealled integrated density of states (IDS), namely the -
number of eigenstates of energy less than a given energy E, per unit volume. The Shubin formula
relates this IDS to the integral over the (non eommutative) Brillouin zone]ß of the eigenprojeetion
of the Schrödinger operator eorresponding to the spectral part eontained in (-00, E]. The InS
is eonstant on gaps, and corresponds to the integral over 18 of a projection in the C·-algebra of
eontinuous funetion on 18. These numbers are eomputed through computing the Grothendieck
Ko-group of B.

The caleulations have been performed for quasicrystal in dimension d = 1, 2. The result is the
set

{J dD'(w)f(w); f E C(fl;Z) }.

where n is the "acceptance zone" or "window" defining the quasicrystal and enclosed v.-ith a topol­
ogy such that n u Tan is closed and open for any translation a in the virtual higher dimensional
lattice l defining the point set of the quasicI}"Stal (ideal loeation of atoms). IP' is the unique L
invariant measure on n.

For d = 1, a QC buHt from Z2 C 1R.2 projected on a line of slope ß = J~Q (0 E [0,1] \ Q), this
set of numbers is Z + aZ. For d = 2, in the case of the oetagonal Ammann-Beenker tHing, it gives

{
m+nJ2 }--8--; m,n E Zt ffi + n even .

Level-spacing distributions of planar quasiperiodic tight-binding models
Uwe Grimm

Tight-binding models jield a simplified description of the motion of non-interacting electrons in
a quasiperiodic background. Given a quasiperiodie tiling, electrons can move from one vertex to
another along the edges of the tiling, resulting in a Hamiltonian matrix that is essentially the
adjacency or incidence matrix of the quasiperiodic graph.

In this joint work with J.X. Zhong, R.A. Römer, and M. Schreiber, we investigate the statistical
properties of the eigenvalue spectrum of this Hamiltonian for the octagonal Ammann·Beenker
tiling by numerical methods. Approximating the infinite tHing by different sequences of finite
patches, and by taking into aceount their symmetries, we find that the underlying universal level­
spacing distribution of eigenyalueei agrees with that of the Gaussian orthogonal random matrix
ensemble. Contradictory resuIts in the literature we attribute to an "almost symrnetry" of the
finite patches that had been eonsidered, which is not present in the generie ease. The agreement
between our numerical data and the random matrix resuIt is astonishingly good, one can even
see that the numerieal data fit the exact random matrix distribution better than the well-kno\\"Il
\Vigner surrnise.
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Generalized Meyer sets with toric interna! spaces
Jean-Louis Verger-Gaugry

'Ve show that one-dimensional aperiodic sets of points having the Delaunay (=Delone) property
can be as50ciated witb Meyer sets, for which

1. the interna! space is torie, ~, with a selection rule based on a congruenee mode with respect
to the frequencies Aproducing punetuated v.-indows, .

2. a scaling exponent in [0,1] can be uniquely defined for each element of tbe window, related
to the scaling properties of the intensity function and the point density measure on canonical
one-dimensional sublattices of period A, where a scaling exponent of 1 eorresponds to Bragg­
peaks,

3. the projection mappings are adapted to global average lattice and are not orthogonal.

The Thue-~Iorsequasicrystal: arising from the Thue-Morse automaton, is studied modulo >..Z to
show that it produces punetuated windows in the one-dirnensional torus, for values of A selected
by congruenee. The construetion of Y. ~Ieyer allows arbitrary locally compact Abe1ian groups as
internal spaces but it seems to be the first time that a torie eomponent is explicitly 1.iS1<i~.linked
to the search of sealing exponents and spectralanalysis.·~·.

Crystallographic clusters
Nikolai Dolbilin

In the talk a group-free approach to crystallographic point sets and tHings is discussed. T}:1e loeal
theorem (obtained over 20 years ago) and the recently proved global critenon de~cribe certain
well-defined conditions providing Delone sets with crystallographic symmetry.

Nevertheless, these two theorems relate to an ideal infinite crystal which never exists in nature.
A goal of the talk is to discuss several versions of the so-called extension theorem. The point
version of this theorem describes necessary and sufficient conclitions for a non-numerous point set
(a cluster) to admit an extension to an infinite ideal crystal.

Tbe polyhedral version of tbe extension theorem presents a criterion of a polyhedron to tile
space in an isohedral way. Tbe last version generallzes well-known statements on pnlyhedra tbat
isohedrally tile space (e.g., fundamental domains for Coxeter groups, a theorem ofVenkov, Alexan­
drov and McMullen on convex polyhedra designed to tile space by translations).

A species of planar triangular tHings with inftation-factor F
Ludwig Danzer & Gerrit ,,-an Ophuysen

Consider A:= I~. X:= .Jr, j:= {A,X} and the inflation rule given by infI(A) := X,
..;; ..;;

infl(X) := XüA =~. Interpreting E2 as iC the inflation-factor 1/ becomes i.;T. which is

a complex PV-number. The species S(~, infl) of all global a--tilings created by inft has a unique
deflation ('1nO-1

") and bence is aperiodie. Tbe set of all vertices can be shown to be a" "model
set" (Robert Moody), so the Fourier-transformation of the autocorrelation function is "pure point"

with the Bragg-peaks located on the Z-module 3ST((f), (~-l), (~), (~) )z'
\Vith a-c := {A, B, C, X, Y, Z}, where Band C are congruent to A, while Y and Z are congruent

to X, but aIl differently coloured, and

inflc(A) := X

inflc(B):= Y
infic(C) := Z

9
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we receive the species S(3'c, inflc) of coloured tilings. In contrast to S(3', infl), the coloured species
can also be defined by a perfect local matching rule. In fact the 42 coloured vertex-stars may serve
88 an atlas.
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PROBLEMS

1. A polyomino is a topologica1 disc, which can be tiled by congruent squares.

Question 1 Does there exist an aperiodie polyomino?

Question 2 Given a polyomino P, does there exist an algorithm to determine whether or
not there is a P-tiling?

Theorem (Keating, A.V.) Given a polyomino P, there is a polynomial time algorithm to
determine whether there exists an isohedral P-tiling.

Corollar Given a polyamino P there exists an· algorithm to determine whether there is a
P-tiling by translation.

Question 3 Given a polyomino P, does there exist an algorithm to determine whether there
is aperiodie P-tiling?

Andrew Vince

2. Solution to a re1ated problem of A. Vinee:
Let P be a polytope that tiles ]R3 by translation.

Question: Does there exist a lattice tHing of IR3 with P?

Known:
(1) H Pisconvex then there always exits a lattiee tHing (P. ~lcMullen).

(2) H P is star-shaped the answer is no: take as tile the union of one center eube~ six
eongruent cubes each placed face to face next to the centered one and place on the
opposite face of each such cube a squared pyramid of hight half the edge length of
the cubes. This star-shaped polytope tiles whole space by translation but eannot
be arranged to a lattice tiling. .

Egon Schulte

3. Is the presented triangular tiling in JE2 \\ith inflation factoT F in the same AJLD-c1ass
as the Ammann-chair-tiling with the same inflation factor (e.f. GrÜDbaum and Shepard:
Tilings and Patterns)?

Ludwig Danzer

Preliminary results by Reinhard Lück and myself indicate that this is not the case and that
there is DO IDeal derivability in either direction.

Gerrit van Ophuysen

4. Is there an example for a tiling in JE2 which has perfect Ioeal matching mIes but there is DO
tiling with an inflation in its MLD-class?

Ludwig Danzer

5. Question 1: Does there exist a self-similar tHing of the plane with two tile types up to
translation, whose expansion factOT A E C is of algebraic degree 4? HAis real, can A
have degree 2?

By self-similar we mean,

a) upon expansion z"'"'+ ..\z each tUe maps· over existing tiles,
b) two tUes of the same type subdivide in the same way,
c) the tHing is repetitive.
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One is free to replace the exact self-sirnilarity (condition (1» with the property that the
inflated tHing is MLD to the original tiling.
Thurston's theorem on self-similar tilings implies that when ,\ is not real, ,\ is of algebraic
degree 1,2, or 4; and when ,\ is real, it must he of degree 1 or 2.
H there is only one tile type, it is known that ,\ rnust be of degree 1 if real and of degree 1
or 2 if not real, and each such ,\ occurs. Furtherrnore there exist SSTs with two tile types
for such '\. But these are all MLD with SSTs having only one tile type.
So we could rephrase our question as follows:

Question 1': Is there a SST with two tile types which is not MLD with a SST having only
one tile type?

Richard Kenyon e
6. A region R is a compact set in lRn which is

(1) the closure of its interior and
(2) the boundary 8R of it is of Lebesgue measure O. Suppose R tiles JR'l by translations, i.e.

lRn = U(R+t)
tEF

and

p«R + t) n (R + t'» = 0 "It, t' E F t:f:. t'.

Ludwig Danzer

a) Does R always have a fully periodic tiling? (One can take:F = A + {finite set}.)
b) Same question with R being a finite union of lattice cubes.
c) Same question only allowing tHings F ~ zn.

Jeffrey Lagarias

7. There are (e.g. in JE2) protosets and substitution roles which cannot be described by sim­
ilarities and lack a uniform inflation factor. Even in the hyperbolic plane there are tilings
which appear to be "hierarchical" . This leads to the following

Problem: Give a useful and precise definition of what should be called a "hierarchical
tHing:' .in d dimensions, at least for d = 2.

You may employ the idea of substitution, but neither translations nor similarities. The
definition shall be applicable as weIl to JEd ~ to JHId.

8. Problem A: e
Two positive self-adjoint operators A and B on a Hilbert space are called A-unitarily equiv-
alent for A a positive n x n-matrix, if A ® A is unitarily equivalent to A ~ B. Classify
self-adjoint operators up to A-unitary equivalence.
Remarks:

a) In finite dimensions A-unitary equivalence is the same as unitary equivalence.
b) The simplest example for a non-trivial pair of A-equivalent operators are on e2 (Z)

the multiplication operators AI, and }'Ig with f: Z 3 n 1-+ ,\2n, g: Z 3 n 1-+ ,\2n+l,

A = (~ ~), ,\ > O.

After same reductions, Problem A essentially reduces to the following
Problem B:
Classify pairs of subsets A, B ~ zn such that

i) AnB =0
ü) Au SI (A) u ... u Sn(A) = B U SI (B) U ... U Sn(B) where Si on zn is the shift in tbe

i-th coordinate
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I~

Remarks:

a) For n = 1 the only such pair is given by A = 2Z, B = 2Z + 1 (or conversely).
b) For n ~ 2 there are more possibilities which nevertheless show a high degree of regu­

larity.

Burkhard Kümmerer

9. Consider edge-to-edge tilings of the plane by rhombi with internal angles of the fonn 2rrk/n,
for sorne fixed even n > 2, and 0 < k < n -1. The tilings are required to satisfy the alterna­
tion condition (AC): along any lane of tUes sharing edges in a fixed direction, congruent tUes
in different orientations must alternate (see (1]). H n is not t\\ice an odd prime, we assume
in addition that all rhornbi of this form are actually used. The vertex set V(T) of such a
tiling T generates a module 1.1 of finite rank r. Indexing V v.ith respect to a fixed basis of
AI defines a map F : V ~ zr. From the work of Socolar (1] it follows that there exists a
linear map L : V ~ zr such that F - L is uniformly bounded. In other words: Visa ~Ieyer

set (but not a model set, in general). H n is not divisible by 4, the same approximating
map L can be used for all tilings satisf)ing the AC. Otherwise, maps from a one-parameter
familyare"needed.

Conjecture 1: 1I n = 10, and T satisfies the AC, then V(T) is a model set. Every such
tiling is a generolized Penrose tiling (2].

Conjecture 2: 11 n = 12, and 60o -rhombi are weldedtogether to regular hexagons, the
vertex set 01 every hexagon-square-rhombus tiling satisfying the AC is a model set.

Conjecture 3: If n = 12, every rhombus tiling satisfying the AC has avertex set which is
a model set.

Remarks: Even if the AC enforces tHings with a model set as vertex set, it admits tilings
in uncountably many Ioeal isomorphism classes (unless n = 4 or 6). ~datching rules
based on the hierarchical structure of a tHing cannot achieve this. Le [3] claims to have
a proof of a slightly weaker version of Conjecture I, but a written proof does not seem
to be available. A proof of Conjecture 2 should be doable \\ith the methods of (4],
where the analogous result for n =8 is proved. Conjecture 3 combines the difflculties
of both Canjectures 1 and 2. A praof of Conjecture 1 would imply that 3D icosahedral
rhombohedron tHings satisfying an analogous AC are model sets.

1

1] J. E. S. Socolar, Commun. ~Iath. Phys 129, 599-619 (1990). .
2] A. Pavlovitch and M. Kleman, J. Phys. A20, 687-702 (1987).
3] T. T. Q. Le, pp. 331-366 in The Mathematics 01 Long-Range Aperiodie Order,

R. V. Moody (ed.), Kluwer 1997. .
[4] A. Katz, pp. 141-188 mBeyond Quasicrystals, F. Axel and D. Gratias (eds.), Les

Editions de Physique/Springer 1995.

Franz Gähler

10. Let A = {a, b, c} be an alphabet of 3letters. Consider all words of length n that are repeat­
free or square-free (i.e., no substring ja a square), and define In to be the number of such
words (length n). Define Sn := k10g(/n), the entropy density..
It is known that 8 = Iimn~oo Sn exists, and the best numerical estimate (10 my knowledge)
is 8 =:::: 0.263719(1), where (1) means the uncertainty in the last digit.

1. problem: Can 8 be determined exactly?

2. problem: Consider the generating function F(x) = En~l Inxn. Then S = Iog(~), P =
radius of convergence of F(x) (around x = 0). Is F(x) analytieally continuable beyond
its circ1e of convergence? (~Iy guess: it is not.)
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H we consider an alphabet in N letters (N ~ 3), the same type of question occurs. Further­
maret

-;;{N) 1 eN - 1) + JeN - 1)2 - 4 h N- 1
S = og 2 = arcos -2-

seems to be a lower baund for the entrapy density s(N). It is pretty bad for N =3 (i =0
while S ~ 0.263 ... ), but improves rapidly - being asymptotically exact for N ~ 00 (idea
available, but no complete praof; see [1]).

3. problem: Prove & improve (!).

[1] M. Baake, V. Elser, U. Grimm; The Entropy of Square-Free Words, Mathl. Comput. ~
Madelling 26 (1997) 13-26. ..

Michael Baake
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